
1

1

Transport Protocols 
Reading: Sections 2.5, 5.1, and 5.2

CS 375: Computer Networks

Thomas C. Bressoud

2

Goals for Todayʼs Lecture
• Principles underlying transport-layer services
– (De)multiplexing
– Detecting corruption
– Reliable delivery
– Flow control

• Transport-layer protocols in the Internet
– User Datagram Protocol (UDP)

  Simple (unreliable) message delivery
  Realized by a SOCK_DGRAM socket

– Transmission Control Protocol (TCP)
  Reliable bidirectional stream of bytes
  Realized by a SOCK_STREAM socket

3

Role of Transport Layer
• Application layer
– Between applications (e.g., browsers and servers)
– E.g., HyperText Transfer Protocol (HTTP), File Transfer

Protocol (FTP), Network News Transfer Protocol (NNTP)

• Transport layer
– Between processes (e.g., sockets)
– Relies on network layer and serves the application layer
– E.g., TCP and UDP

• Network layer
– Between nodes (e.g., routers and hosts)
– Hides details of the link technology
– E.g., IP

2

4

Transport Protocols
•  Provide logical communication

between application processes
running on different hosts

•  Run on end hosts
– Sender: breaks application

messages into segments,
and passes to network layer

– Receiver: reassembles
segments into messages,
passes to application layer

•  Multiple transport protocols
available to applications
– Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical network

data link
physical

logical end-end transport

5

Two Basic Transport Features
• Demultiplexing: port numbers

• Error detection: checksums

Web server
(port 80)

Client host

Server host 128.2.194.242

Echo server
(port 7)

Service request for
128.2.194.242:80

(i.e., the Web server)
OSClient

IP payload

detect corruption

6

User Datagram Protocol (UDP)
• Datagram messaging service
– Demultiplexing of messages: port numbers
– Detecting corrupted messages: checksum

• Lightweight communication between processes
– Send messages to and receive them from a socket
– Avoid overhead and delays of ordered, reliable delivery

 SRC port DST port

checksum length

DATA

3

7

Why Would Anyone Use UDP?
• Fine control over what data is sent and when
– As soon as an application process writes into the socket
– … UDP will package the data and send the packet

• No delay for connection establishment
– UDP just blasts away without any formal preliminaries
– … which avoids introducing any unnecessary delays

• No connection state
– No allocation of buffers, parameters, sequence #s, etc.
– … making it easier to handle many active clients at once

• Small packet header overhead
– UDP header is only eight-bytes long

8

Popular Applications That Use UDP
• Multimedia streaming
– Retransmitting lost/corrupted packets is not worthwhile
– By the time the packet is retransmitted, it’s too late
– E.g., telephone calls, video conferencing, gaming

• Simple query protocols like Domain Name System
– Overhead of connection establishment is overkill
– Easier to have the application retransmit if needed

“Address for www.cnn.com?”

“12.3.4.15”

9

Transmission Control Protocol (TCP)
• Stream-of-bytes service
– Sends and receives a stream of bytes, not messages

• Reliable, in-order delivery
– Checksums to detect corrupted data
– Sequence numbers to detect losses and reorder data
– Acknowledgments & retransmissions for reliable delivery

• Connection oriented
– Explicit set-up and tear-down of TCP session

•  Flow control
–  Prevent overflow of the receiver’s buffer space

• Congestion control (next class!)
– Adapt to network congestion for the greater good

4

10

Breaking a Stream of Bytes  
into TCP Segments

11

TCP “Stream of Bytes” Service

B
yte 0

B
yte 1

B
yte 2

B
yte 3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Host A

Host B

B
yte 80

B
yte 80

12

…Emulated Using TCP “Segments”

B
yte 0

B
yte 1

B
yte 2

B
yte 3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Host A

Host B

B
yte 80

TCP Data

TCP Data

B
yte 80

Segment sent when:
1.  Segment full (Max Segment Size),
2.  Not full, but times out, or
3.  “Pushed” by application.

