
1

Congestion Control 
Reading: Sections 6.1-6.4

CS 375: Computer Networks

Dr. Thomas C. Bressoud

2

Goals of Todayʼs Lecture

• Congestion in IP networks
– Unavoidable due to best-effort service model
– IP philosophy: decentralized control at end hosts

• Congestion control by the TCP senders
– Infers congestion is occurring (e.g., from packet losses)
– Slows down to alleviate congestion, for the greater good

• TCP congestion-control algorithm
– Additive-increase, multiplicative-decrease
– Slow start and slow-start restart

• Active Queue Management (AQM)
– Random Early Detection (RED)
– Explicit Congestion Notification (ECN)

3

No Problem Under Circuit Switching

• Source establishes connection to destination
– Nodes reserve resources for the connection
– Circuit rejected if the resources aren’t available
– Cannot have more than the network can handle

4

IP Best-Effort Design Philosophy

• Best-effort delivery
– Let everybody send
– Try to deliver what you can
– … and just drop the rest

source destination

IP network

5

Congestion is Unavoidable

• Two packets arrive at the same time
– The node can only transmit one
– … and either buffer or drop the other

• If many packets arrive in short period of time
– The node cannot keep up with the arriving traffic
– … and the buffer may eventually overflow

6

The Problem of Congestion

• What is congestion?
– Load is higher than capacity

• What do IP routers do?
– Drop the excess packets

• Why is this bad?
– Wasted bandwidth for retransmissions

Load

Thruput “congestion

collapse”
 Increase in load that

results in a decrease in
useful work done.

7

Ways to Deal With Congestion

•  Ignore the problem
– Many dropped (and retransmitted) packets
– Can cause congestion collapse

• Reservations, like in circuit switching
– Pre-arrange bandwidth allocations
– Requires negotiation before sending packets

• Pricing
– Don’t drop packets for the high-bidders
– Requires a payment model

• Dynamic adjustment (TCP)
– Every sender infers the level of congestion
– And adapts its sending rate, for the greater good

8

Many Important Questions

• How does the sender know there is congestion?
– Explicit feedback from the network?
– Inference based on network performance?

• How should the sender adapt?
– Explicit sending rate computed by the network?
– End host coordinates with other hosts?
– End host thinks globally but acts locally?

• What is the performance objective?
– Maximizing thruput, even if some users suffer more?
– Fairness? (Whatever the heck that means!)

• How fast should new TCP senders send?

9

Inferring From Implicit Feedback

?

• What does the end host see?

• What can the end host change?

10

Where Congestion Happens: Links

• Simple resource allocation: FIFO queue & drop-tail

• Access to the bandwidth: first-in first-out queue
– Packets transmitted in the order they arrive

• Access to the buffer space: drop-tail queuing
– If the queue is full, drop the incoming packet

11

How it Looks to the End Host

• Packet delay
– Packet experiences high delay

• Packet loss
– Packet gets dropped along the way

• How does TCP sender learn this?
– Delay

 Round-trip time estimate

– Loss
 Timeout
 Duplicate acknowledgments

12

What Can the End Host Do?

• Upon detecting congestion
– Decrease the sending rate (e.g., divide in half)
– End host does its part to alleviate the congestion

• But, what if conditions change?
– Suppose there is more bandwidth available
– Would be a shame to stay at a low sending rate

• Upon not detecting congestion
– Increase the sending rate, a little at a time
– And see if the packets are successfully delivered

13

TCP Congestion Window

• Each TCP sender maintains a congestion window
– Maximum number of bytes to have in transit
– I.e., number of bytes still awaiting acknowledgments

• Adapting the congestion window
– Decrease upon losing a packet: backing off
– Increase upon success: optimistically exploring
– Always struggling to find the right transfer rate

• Both good and bad
– Pro: avoids having explicit feedback from network
– Con: under-shooting and over-shooting the rate

14

Additive Increase, Multiplicative Decrease

• How much to increase and decrease?
– Increase linearly, decrease multiplicatively
– A necessary condition for stability of TCP
– Consequences of over-sized window are much worse

than having an under-sized window
  Over-sized window: packets dropped and retransmitted
  Under-sized window: somewhat lower throughput

• Multiplicative decrease
– On loss of packet, divide congestion window in half

• Additive increase
– On success for last window of data, increase linearly

15

Leads to the TCP “Sawtooth”

t

Window

halved

Loss

16

Practical Details

• Congestion window
– Represented in bytes, not in packets (Why?)
– Packets have MSS (Maximum Segment Size) bytes

•  Increasing the congestion window
– Increase by MSS on success for last window of data

• Decreasing the congestion window
– Never drop congestion window below 1 MSS

17

Receiver Window vs. Congestion Window

• Flow control
– Keep a fast sender from overwhelming a slow receiver

• Congestion control
– Keep a set of senders from overloading the network

• Different concepts, but similar mechanisms
– TCP flow control: receiver window
– TCP congestion control: congestion window
– TCP window: min{congestion window, receiver window}

18

How Should a New Flow Start

t

Window

But, could take a long
time to get started!

