¢s281: Introduction to Computer Systems

HW®6, Shell Lab: Writing Your Own Unix Shell
Assigned: Apr. 18, Due: Mon., May 2, 11:59PM

Introduction

The purpose of this assignment is to become more familidr thiéd concepts of process control and signal-
ing. You'll do this by writing a simple Unix shell program thsupports job control.

Logistics

You may work in a group of up to two people in solving the praotefor this assignment, but you may only
work with someone with whom you have not paired up before. drig “hand-in” will be electronic. Any
clarifications and revisions to the assignment will be pibste the course Web page.

Hand Out Instructions

All the files you require for this assignment have been gath&rgether in a Unix “tar” file. This is an single
archive file containing a set of files. On a Linux lab machin®im 219, you should run a web browser and
navigate to the “Supplements” tab of the course web pagen Tigbt-click theshl ab- handout . t ar
link from the Homework Distributionsection.

Save the file to a directory specific to your cs281 homework kkyayeating it if necessary. If you left-click
or download to somewhere else, you should start by copyirigab- handout . t ar to the (protected)
directory on a 219 Linux machine in which you plan to do yourkvalrhen, from the directory containing
the tar file, do the following:

e Type the commantdar xvf shl ab-handout .t ar to expand the tarfile.
e Type the commandake cl ean; nake to compile and link some test routines.

e Type your team member names in the header comment at the tcghofc.

Looking at thet sh. c (tiny shel) file, you will see that it contains a functional skeleton dfimple Unix
shell. To help you get started, we have already implememigdess interesting functions. Your assignment
is to complete the remaining empty functions listed belows &sanity check for you, we've listed the
approximate number of lines of code for each of these funstia our reference solution (which includes
lots of comments).

e eval : Main routine that parses and interprets the command lif@lifies]

e bui | ti n.cnd: Recognizes and interprets the built-in commangisi t , f g, bg, andj obs. [25
lines]

do_bgf g: Implements thdg andf g built-in commands. [50 lines]

wai t f g: Waits for a foreground job to complete. [20 lines]

si gchl d_handl er: Catches SIGCHILD signals. [80 lines]

si gi nt _handl er: Catches SIGINTct r | - ¢) signals. [15 lines]
e si gt st p_.handl er: Catches SIGTSTR(r | - z) signals. [15 lines]

The takeaway should be that themberof lines of code is not huge, but you will be dealing in OS iatgion
and techniques that are completely foreign to you, so ggttiaright lines of code will still be a challenge.

Each time you modify yout sh. c file, type nake to recompile it. To run your shell, typesh to the
command line:

uni x> ./tsh
tsh> [type commuands to your shell here]

General Overview of Unix Shells

A shellis an interactive command-line interpreter that runs oty on behalf of the user. A shell repeat-
edly prints a prompt, waits foreommand linenst di n, and then carries out some action, as directed by
the contents of the command line.

The command line is a sequence of ASCII text words delimitgdvhitespace. The first word in the
command line is either the name of a built-in command or tlilerzane of an executable file. The remaining
words are command-line arguments. If the first word is a{imittommand, the shell immediately executes
the command in the current process. Otherwise, the wordsigraad to be the pathname of an executable
program. In this case, the shell forks a child process, thadd and runs the program in the context of the
child. The child processes created as a result of intengretisingle command line are known collectively
as ajob. In general, a job can consist of multiple child processemeoted by Unix pipes.

If the command line ends with an ampersaid, then the job runs in théackground which means that
the shell does not wait for the job to terminate before priptihe prompt and awaiting the next command
line. Otherwise, the job runs in tHereground which means that the shell waits for the job to terminate
before awaiting the next command line. Thus, at any poininire t at most one job can be running in the
foreground. However, an arbitrary number of jobs can ruménldackground.

For example, typing the command line
tsh> jobs

causes the shell to execute the builf-imbs command. Typing the command line
tsh> /bin/ls -1 -d

runs thel s program in the foreground. By convention, the shell enstlias when the program begins
executing its main routine

int main(int argc, char xargv[])

thear gc andar gv arguments have the following values:

e argc == 3,

e argv[0] == *‘/bin/ls ",
e argv[1l]==*""-1"",

e argv[2]==""-d .

Alternatively, typing the command line

tsh> /bin/ls -1 -d &

runs thel s program in the background.

Unix shells support the notion @b control which allows users to move jobs back and forth between back-
ground and foreground, and to change the process statan(gJrstopped, or terminated) of the processes
in ajob. Typingct r | - ¢ causes a SIGINT signal to be delivered to each process imtbgrbund job. The
default action for SIGINT is to terminate the process. Samyi typingct r| - z causes a SIGTSTP signal
to be delivered to each process in the foreground job. Theuttedction for SIGTSTP is to place a process
in the stopped state, where it remains until it is awakenethéyeceipt of a SIGCONT signal. Unix shells
also provide various built-in commands that support jokticdnFor example:

e j obs: List the running and stopped background jobs.
e bg <j ob>: Change a stopped background job to a running background job
e f g <j ob>: Change a stopped or running background job to a runningeifiditeground.

e kill <job>:Terminate a job.

