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Congestion Control 
Reading: Sections 6.1-6.4


CS 375: Computer Networks 

Dr. Thomas C. Bressoud 
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Goals of Todayʼs Lecture

• Congestion in IP networks 
– Unavoidable due to best-effort service model 
– IP philosophy: decentralized control at end hosts 

• Congestion control by the TCP senders 
– Infers congestion is occurring (e.g., from packet losses) 
– Slows down to alleviate congestion, for the greater good 

• TCP congestion-control algorithm 
– Additive-increase, multiplicative-decrease 
– Slow start and slow-start restart 

• Active Queue Management (AQM) 
– Random Early Detection (RED) 
– Explicit Congestion Notification (ECN) 
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No Problem Under Circuit Switching

• Source establishes connection to destination 
– Nodes reserve resources for the connection 
– Circuit rejected if the resources aren’t available 
– Cannot have more than the network can handle 
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IP Best-Effort Design Philosophy

• Best-effort delivery 
– Let everybody send 
– Try to deliver what you can 
– … and just drop the rest 

source destination 

IP network 
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Congestion is Unavoidable

• Two packets arrive at the same time 
– The node can only transmit one 
– … and either buffer or drop the other 

• If many packets arrive in short period of time 
– The node cannot keep up with the arriving traffic 
– … and the buffer may eventually overflow 
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The Problem of Congestion

• What is congestion? 
– Load is higher than capacity 

• What do IP routers do? 
– Drop the excess packets 

• Why is this bad? 
– Wasted bandwidth for retransmissions 

Load 

Thruput “congestion

collapse”
 Increase in load that 

results in a decrease in 
useful work done. 
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Ways to Deal With Congestion

•  Ignore the problem 
– Many dropped (and retransmitted) packets 
– Can cause congestion collapse 

• Reservations, like in circuit switching 
– Pre-arrange bandwidth allocations 
– Requires negotiation before sending packets 

• Pricing 
– Don’t drop packets for the high-bidders 
– Requires a payment model 

• Dynamic adjustment (TCP) 
– Every sender infers the level of congestion 
– And adapts its sending rate, for the greater good 
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Many Important Questions

• How does the sender know there is congestion? 
– Explicit feedback from the network? 
– Inference based on network performance? 

• How should the sender adapt? 
– Explicit sending rate computed by the network? 
– End host coordinates with other hosts? 
– End host thinks globally but acts locally? 

• What is the performance objective? 
– Maximizing thruput, even if some users suffer more? 
– Fairness?  (Whatever the heck that means!) 

• How fast should new TCP senders send? 
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Inferring From Implicit Feedback


? 

• What does the end host see? 

• What can the end host change? 
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Where Congestion Happens: Links

• Simple resource allocation: FIFO queue & drop-tail 

• Access to the bandwidth: first-in first-out queue 
– Packets transmitted in the order they arrive 

• Access to the buffer space: drop-tail queuing 
– If the queue is full, drop the incoming packet 
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How it Looks to the End Host

• Packet delay 
– Packet experiences high delay 

• Packet loss 
– Packet gets dropped along the way 

• How does TCP sender learn this? 
– Delay 

 Round-trip time estimate 

– Loss 
 Timeout  
 Duplicate acknowledgments 
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What Can the End Host Do?

• Upon detecting congestion 
– Decrease the sending rate (e.g., divide in half) 
– End host does its part to alleviate the congestion 

• But, what if conditions change? 
– Suppose there is more bandwidth available 
– Would be a shame to stay at a low sending rate 

• Upon not detecting congestion 
– Increase the sending rate, a little at a time 
– And see if the packets are successfully delivered 



13 

TCP Congestion Window

• Each TCP sender maintains a congestion window 
– Maximum number of bytes to have in transit 
– I.e., number of bytes still awaiting acknowledgments 

• Adapting the congestion window 
– Decrease upon losing a packet: backing off 
– Increase upon success: optimistically exploring 
– Always struggling to find the right transfer rate 

• Both good and bad 
– Pro: avoids having explicit feedback from network 
– Con: under-shooting and over-shooting the rate 
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Additive Increase, Multiplicative Decrease


• How much to increase and decrease? 
– Increase linearly, decrease multiplicatively 
– A necessary condition for stability of TCP 
– Consequences of over-sized window are much worse 

than having an under-sized window 
  Over-sized window: packets dropped and retransmitted 
  Under-sized window: somewhat lower throughput 

• Multiplicative decrease 
– On loss of packet, divide congestion window in half 

• Additive increase 
– On success for last window of data, increase linearly 
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Leads to the TCP “Sawtooth”


t 

Window 

halved 

Loss 
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Practical Details

• Congestion window 
– Represented in bytes, not in packets (Why?) 
– Packets have MSS (Maximum Segment Size) bytes 

•  Increasing the congestion window 
– Increase by MSS on success for last window of data 

• Decreasing the congestion window 
– Never drop congestion window below 1 MSS 
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Receiver Window vs. Congestion Window


• Flow control 
– Keep a fast sender from overwhelming a slow receiver 

• Congestion control 
– Keep a set of senders from overloading the network 

• Different concepts, but similar mechanisms 
– TCP flow control: receiver window 
– TCP congestion control: congestion window 
– TCP window: min{congestion window, receiver window} 
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How Should a New Flow Start


t 

Window 

But, could take a long 
time to get started! 