5

13

TCP Segment

•  IP packet
– No bigger than Maximum Transmission Unit (MTU)
– E.g., up to 1500 bytes on an Ethernet

• TCP packet
– IP packet with a TCP header and data inside
– TCP header is typically 20 bytes long

• TCP segment
– No more than Maximum Segment Size (MSS) bytes
– E.g., up to 1460 consecutive bytes from the stream

IP Hdr
IP Data

TCP Hdr TCP Data (segment)

14

Sequence Number
Host A

Host B

TCP Data

TCP Data

ISN (initial sequence number)

Sequence
number = 1st

byte

B
yte 81

15

Initial Sequence Number (ISN)
• Sequence number for the very first byte
– E.g., Why not a de facto ISN of 0?

• Practical issue
– IP addresses and port #s uniquely identify a connection
– Eventually, though, these port #s do get used again
– … and there is a chance an old packet is still in flight
– … and might be associated with the new connection

• So, TCP requires changing the ISN over time
– Set from a 32-bit clock that ticks every 4 microseconds
– … which only wraps around once every 4.55 hours!

• But, this means the hosts need to exchange ISNs

6

16

Reliable Delivery on a Lossy
Channel With Bit Errors

17

An Analogy: Talking on a Cell Phone
• Alice and Bob on their cell phones
– Both Alice and Bob are talking

• What if Alice couldn’t understand Bob?
– Bob asks Alice to repeat what she said

• What if Bob hasn’t heard Alice for a while?
– Is Alice just being quiet?
– Or, have Bob and Alice lost reception?
– How long should Bob just keep on talking?
– Maybe Alice should periodically say “uh huh”
– … or Bob should ask “Can you hear me now?”

18

Some Take-Aways from the Example
• Acknowledgments from receiver
– Positive: “okay” or “uh huh” or “ACK”
– Negative: “please repeat that” or “NACK”

• Timeout by the sender (“stop and wait”)
– Don’t wait indefinitely without receiving some response
– … whether a positive or a negative acknowledgment

• Retransmission by the sender
– After receiving a “NACK” from the receiver
– After receiving no feedback from the receiver

7

19

Challenges of Reliable Data Transfer
• Over a perfectly reliable channel
– All of the data arrives in order, just as it was sent
– Simple: sender sends data, and receiver receives data

• Over a channel with bit errors
– All of the data arrives in order, but some bits corrupted
– Receiver detects errors and says “please repeat that”
– Sender retransmits the data that were corrupted

• Over a lossy channel with bit errors
– Some data are missing, and some bits are corrupted
– Receiver detects errors but cannot always detect loss
– Sender must wait for acknowledgment (“ACK” or “OK”)
– … and retransmit data after some time if no ACK arrives

20

TCP Support for Reliable Delivery
• Detect bit errors: checksum

– Used to detect corrupted data at the receiver
– …leading the receiver to drop the packet

• Detect missing data: sequence number
– Used to detect a gap in the stream of bytes
–  ... and for putting the data back in order

• Recover from lost data: retransmission
– Sender retransmits lost or corrupted data
– Two main ways to detect lost packets

21

TCP Acknowledgments
Host A

Host B

TCP Data

TCP Data

TCP
HDR

TCP
HDR

ISN (initial sequence number)

Sequence
number = 1st

byte ACK sequence
number = next
expected byte

8

22

Automatic Repeat reQuest (ARQ)

Time

Packet

ACK Ti
m

eo
ut

• Automatic Repeat reQuest
– Receiver sends

acknowledgment (ACK) when
it receives packet

– Sender waits for ACK and
timeouts if it does not arrive
within some time period