Thet sh Specification
Yourt sh shell should have the following features:

e The prompt should be the string $§h> ".

e The command line typed by the user should consistrodiiae and zero or more arguments, all sepa-
rated by one or more spacesnkine is a built-in command, thehsh should handle it immediately
and wait for the next command line. Otherwisesh should assume thatane is the path of an
executable file, which it loads and runs in the context of amalrchild process (In this context, the
termjob refers to this initial child process).

e t sh need not support pipeg) or I/O redirection € and>).

3

Typingctrl -c (ctrl -2z)should cause a SIGINT (SIGTSTP) signal to be sent to thesotfore-
ground job, as well as any descendents of that job (e.qg., il mrocesses that it forked). If there is
no foreground job, then the signal should have no effect.

If the command line ends with an ampersafadthent sh should run the job in the background.
Otherwise, it should run the job in the foreground.

Each job can be identified by either a process ID (PID) or a®RJID), which is a positive integer
assigned by sh. JIDs should be denoted on the command line by the prédix-or example, ¥6”
denotes JID 5, and5” denotes PID 5. (We have provided you with all of the routiges need for
manipulating the job list.)

t sh should support the following built-in commands:

— Thequi t command terminates the shell.
— Thej obs command lists all background jobs.

— Thebg <j ob>command restartsj ob> by sending it a SIGCONT signal, and then runs it in
the background. Thej ob> argument can be either a PID or a JID.

— Thef g <j ob>command restartsj ob> by sending it a SIGCONT signal, and then runs it in
the foreground. The&j ob> argument can be either a PID or a JID.

e t sh should reap all of its zombie children. If any job terminabesause it receives a signal that
it didn't catch, thent sh should recognize this event and print a message with the D and a
description of the offending signal.

Checking Your Work

We have provided some tools to help you check your work.

Reference solution.The Linux executableshr ef is the reference solution for the shell. Run this program
to resolve any questions you have about how your shell shmhidve . Your shell should emit output that is
identical to the reference solutigexcept for PIDs, of course, which change from run to run).

Shell driver. Thesdri ver. pl program executes a shell as a child process, sends it corsraaddignals
as directed by #race filg and captures and displays the output from the shell.

Use the -h argument to find out the usagesdf i ver . pl :

uni x> ./sdriver.pl -h
Usage: sdriver.pl [-hv] -t <trace> -s <shellprog> -a <args>

Opt i ons:
-h Print this nessage
-V Be nore verbose
-t <trace> Trace file
-s <shel |l > Shel |l programto test
-a <args> Shel | argunents
-0 Generate output for autograder

4

We have also provided 16 trace fileg @ce{01- 16}. t xt) that you will use in conjunction with the shell
driver to test the correctness of your shell. The lower-neirad trace files do very simple tests, and the
higher-numbered tests do more complicated tests.

You can run the shell driver on your shell using traceffiteace01. t xt (for instance) by typing:
uni x> ./sdriver.pl -t trace0l.txt -s ./tsh -a "-p"

(the-a "-p" argument tells your shell not to emit a prompt), or

uni x> nmake test01

Similarly, to compare your result with the reference shailj can run the trace driver on the reference shell
by typing:

uni x> ./sdriver.pl -t trace0l.txt -s ./tshref -a "-p"
or

uni x> make rtest01

For your referencet shr ef . out gives the output of the reference solution on all races. Tiight be
more convenient for you than manually running the shelladran all trace files.

The neat thing about the trace files is that they generateathe sutput you would have gotten had you run
your shell interactively (except for an initial commentttigentifies the trace). For example:

bass> make test15

./sdriver.pl -t tracelb5.txt -s ./tsh -a "-p"
#

tracelb.txt - Putting it all together
#

tsh> . /bogus

./ bogus: Command not found.

tsh> ./myspin 10

Job (9721) terminated by signal 2

tsh> ./myspin 3 &

[1] (9723) ./nyspin 3 &

tsh> ./myspin 4 &

[2] (9725) ./nyspin 4 &

tsh> j obs

[1] (9723) Running .Imyspin 3 &
[2] (9725) Running Inmyspin 4 &
tsh> fg %

Job [1] (9723) stopped by signal 20
tsh> j obs

[1] (9723) Stopped ./ nmyspin 3 &
[2] (9725) Running .Inmyspin 4 &
tsh> bg %3

%3: No such job

tsh> bg %

[1] (9723) ./nyspin 3 &

tsh> j obs

[1] (9723) Running .Imyspin 3 &
[2] (9725) Running .Inmyspin 4 &
tsh> fg %

tsh> quit

bass>

Hints

e Read every word of Chapter 8 (Exceptional Control Flow) inny@xtbook.