Need to start with a small CWND to avoid overloading the network. 
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“Slow Start” Phase

• Start with a small congestion window 
– Initially, CWND is 1 Max Segment Size (MSS) 
– So, initial sending rate is MSS/RTT 

• That could be pretty wasteful 
– Might be much less than the actual bandwidth 
– Linear increase takes a long time to accelerate 

• Slow-start phase (really “fast start”) 
– Sender starts at a slow rate (hence the name) 
– … but increases the rate exponentially 
– … until the first loss event 
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Slow Start in Action

Double CWND per round-trip time 
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Slow Start and the TCP Sawtooth


Loss 

Exponential “slow 
start” 

t 

Window 

Why is it called slow-start? Because TCP originally had 
no congestion control mechanism. The source would just  

start by sending a whole receiver window’s worth of data. 
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Two Kinds of Loss in TCP

• Timeout 
– Packet n is lost and detected via a timeout 
– E.g., because all packets in flight were lost 
– After the timeout, blasting away for the entire CWND 
– … would trigger a very large burst in traffic 
– So, better to start over with a low CWND 

• Triple duplicate ACK 
– Packet n is lost, but packets n+1, n+2, etc. arrive 
– Receiver sends duplicate acknowledgments 
– … and the sender retransmits packet n quickly 
– Do a multiplicative decrease and keep going 
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Repeating Slow Start After Timeout


t 

Window 

Slow-start restart: Go back to CWND of 1, but take 
advantage of knowing the previous value of CWND. 

Slow start in operation 
until it reaches half of 

previous cwnd. 

timeout 
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Repeating Slow Start After Idle Period

• Suppose a TCP connection goes idle for a while 
– E.g., Telnet session where you don’t type for an hour 

• Eventually, the network conditions change 
– Maybe many more flows are traversing the link 
– E.g., maybe everybody has come back from lunch! 

• Dangerous to start transmitting at the old rate 
– Previously-idle TCP sender might blast the network 
– … causing excessive congestion and packet loss 

• So, some TCP implementations repeat slow start 
– Slow-start restart after an idle period 
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TCP Achieves Some Notion of Fairness

• Effective utilization is not the only goal 
– We also want to be fair to the various flows 
– … but what the heck does that mean? 

• Simple definition: equal shares of the bandwidth 
– N flows that each get 1/N of the bandwidth? 
– But, what if the flows traverse different paths? 
– E.g., bandwidth shared in proportion to the RTT 
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What About Cheating?

• Some folks are more fair than others 
– Running multiple TCP connections in parallel 
– Modifying the TCP implementation in the OS 
– Use the User Datagram Protocol 

• What is the impact 
– Good guys slow down to make room for you 
– You get an unfair share of the bandwidth 

• Possible solutions? 
– Routers detect cheating and drop excess packets? 
– Peer pressure? 
– ??? 

27 

Queuing Mechanisms


Random Early Detection (RED) 

Explicit Congestion Notification (ECN) 
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Bursty Loss From Drop-Tail Queuing

• TCP depends on packet loss 
– Packet loss is the indication of congestion 
– In fact, TCP drives the network into packet loss 
– … by continuing to increase the sending rate 

• Drop-tail queuing leads to bursty loss 
– When a link becomes congested… 
– … many arriving packets encounter a full queue 
– And, as a result, many flows divide sending rate in half 
– … and, many individual flows lose multiple packets 
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Slow Feedback from Drop Tail

• Feedback comes when buffer is completely full 
– … even though the buffer has been filling for a while 

• Plus, the filling buffer is increasing RTT 
– … and the variance in the RTT 

• Might be better to give early feedback 
– Get one or two connections to slow down, not all of them 
– Get these connections to slow down before it is too late 

30 

Random Early Detection (RED)

• Basic idea of RED 
– Router notices that the queue is getting backlogged 
– … and randomly drops packets to signal congestion 

• Packet drop probability 
– Drop probability increases as queue length increases 
– If buffer is below some level, don’t drop anything 
– … otherwise, set drop probability as function of queue 

Average Queue Length 
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Properties of RED

• Drops packets before queue is full 
– In the hope of reducing the rates of some flows 

• Drops packet in proportion to each flow’s rate 
– High-rate flows have more packets 
– … and, hence, a higher chance of being selected 

• Drops are spaced out in time 
– Which should help desynchronize the TCP senders 

• Tolerant of burstiness in the traffic 
– By basing the decisions on average queue length 
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Problems With RED

• Hard to get the tunable parameters just right 
– How early to start dropping packets? 
– What slope for the increase in drop probability? 
– What time scale for averaging the queue length? 