• Simplest ARQ protocol
– Stop and wait
– Send a packet, stop and wait

until ACK arrives

Sender Receiver

23

Reasons for Retransmission

Packet

ACK

Ti
m

eo
ut

Packet

ACK

Ti
m

eo
ut

Packet

Ti
m

eo
ut

Packet

ACK

Ti
m

eo
ut

Packet

ACK

Ti
m

eo
ut

Packet

ACK

Ti
m

eo
ut

ACK lost
DUPLICATE

PACKET

Packet lost Early timeout
DUPLICATE
PACKETS

24

How Long Should Sender Wait?
• Sender sets a timeout to wait for an ACK
– Too short: wasted retransmissions
– Too long: excessive delays when packet lost

• TCP sets timeout as a function of the RTT
– Expect ACK to arrive after an “round-trip time”
– … plus a fudge factor to account for queuing

• But, how does the sender know the RTT?
– Can estimate the RTT by watching the ACKs
– Smooth estimate: keep a running average of the RTT

  EstimatedRTT = a * EstimatedRTT + (1 –a) * SampleRTT
– Compute timeout: TimeOut = 2 * EstimatedRTT

9

25

Example RTT Estimation

26

A Flaw in This Approach
• An ACK doesn’t really acknowledge a transmission
– Rather, it acknowledges receipt of the data

• Consider a retransmission of a lost packet
– If you assume the ACK goes with the 1st transmission
– … the SampleRTT comes out way too large

• Consider a duplicate packet
– If you assume the ACK goes with the 2nd transmission
– … the Sample RTT comes out way too small

• Simple solution in the Karn/Partridge algorithm
– Only collect samples for segments sent one single time

27

Still, Timeouts are Inefficient
• Timeout-based retransmission
– Sender transmits a packet and waits until timer expires
– … and then retransmits from the lost packet onward

10

28

Fast Retransmission
• Better solution possible under sliding window
– Although packet n might have been lost
– … packets n+1, n+2, and so on might get through

•  Idea: have the receiver send ACK packets
– ACK says that receiver is still awaiting nth packet

  And repeated ACKs suggest later packets have arrived
– Sender can view the “duplicate ACKs” as an early hint

  … that the nth packet must have been lost
  … and perform the retransmission early

• Fast retransmission
– Sender retransmits data after the triple duplicate ACK

29

Effectiveness of Fast Retransmit
• When does Fast Retransmit work best?
– Long data transfers

  High likelihood of many packets in flight
– High window size

  High likelihood of many packets in flight
– Low burstiness in packet losses

  Higher likelihood that later packets arrive successfully

•  Implications for Web traffic
– Most Web transfers are short (e.g., 10 packets)

  Short HTML files or small images
– So, often there aren’t many packets in flight
– … making fast retransmit less likely to “kick in”
– Forcing users to like “reload” more often…

30

Starting and Ending a Connection: 
TCP Handshakes

11

31

Establishing a TCP Connection

• Three-way handshake to establish connection
– Host A sends a SYN (open) to the host B
– Host B returns a SYN acknowledgment (SYN ACK)
– Host A sends an ACK to acknowledge the SYN ACK

SYN

SYN ACK

ACK
Data

A B

Data

Each host tells
its ISN to the
other host.

32

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised window HdrLen Flags 0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
FIN
RST
PSH
URG
ACK

33

Step 1: Aʼs Initial SYN Packet

A’s port B’s port

A’s Initial Sequence Number

Acknowledgment

Advertised window 20 Flags 0

Checksum Urgent pointer

Options (variable)

Flags: SYN
FIN
RST
PSH
URG
ACK

A tells B it wants to open a connection…

12

34

Step 2: Bʼs SYN-ACK Packet

B’s port A’s port

B’s Initial Sequence Number

A’s ISN plus 1

Advertised window 20 Flags 0

Checksum Urgent pointer

Options (variable)

