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Transport Protocols 
Reading: Sections 2.5, 5.1, and 5.2

CS 375: Computer Networks 

Thomas C. Bressoud 
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Goals for Todayʼs Lecture
• Principles underlying transport-layer services 
– (De)multiplexing 
– Detecting corruption 
– Reliable delivery 
– Flow control 

• Transport-layer protocols in the Internet 
– User Datagram Protocol (UDP) 

  Simple (unreliable) message delivery 
  Realized by a SOCK_DGRAM socket 

– Transmission Control Protocol (TCP) 
  Reliable bidirectional stream of bytes 
  Realized by a SOCK_STREAM socket 
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Role of Transport Layer
• Application layer 
– Between applications (e.g., browsers and servers) 
– E.g., HyperText Transfer Protocol (HTTP), File Transfer 

Protocol (FTP), Network News Transfer Protocol (NNTP) 

• Transport layer 
– Between processes (e.g., sockets) 
– Relies on network layer and serves the application layer 
– E.g., TCP and UDP 

• Network layer 
– Between nodes (e.g., routers and hosts) 
– Hides details of the link technology 
– E.g., IP 
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Transport Protocols
•  Provide logical communication 

between application processes 
running on different hosts 

•  Run on end hosts  
– Sender: breaks application 

messages into segments,  
and passes to network layer 

– Receiver: reassembles 
segments into messages, 
passes to application layer 

•  Multiple transport protocols 
available to applications 
– Internet: TCP and UDP 
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Two Basic Transport Features
• Demultiplexing: port numbers 

• Error detection: checksums  

Web server
(port 80)

Client host

Server host 128.2.194.242

Echo server
(port 7)

Service request for
128.2.194.242:80

(i.e., the Web server)
OSClient

IP payload 

detect corruption 
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User Datagram Protocol (UDP)
• Datagram messaging service 
– Demultiplexing of messages: port numbers 
– Detecting corrupted messages: checksum 

• Lightweight communication between processes 
– Send messages to and receive them from a socket 
– Avoid overhead and delays of ordered, reliable delivery 

 SRC port  DST port 

checksum length 

DATA 
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Why Would Anyone Use UDP?
• Fine control over what data is sent and when 
– As soon as an application process writes into the socket 
– … UDP will package the data and send the packet 

• No delay for connection establishment  
– UDP just blasts away without any formal preliminaries 
– … which avoids introducing any unnecessary delays 

• No connection state 
– No allocation of buffers, parameters, sequence #s, etc. 
– … making it easier to handle many active clients at once 

• Small packet header overhead 
– UDP header is only eight-bytes long 
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Popular Applications That Use UDP
• Multimedia streaming 
– Retransmitting lost/corrupted packets is not worthwhile 
– By the time the packet is retransmitted, it’s too late 
– E.g., telephone calls, video conferencing, gaming 

• Simple query protocols like Domain Name System 
– Overhead of connection establishment is overkill 
– Easier to have the application retransmit if needed 

“Address for www.cnn.com?” 

“12.3.4.15” 
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Transmission Control Protocol (TCP)
• Stream-of-bytes service 
– Sends and receives a stream of bytes, not messages 

• Reliable, in-order delivery 
– Checksums to detect corrupted data 
– Sequence numbers to detect losses and reorder data 
– Acknowledgments & retransmissions for reliable delivery 

• Connection oriented 
– Explicit set-up and tear-down of TCP session 

•  Flow control 
–  Prevent overflow of the receiver’s buffer space 

• Congestion control (next class!) 
– Adapt to network congestion for the greater good 
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Breaking a Stream of Bytes  
into TCP Segments 
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TCP “Stream of Bytes” Service
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…Emulated Using TCP “Segments”
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Segment sent when: 
1.  Segment full (Max Segment Size), 
2.  Not full, but times out, or 
3.  “Pushed” by application. 
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TCP Segment