• Sometimes RED helps but sometimes not 
– If the parameters aren’t set right, RED doesn’t help 
– And it is hard to know how to set the parameters 

• RED is implemented in practice 
– But, often not used due to the challenges of tuning right 

• Many variations in the research community 
– With cute names like “Blue” and “FRED”…  
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Explicit Congestion Notification

• Early dropping of packets 
– Good: gives early feedback 
– Bad: has to drop the packet to give the feedback 

• Explicit Congestion Notification 
– Router marks the packet with an ECN bit 
– … and sending host interprets as a sign of congestion 

• Surmounting the challenges 
– Must be supported by the end hosts and the routers 
– Requires two bits in the IP header (one for the ECN 

mark, and one to indicate the ECN capability) 
– Solution: borrow two of the Type-Of-Service bits in the 

IPv4 packet header 
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Other TCP Mechanisms


Nagle’s Algorithm and Delayed ACK 
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Motivation for Nagleʼs Algorithm

•  Interactive applications 
– Telnet and rlogin 
– Generate many small packets (e.g., keystrokes) 

• Small packets are wasteful 
– Mostly header (e.g., 40 bytes of header, 1 of data) 

• Appealing to reduce the number of packets 
– Could force every packet to have some minimum size 
– … but, what if the person doesn’t type more characters? 

• Need to balance competing trade-offs 
– Send larger packets 
– … but don’t introduce much delay by waiting 
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Nagleʼs Algorithm

• Wait if the amount of data is small 
– Smaller than Maximum Segment Size (MSS) 

• And some other packet is already in flight 
– I.e., still awaiting the ACKs for previous packets 

• That is, send at most one small packet per RTT 
– … by waiting until all outstanding ACKs have arrived 

•  Influence on performance 
– Interactive applications: enables batching of bytes 
– Bulk transfer: transmits in MSS-sized packets anyway 

vs. 

ACK 
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Motivation for Delayed ACK

• TCP traffic is often bidirectional 
– Data traveling in both directions 
– ACKs traveling in both directions 

• ACK packets have high overhead 
– 40 bytes for the IP header and TCP header 
– … and zero data traffic 

• Piggybacking is appealing 
– Host B can send an ACK to host A 
– … as part of a data packet from B to A 
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TCP Header Allows Piggybacking


Source port Destination port 

Sequence number 

Acknowledgment 

Advertised window HdrLen Flags 0 

Checksum Urgent pointer 

Options (variable) 

Data 

Flags: SYN 
FIN 
RST 
PSH 
URG 
ACK 

39 

Example of Piggybacking


Data 

Data+ACK 

Data 

A B 

ACK 

Data 

Data + ACK 

B has data to send 

A has data to send 

B doesn’t have data to send 
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Increasing Likelihood of Piggybacking

•  Increase piggybacking 
– TCP allows the receiver to wait 

to send the ACK 
– … in the hope that the host will 

have data to send 

• Example: rlogin or telnet 
– Host A types characters at a 

UNIX prompt 
– Host B receives the character 

and executes a command 
– … and then data are generated 
– Would be nice if B could send 

the ACK with the new data 

Data 

Data+ACK 

Data 

A B 

ACK 

Data 

Data + ACK 
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Delayed ACK

• Delay sending an ACK 
– Upon receiving a packet, the host B sets a timer 

  Typically, 200 msec or 500 msec 

– If B’s application generates data, go ahead and send 
  And piggyback the ACK bit 

– If the timer expires, send a (non-piggybacked) ACK 

• Limiting the wait 
– Timer of 200 msec or 500 msec 
– ACK every other full-sized packet 
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Conclusions

• Congestion is inevitable 
– Internet does not reserve resources in advance 
– TCP actively tries to push the envelope 

• Congestion can be handled 
– Additive increase, multiplicative decrease 
– Slow start, and slow-start restart 

• Active Queue Management can help 
– Random Early Detection (RED) 
– Explicit Congestion Notification (ECN) 

• Fundamental tensions 
– Feedback from the network? 
– Enforcement of “TCP friendly” behavior? 