Need to start with a small CWND to avoid overloading the network.

19

“Slow Start” Phase

• Start with a small congestion window
– Initially, CWND is 1 Max Segment Size (MSS)
– So, initial sending rate is MSS/RTT

• That could be pretty wasteful
– Might be much less than the actual bandwidth
– Linear increase takes a long time to accelerate

• Slow-start phase (really “fast start”)
– Sender starts at a slow rate (hence the name)
– … but increases the rate exponentially
– … until the first loss event

20

Slow Start in Action

Double CWND per round-trip time

D A D D A A D D

A A

D

A

Src

Dest

D

A

1 2 4 8

21

Slow Start and the TCP Sawtooth

Loss

Exponential “slow
start”

t

Window

Why is it called slow-start? Because TCP originally had
no congestion control mechanism. The source would just

start by sending a whole receiver window’s worth of data.

22

Two Kinds of Loss in TCP

• Timeout
– Packet n is lost and detected via a timeout
– E.g., because all packets in flight were lost
– After the timeout, blasting away for the entire CWND
– … would trigger a very large burst in traffic
– So, better to start over with a low CWND

• Triple duplicate ACK
– Packet n is lost, but packets n+1, n+2, etc. arrive
– Receiver sends duplicate acknowledgments
– … and the sender retransmits packet n quickly
– Do a multiplicative decrease and keep going

23

Repeating Slow Start After Timeout

t

Window

Slow-start restart: Go back to CWND of 1, but take
advantage of knowing the previous value of CWND.

Slow start in operation
until it reaches half of

previous cwnd.

timeout

24

Repeating Slow Start After Idle Period

• Suppose a TCP connection goes idle for a while
– E.g., Telnet session where you don’t type for an hour

• Eventually, the network conditions change
– Maybe many more flows are traversing the link
– E.g., maybe everybody has come back from lunch!

• Dangerous to start transmitting at the old rate
– Previously-idle TCP sender might blast the network
– … causing excessive congestion and packet loss

• So, some TCP implementations repeat slow start
– Slow-start restart after an idle period

25

TCP Achieves Some Notion of Fairness

• Effective utilization is not the only goal
– We also want to be fair to the various flows
– … but what the heck does that mean?

• Simple definition: equal shares of the bandwidth
– N flows that each get 1/N of the bandwidth?
– But, what if the flows traverse different paths?
– E.g., bandwidth shared in proportion to the RTT

26

What About Cheating?

• Some folks are more fair than others
– Running multiple TCP connections in parallel
– Modifying the TCP implementation in the OS
– Use the User Datagram Protocol

• What is the impact
– Good guys slow down to make room for you
– You get an unfair share of the bandwidth

• Possible solutions?
– Routers detect cheating and drop excess packets?
– Peer pressure?
– ???

27

Queuing Mechanisms

Random Early Detection (RED)

Explicit Congestion Notification (ECN)

28

Bursty Loss From Drop-Tail Queuing

• TCP depends on packet loss
– Packet loss is the indication of congestion
– In fact, TCP drives the network into packet loss
– … by continuing to increase the sending rate

• Drop-tail queuing leads to bursty loss
– When a link becomes congested…
– … many arriving packets encounter a full queue
– And, as a result, many flows divide sending rate in half
– … and, many individual flows lose multiple packets

29

Slow Feedback from Drop Tail

• Feedback comes when buffer is completely full
– … even though the buffer has been filling for a while

• Plus, the filling buffer is increasing RTT
– … and the variance in the RTT

• Might be better to give early feedback
– Get one or two connections to slow down, not all of them
– Get these connections to slow down before it is too late

30

Random Early Detection (RED)

• Basic idea of RED
– Router notices that the queue is getting backlogged
– … and randomly drops packets to signal congestion

