

Goals of Today's Lecture

- IP addresses
 - Dotted-quad notation
 - $-\operatorname{IP}$ prefixes for aggregation

Address allocation

- Classful addresses
- Classless InterDomain Routing (CIDR)
- Growth in the number of prefixes over time

Packet forwarding

- Forwarding tables
- -Longest-prefix match forwarding
- Where forwarding tables come from

IP Address and a 24-bit Subnet Mask									
Addre	ess								
	140	141	132	2					
	Ļ	Ļ	Ļ	,					
[10001100	10001101	10000100	0000010					
[11111111	11111111	11111111	0000000					
	t	t	t	t					
	255	255	255						
Mask	255	255	255	U 9					

Classless Inter-Domain Routing (CIDR)									
		Use two 32-bit numbers to represent a network. Network number = IP address + Mask							
IP Address : 12.4.0.0 IP Mask: 255.254.0.0									
Ac	dress	00001100	0000010	0	0000000	0000000			
	Mask	11111111	1111111	0	0000000	0000000			
	$\longleftarrow \text{ Network Prefix } \rightarrow \longleftarrow \text{ for hosts } \longrightarrow$								
	Written as 12.4.0.0/15								

Hop-by-Hop Packet Forwarding

- Each router has a forwarding table
 Maps destination addresses...
 -... to outgoing interfaces
- Upon receiving a packet – Inspect the destination IP address in the header
 - Index into the table
 - Determine the outgoing interface
 - -Forward the packet out that interface
- Then, the next router in the path repeats – And the packet travels along the path to the destination

Separate Entry Classful Address If the router had an entry per classful prefix Mixture of Class A, B, and C addresses Depends on the first couple of bits of the destination Identify the mask automatically from the address First bit of 0: class A address (/8) First two bits of 10: class B address (/16) First three bits of 110: class C address (/24) Then, look in the forwarding table for the match E.g., 1.2.3.4 maps to 1.2.3.0/24 Then, look up the entry for 1.2.3.0/24

23

-... to identify the outgoing interface

- Dynamic Host Configuration Protocol (DHCP)

Obtaining a Block of Addresses

- Separation of control
 - Prefix: assigned to an institution
 - -Addresses: assigned by the institution to their nodes
- Who assigns prefixes?
 - Internet Corporation for Assigned Names and Numbers
 Allocates large address blocks to Regional Internet Registries
 - Regional Internet Registries (RIRs)
 - E.g., ARIN (American Registry for Internet Numbers)
 - Allocates address blocks within their regions
 - Allocated to Internet Service Providers and large institutions
 - Internet Service Providers (ISPs)
 - Allocate address blocks to their customers
 - Who may, in turn, allocate to their customers...

Figuring Out Who Owns an Address

- Address registries
 - -Public record of address allocations
 - Internet Service Providers (ISPs) should update when giving addresses to customers
 - -However, records are notoriously out-of-date

Ways to query

- -UNIX: "whois -h whois.arin.net 128.112.136.35"
- -http://www.arin.net/whois/
- -http://www.geektools.com/whois.php

-...

Example Output for 128.112.136.35

OrgName: Princeton University OrgID: PRNU Address: Office of Information Technology Address: 87 Prospect Avenue City: Princeton StateProv: NJ PostalCode: 08544-2007 Country: US NetRange: 128.112.0.0 - 128.112.255.255 CIDR: 128.112.0.0/16 NetName: PRINCETON NetHandle: NET-128-112-0-1 Parent: NET-128-0-0-0 NetType: Direct Allocation RegDate: 1986-02-24

Are 32-bit Addresses Enough?

- Not all that many unique addresses
 - -2^{32} = 4,294,967,296 (just over four billion)
 - Plus, some are reserved for special purposes
 And, addresses are allocated in larger blocks
- And, many devices need IP addresses – Computers, PDAs, routers, tanks, toasters, ...
- Long-term solution: a larger address space – IPv6 has 128-bit addresses (2¹²⁸ = 3.403 × 10³⁸)
- Short-term solutions: limping along with IPv4 – Private addresses
 - Network address translation (NAT)
 - Dynamically-assigned addresses (DHCP)

Hard Policy Questions

- How much address space per geographic region? - Equal amount per country?
 - Proportional to the population?
 - What about addresses already allocated?
- Address space portability?
 - -Keep your address block when you change providers?
 - Pro: avoid having to renumber your equipment
 - Con: reduces the effectiveness of address aggregation

41

- · Keeping the address registries up to date?
- -What about mergers and acquisitions?
- Delegation of address blocks to customers?
- As a result, the registries are horribly out of date