•  IP packet 
– No bigger than Maximum Transmission Unit (MTU) 
– E.g., up to 1500 bytes on an Ethernet 

• TCP packet 
– IP packet with a TCP header and data inside 
– TCP header is typically 20 bytes long 

• TCP segment 
– No more than Maximum Segment Size (MSS) bytes 
– E.g., up to 1460 consecutive bytes from the stream 

IP Hdr 
IP Data 

TCP Hdr TCP Data (segment) 
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Sequence Number
Host A 

Host B 

TCP Data 

TCP Data 

ISN (initial sequence number) 

Sequence 
number = 1st 

byte 

B
yte 81 
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Initial Sequence Number (ISN)
• Sequence number for the very first byte 
– E.g., Why not a de facto ISN of 0? 

• Practical issue 
– IP addresses and port #s uniquely identify a connection 
– Eventually, though, these port #s do get used again 
– … and there is a chance an old packet is still in flight 
– … and might be associated with the new connection 

• So, TCP requires changing the ISN over time 
– Set from a 32-bit clock that ticks every 4 microseconds 
– … which only wraps around once every 4.55 hours! 

• But, this means the hosts need to exchange ISNs 
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Reliable Delivery on a Lossy 
Channel With Bit Errors
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An Analogy: Talking on a Cell Phone
• Alice and Bob on their cell phones 
– Both Alice and Bob are talking 

• What if Alice couldn’t understand Bob? 
– Bob asks Alice to repeat what she said 

• What if Bob hasn’t heard Alice for a while? 
– Is Alice just being quiet? 
– Or, have Bob and Alice lost reception? 
– How long should Bob just keep on talking? 
– Maybe Alice should periodically say “uh huh” 
– … or Bob should ask “Can you hear me now?”    
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Some Take-Aways from the Example
• Acknowledgments from receiver 
– Positive: “okay” or “uh huh” or “ACK” 
– Negative: “please repeat that” or “NACK” 

• Timeout by the sender (“stop and wait”) 
– Don’t wait indefinitely without receiving some response 
– … whether a positive or a negative acknowledgment 

• Retransmission by the sender 
– After receiving a “NACK” from the receiver 
– After receiving no feedback from the receiver  
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Challenges of Reliable Data Transfer
• Over a perfectly reliable channel 
– All of the data arrives in order, just as it was sent 
– Simple: sender sends data, and receiver receives data 

• Over a channel with bit errors 
– All of the data arrives in order, but some bits corrupted 
– Receiver detects errors and says “please repeat that” 
– Sender retransmits the data that were corrupted 

• Over a lossy channel with bit errors 
– Some data are missing, and some bits are corrupted 
– Receiver detects errors but cannot always detect loss 
– Sender must wait for acknowledgment (“ACK” or “OK”) 
– … and retransmit data after some time if no ACK arrives 
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TCP Support for Reliable Delivery
• Detect bit errors: checksum 

– Used to detect corrupted data at the receiver 
– …leading the receiver to drop the packet 

• Detect missing data: sequence number 
– Used to detect a gap in the stream of bytes 
–  ... and for putting the data back in order 

• Recover from lost data: retransmission 
– Sender retransmits lost or corrupted data 
– Two main ways to detect lost packets 
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TCP Acknowledgments
Host A 

Host B 

TCP Data 

TCP Data 

TCP  
HDR 

TCP  
HDR 

ISN (initial sequence number) 

Sequence 
number = 1st 

byte ACK sequence 
number = next 
expected byte 
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Automatic Repeat reQuest (ARQ)

Time 

Packet 

ACK Ti
m
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ut 

• Automatic Repeat reQuest 
– Receiver sends 

acknowledgment (ACK) when 
it receives packet 

– Sender waits for ACK and 
timeouts if it does not arrive 
within some time period 

• Simplest ARQ protocol 
– Stop and wait 
– Send a packet, stop and wait 

until ACK arrives  

Sender Receiver 
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Reasons for Retransmission
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How Long Should Sender Wait?
• Sender sets a timeout to wait for an ACK 
– Too short: wasted retransmissions 
– Too long: excessive delays when packet lost 