e Start early! Remember that this is not just about “programming,” but isulproblem solving.
Unexpected things are going to come up as you work througraggignment. And | am here to help,
and to answer questions, and to guide, but none of that hedwyeas, and guidance can occur if you
start late and need to interact with me late at night or thekeweek before it is due.

e There are many tests that can be accomplished long beforanaerstand all that there is to know
about signal handling. So don't use the excuse that theuttsir has not covered the necessary
material to rationalize starting late.

e Use the trace files to guide the development of your shell.rtiBgawith t r aceO1. t xt , make
sure that your shell produces thkentical output as the reference shell. Then move on to trace file
trace02. t xt,and so on.

o Not all trace files/tests are of equal difficulty, so do notuass that some easy first tests somehow
imply the later tests will require the same amount of progréng time.

e Thewai t pi d,kill,fork,execve,set pgi d,andsi gpr ocrmask functions will come in very
handy. The WUNTRACED and WNOHANG optionswai t pi d will also be useful.

e When you implement your signal handlers, be sure to &r@ NT andSI GTSTP signals to the en-
tire foreground process group, usinggi d” instead of pi d” in the argument to th&i | | function.
Thesdri ver. pl program tests for this error.

e One of the tricky parts of the assignment is deciding on tleeation of work between theai t f g
andsi gchl d_handl er functions. We recommend the following approach:

— Inwai t f g, use a busy loop around tsé eep function.
— Insi gchl d_handl er, use exactly one call taai t pi d.

While other solutions are possible, such as caliagt pi din bothwai t f g andsi gchl d_handl er,
these can be very confusing. It is simpler to do all reapinipénhandler.

e In eval , the parent must usei gpr ocnask to block SI GCHLD signals before it forks the child,
and then unblock these signals, again usingpr ocnask after it adds the child to the job list by
callingaddj ob. Since children inherit thbl ocked vectors of their parents, the child must be sure
to then unblockSI GCHLD signals before it execs the new program.

The parent needs to block t& GCHLDsignals in this way in order to avoid the race condition where
the child is reaped bgi gchl d_handl er (and thus removed from the job lidteforethe parent
callsaddj ob.

e Programs such asor e, | ess, vi , andenacs do strange things with the terminal settings. Don’t
run these programs from your shell. Stick with simple tex¢dx programs such abin/ | s,
/ bi n/ ps, and/ bi n/ echo.

e When you run your shell from the standard Unix shell, youtlseeunning in the foreground process
group. If your shell then creates a child process, by dethalt child will also be a member of the
foreground process group. Since typitigr | - ¢ sends a SIGINT to every process in the foreground
group, typingct r | - ¢ will send a SIGINT to your shell, as well as to every procesd ftour shell
created, which obviously isn't correct.

Here is the workaround: After thkor k, but before theexecve, the child process should call
set pgi d(0, 0), which puts the child in a new process group whose group IDbestical to the
child’s PID. This ensures that there will be only one procesair shell, in the foreground process
group. When you typet rl - ¢, the shell should catch the resulting SIGINT and then fodnitir
to the appropriate foreground job (or more precisely, tleegss group that contains the foreground
job).

Evaluation

Your score will be computed out of a maximum of 90 points basethe following distribution:

80 Correctness: 16 trace files at 5 points each.

10 Style points. We expect you to have good comments (5 pts)aotdck the return value of EVERY
system call (5 pts).

Your solution shell will be tested for correctness on a Limuxchine, using the same shell driver and trace
files that were included in your lab directory. Your shell glioproducedentical output on these traces as
the reference shell, with only two exceptions:

e The PIDs can (and will) be different.

e The output of the bi n/ ps commands it racell. t xt,tracel2.txt,andtracel3. t xt
will be different from run to run. However, the running statef anynyspl i t processes in the
output of the/ bi n/ ps command should be identical.

Hand In Instructions

e Make sure you have included your names in the header comrhésto c.
e Create a team name of the form:

— “ID" where ID is your Department Linux login name, if you are working alpoe

— “ID1+1ID>" where ID is the login name of the first team member dit is the login name of
the second team member.

We need you to create your team names in this way so that weutagrade your assignments.

e To hand in yout sh. c file, type:

make handi n TEAMEt eammane

wheret eammane is the team name described above. This will copy your tsteafib a team/version
specific copy. You must then copy the resultant file to the gxssient Inbox for CS281 in a manner
similar to what we have done before.

e After the handin, if you discover a mistake and want to sulanévised copy, type

make handi n TEAMFt eatrmane VERSI ON=2

Keep incrementing the version number with each submissiod,don’t forget to copy it to the As-
signment Inbox.

Good luck!