• Packet drop probability
– Drop probability increases as queue length increases
– If buffer is below some level, don’t drop anything
– … otherwise, set drop probability as function of queue

Average Queue Length

P
ro

b
ab

ili
ty

31

Properties of RED

• Drops packets before queue is full
– In the hope of reducing the rates of some flows

• Drops packet in proportion to each flow’s rate
– High-rate flows have more packets
– … and, hence, a higher chance of being selected

• Drops are spaced out in time
– Which should help desynchronize the TCP senders

• Tolerant of burstiness in the traffic
– By basing the decisions on average queue length

32

Problems With RED

• Hard to get the tunable parameters just right
– How early to start dropping packets?
– What slope for the increase in drop probability?
– What time scale for averaging the queue length?

• Sometimes RED helps but sometimes not
– If the parameters aren’t set right, RED doesn’t help
– And it is hard to know how to set the parameters

• RED is implemented in practice
– But, often not used due to the challenges of tuning right

• Many variations in the research community
– With cute names like “Blue” and “FRED”… 

33

Explicit Congestion Notification

• Early dropping of packets
– Good: gives early feedback
– Bad: has to drop the packet to give the feedback

• Explicit Congestion Notification
– Router marks the packet with an ECN bit
– … and sending host interprets as a sign of congestion

• Surmounting the challenges
– Must be supported by the end hosts and the routers
– Requires two bits in the IP header (one for the ECN

mark, and one to indicate the ECN capability)
– Solution: borrow two of the Type-Of-Service bits in the

IPv4 packet header

34

Other TCP Mechanisms

Nagle’s Algorithm and Delayed ACK

35

Motivation for Nagleʼs Algorithm

•  Interactive applications
– Telnet and rlogin
– Generate many small packets (e.g., keystrokes)

• Small packets are wasteful
– Mostly header (e.g., 40 bytes of header, 1 of data)

• Appealing to reduce the number of packets
– Could force every packet to have some minimum size
– … but, what if the person doesn’t type more characters?

• Need to balance competing trade-offs
– Send larger packets
– … but don’t introduce much delay by waiting

36

Nagleʼs Algorithm

• Wait if the amount of data is small
– Smaller than Maximum Segment Size (MSS)

• And some other packet is already in flight
– I.e., still awaiting the ACKs for previous packets

• That is, send at most one small packet per RTT
– … by waiting until all outstanding ACKs have arrived

•  Influence on performance
– Interactive applications: enables batching of bytes
– Bulk transfer: transmits in MSS-sized packets anyway

vs.

ACK

37

Motivation for Delayed ACK

• TCP traffic is often bidirectional
– Data traveling in both directions
– ACKs traveling in both directions

• ACK packets have high overhead
– 40 bytes for the IP header and TCP header
– … and zero data traffic

• Piggybacking is appealing
– Host B can send an ACK to host A
– … as part of a data packet from B to A

38

TCP Header Allows Piggybacking

Source port Destination port

Sequence number

Acknowledgment

Advertised window HdrLen Flags 0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
FIN
RST
PSH
URG
ACK

39

Example of Piggybacking

Data

Data+ACK

Data

A B

ACK

Data

Data + ACK

B has data to send

A has data to send

B doesn’t have data to send

40

Increasing Likelihood of Piggybacking

•  Increase piggybacking
– TCP allows the receiver to wait

to send the ACK
– … in the hope that the host will

have data to send

• Example: rlogin or telnet
– Host A types characters at a

UNIX prompt
– Host B receives the character

and executes a command
– … and then data are generated
– Would be nice if B could send

the ACK with the new data

Data

Data+ACK

Data

A B

ACK

Data

Data + ACK

41

Delayed ACK

• Delay sending an ACK
– Upon receiving a packet, the host B sets a timer

  Typically, 200 msec or 500 msec

– If B’s application generates data, go ahead and send
  And piggyback the ACK bit

– If the timer expires, send a (non-piggybacked) ACK

• Limiting the wait
– Timer of 200 msec or 500 msec
– ACK every other full-sized packet

42

Conclusions

• Congestion is inevitable
– Internet does not reserve resources in advance
– TCP actively tries to push the envelope

• Congestion can be handled
– Additive increase, multiplicative decrease
– Slow start, and slow-start restart

• Active Queue Management can help
– Random Early Detection (RED)
– Explicit Congestion Notification (ECN)

• Fundamental tensions
– Feedback from the network?
– Enforcement of “TCP friendly” behavior?