• TCP sets timeout as a function of the RTT 
– Expect ACK to arrive after an “round-trip time” 
– … plus a fudge factor to account for queuing 

• But, how does the sender know the RTT? 
– Can estimate the RTT by watching the ACKs 
– Smooth estimate: keep a running average of the RTT 

  EstimatedRTT = a * EstimatedRTT + (1 –a ) * SampleRTT 
– Compute timeout: TimeOut = 2 * EstimatedRTT 
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Example RTT Estimation
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A Flaw in This Approach
• An ACK doesn’t really acknowledge a transmission 
– Rather, it acknowledges receipt of the data 

• Consider a retransmission of a lost packet 
– If you assume the ACK goes with the 1st transmission 
– … the SampleRTT comes out way too large 

• Consider a duplicate packet  
– If you assume the ACK goes with the 2nd transmission 
– … the Sample RTT comes out way too small 

• Simple solution in the Karn/Partridge algorithm 
– Only collect samples for segments sent one single time 
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Still, Timeouts are Inefficient
• Timeout-based retransmission 
– Sender transmits a packet and waits until timer expires 
– … and then retransmits from the lost packet onward 
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Fast Retransmission
• Better solution possible under sliding window 
– Although packet n might have been lost 
– … packets n+1, n+2, and so on might get through 

•  Idea: have the receiver send ACK packets 
– ACK says that receiver is still awaiting nth packet 

  And repeated ACKs suggest later packets have arrived 
– Sender can view the “duplicate ACKs” as an early hint 

  … that the nth packet must have been lost 
  … and perform the retransmission early 

• Fast retransmission 
– Sender retransmits data after the triple duplicate ACK 
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Effectiveness of Fast Retransmit
• When does Fast Retransmit work best? 
– Long data transfers 

  High likelihood of many packets in flight 
– High window size 

  High likelihood of many packets in flight 
– Low burstiness in packet losses 

  Higher likelihood that later packets arrive successfully 

•  Implications for Web traffic 
– Most Web transfers are short (e.g., 10 packets) 

  Short HTML files or small images 
– So, often there aren’t many packets in flight 
– … making fast retransmit less likely to “kick in” 
– Forcing users to like “reload” more often…  
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Starting and Ending a Connection: 
TCP Handshakes
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Establishing a TCP Connection

• Three-way handshake to establish connection 
– Host A sends a SYN (open) to the host B 
– Host B returns a SYN acknowledgment (SYN ACK) 
– Host A sends an ACK to acknowledge the SYN ACK 

SYN 

SYN ACK 

ACK 
Data 

A B 

Data 

Each host tells 
its ISN to the 
other host.
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TCP Header

Source port Destination port 

Sequence number 

Acknowledgment 

Advertised window HdrLen Flags 0 

Checksum Urgent pointer 

Options (variable) 

Data 

Flags: SYN 
FIN 
RST 
PSH 
URG 
ACK 
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Step 1: Aʼs Initial SYN Packet

A’s port B’s port 

A’s Initial Sequence Number 

Acknowledgment 

Advertised window 20 Flags 0 

Checksum Urgent pointer 

Options (variable) 

Flags: SYN 
FIN 
RST 
PSH 
URG 
ACK 

A tells B it wants to open a connection…
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Step 2: Bʼs SYN-ACK Packet

B’s port A’s port 

B’s Initial Sequence Number 

A’s ISN plus 1 

Advertised window 20 Flags 0 

Checksum Urgent pointer 

Options (variable) 

Flags: SYN 
FIN 
RST 
PSH 
URG 
ACK 

B tells A it accepts, and is ready to hear the next byte…

… upon receiving this packet, A can start sending data
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Step 3: Aʼs ACK of the SYN-ACK