Flags: SYN
FIN
RST
PSH
URG
ACK

B tells A it accepts, and is ready to hear the next byte…

… upon receiving this packet, A can start sending data

35

Step 3: Aʼs ACK of the SYN-ACK

A’s port B’s port

B’s ISN plus 1

Advertised window 20 Flags 0

Checksum Urgent pointer

Options (variable)

Flags: SYN
FIN
RST
PSH
URG
ACK

A tells B it is okay to start sending

Sequence number

… upon receiving this packet, B can start sending data

36

What if the SYN Packet Gets Lost?
• Suppose the SYN packet gets lost
– Packet is lost inside the network, or
– Server rejects the packet (e.g., listen queue is full)

• Eventually, no SYN-ACK arrives
– Sender sets a timer and wait for the SYN-ACK
– … and retransmits the SYN if needed

• How should the TCP sender set the timer?
– Sender has no idea how far away the receiver is
– Hard to guess a reasonable length of time to wait
– Some TCPs use a default of 3 or 6 seconds

13

37

SYN Loss and Web Downloads
• User clicks on a hypertext link
– Browser creates a socket and does a “connect”
– The “connect” triggers the OS to transmit a SYN

•  If the SYN is lost…
– The 3-6 seconds of delay may be very long
– The user may get impatient
– … and click the hyperlink again, or click “reload”

• User triggers an “abort” of the “connect”
– Browser creates a new socket and does a “connect”
– Essentially, forces a faster send of a new SYN packet!
– Sometimes very effective, and the page comes fast

38

Tearing Down the Connection

• Closing (each end of) the connection
– Finish (FIN) to close and receive remaining bytes
– And other host sends a FIN ACK to acknowledge
– Reset (RST) to close and not receive remaining bytes

SY
N

SY
N

 A
CK

A
CK

D

at
a

FI
N

 A
CK

A
CK

time
A

B

FIN
 A

CK

39

Sending/Receiving the FIN Packet
• Sending a FIN: close()
– Process is done sending

data via the socket
– Process invokes

“close()” to close the
socket

– Once TCP has sent all of
the outstanding bytes…

– … then TCP sends a FIN

• Receiving a FIN: EOF
– Process is reading data

from the socket
– Eventually, the attempt

to read returns an EOF

14

40

Flow Control: 
TCP Sliding Window

41

Motivation for Sliding Window
• Stop-and-wait is inefficient
– Only one TCP segment is “in flight” at a time
– Especially bad when delay-bandwidth product is high

• Numerical example
– 1.5 Mbps link with a 45 msec round-trip time (RTT)

  Delay-bandwidth product is 67.5 Kbits (or 8 KBytes)
– But, sender can send at most one packet per RTT

  Assuming a segment size of 1 KB (8 Kbits)
  … leads to 8 Kbits/segment / 45 msec/segment 182 Kbps
  That’s just one-eighth of the 1.5 Mbps link capacity

42

Sliding Window
• Allow a larger amount of data “in flight”
– Allow sender to get ahead of the receiver
– … though not too far ahead

Sending process Receiving process

Last byte ACKed

Last byte sent

TCP TCP

Next byte expected

Last byte written Last byte read

Last byte received

15

43

Receiver Buffering
• Window size
– Amount that can be sent without acknowledgment
– Receiver needs to be able to store this amount of data

• Receiver advertises the window to the receiver
– Tells the receiver the amount of free space left
– … and the sender agrees not to exceed this amount

Window Size

Outstanding
Un-ack’d data

Data OK
to send

Data not OK
to send yet

Data ACK’d

44

TCP Header for Receiver Buffering

Source port Destination port

Sequence number

Acknowledgment

Advertised window HdrLen Flags 0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
FIN
RST
PSH
URG
ACK

45

Conclusions
• Transport protocols
– Multiplexing and demultiplexing
– Checksum-based error detection
– Sequence numbers
– Retransmission
– Window-based flow control

• Reading for this week
– Sections 2.5, 5.1-5.2, and 6.1-6.4

• Next lecture
– Congestion control