A’s port B’s port 

B’s ISN plus 1 

Advertised window 20 Flags 0 

Checksum Urgent pointer 

Options (variable) 

Flags: SYN 
FIN 
RST 
PSH 
URG 
ACK 

A tells B it is okay to start sending

Sequence number 

… upon receiving this packet, B can start sending data
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What if the SYN Packet Gets Lost?
• Suppose the SYN packet gets lost 
– Packet is lost inside the network, or 
– Server rejects the packet (e.g., listen queue is full) 

• Eventually, no SYN-ACK arrives 
– Sender sets a timer and wait for the SYN-ACK 
– … and retransmits the SYN if needed 

• How should the TCP sender set the timer? 
– Sender has no idea how far away the receiver is 
– Hard to guess a reasonable length of time to wait 
– Some TCPs use a default of 3 or 6 seconds 
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SYN Loss and Web Downloads
• User clicks on a hypertext link 
– Browser creates a socket and does a “connect” 
– The “connect” triggers the OS to transmit a SYN 

•  If the SYN is lost… 
– The 3-6 seconds of delay may be very long 
– The user may get impatient 
– … and click the hyperlink again, or click “reload” 

• User triggers an “abort” of the “connect” 
– Browser creates a new socket and does  a “connect” 
– Essentially, forces a faster send of a new SYN packet! 
– Sometimes very effective, and the page comes fast 
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Tearing Down the Connection

• Closing (each end of) the connection 
– Finish (FIN) to close and receive remaining bytes 
– And other host sends a FIN ACK to acknowledge 
– Reset (RST) to close and not receive remaining bytes 
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Sending/Receiving the FIN Packet
• Sending a FIN: close() 
– Process is done sending 

data via the socket 
– Process invokes 

“close()” to close the 
socket 

– Once TCP has sent all of 
the outstanding bytes… 

– … then TCP sends a FIN 

• Receiving a FIN: EOF 
– Process is reading data 

from the socket 
– Eventually, the attempt 

to read returns an EOF 
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Flow Control: 
TCP Sliding Window
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Motivation for Sliding Window
• Stop-and-wait is inefficient 
– Only one TCP segment is “in flight” at a time 
– Especially bad when delay-bandwidth product is high 

• Numerical example 
– 1.5 Mbps link with a 45 msec round-trip time (RTT) 

  Delay-bandwidth product is 67.5 Kbits (or 8 KBytes) 
– But, sender can send at most one packet per RTT 

  Assuming a segment size of 1 KB (8 Kbits) 
  … leads to 8 Kbits/segment / 45 msec/segment  182 Kbps 
  That’s just one-eighth of the 1.5 Mbps link capacity 
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Sliding Window
• Allow a larger amount of data “in flight” 
– Allow sender to get ahead of the receiver 
– … though not too far ahead 

Sending process Receiving process

Last byte ACKed

Last byte sent

TCP TCP

Next byte expected

Last byte written Last byte read

Last byte received
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Receiver Buffering
• Window size 
– Amount that can be sent without acknowledgment 
– Receiver needs to be able to store this amount of data 

• Receiver advertises the window to the receiver 
– Tells the receiver the amount of free space left 
– … and the sender agrees not to exceed this amount 

Window Size 

Outstanding 
Un-ack’d data 

Data OK  
to send 

Data not OK  
to send yet 

Data ACK’d  
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TCP Header for Receiver Buffering

Source port Destination port 

Sequence number 

Acknowledgment 

Advertised window HdrLen Flags 0 

Checksum Urgent pointer 

Options (variable) 

Data 

Flags: SYN 
FIN 
RST 
PSH 
URG 
ACK 
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Conclusions
• Transport protocols 
– Multiplexing and demultiplexing 
– Checksum-based error detection 
– Sequence numbers 
– Retransmission 
– Window-based flow control 

• Reading for this week 
– Sections 2.5, 5.1-5.2, and 6.1-6.4 

• Next lecture 
– Congestion control 


