
Computer Science 281
Binary and Hexadecimal Review

1 The Binary Number System

Computers store everything, both instructions and data, by using many, many transistors, each of
which can be in one of two states: off or on. We represent the former transistor state with a 0 and
the latter state with a 1. The number system that uses only these two digits is called binary (base
2) and each binary digit (0 or 1) is called a bit. Every instruction we give a computer and every
number, character, and object is ultimately represented in binary notation.

We can represent numbers in any base we like. We are accustomed to base 10, but the rules are
the same for any base. Let’s say we are using the base n number system with digits having values
0, 1, . . . , n− 1. Then in any number in this base, the ith (i starting at 1) digit d from the right has the
value d · ni−1. The decimal number 7104, for example, is equal to 7 · 103 + 1 · 102 + 0 · 101 + 4 · 100.

In binary, the place values are 20, 21, 22, . . .. So the binary number 10110 has the decimal value
1 · 24 + 0 · 23 + 1 · 22 + 1 · 21 + 0 · 20 = 16 + 0 + 4 + 2 + 0 = 22.

In general, you can use the following algorithm to convert a binary number to decimal:

1. Write the place values over the binary digits.

2. Multiply each place value by the digit in that position, and add the results together.

How many different numbers can be represented with n binary digits? How might we figure
this out? First, let’s look at an example with 4 digits. The smallest 4 digit binary number is 0000
and the largest is 1111 , which is 8 + 4 + 2 + 1 = 15 in decimal. Therefore, there are 15 + 1 = 16
possible bit patterns with 4 digits. In general, there are 2n different bit patterns available with n
binary digits because there are 2 possible digits per position and there are n positions.

1.1 Converting from Decimal to Binary

The easiest way to convert a decimal number to binary is to use what is known as the division
method:

1. Divide the number by its base (in this case 2).

2. Write down the remainder to the left of the digits that have already been found.

3. If the quotient is 0, then stop. Otherwise, replace the number with the quotient and continue
with step 1.
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Example 1 Convert the decimal number 102 to binary.

We use the division method:

division quotient remainder
102/2 51 0
51/2 25 1
25/2 12 1
12/2 6 0
6/2 3 0
3/2 1 1
1/2 0 1

Therefore, 10210 = 11001102.

Subscripts are used to make clear the bases we are using. They are not necessary if the bases
are clear in the current context.

To check the calculation, we can convert the answer back to decimal:

11001102 = 1 · 26 + 1 · 25 + 0 · 24 + 0 · 23 + 1 · 22 + 1 · 21 + 0 · 20 = 64 + 32 + 4 + 2 = 102.

�

1.2 Adding Binary Numbers

Addition in binary is simple. You only need to remember that 0+ 1 = 1+ 0 = 1, 1+ 1 = 10, and
1+ 1+ 1 = 11.

Example 2 Add the binary numbers 101 and 10 .

Binary Decimal
1 0 1 5

+ 1 0 + 2
1 1 1 7

Example 3 Add the binary numbers 101101 and 1110 .

Binary Decimal
1 1 ← carries

1 0 1 1 0 1 45
+ 1 1 1 0 + 14

1 1 1 0 1 1 59

2 Representing Negative Integers: Two’s Complement Notation

2.1 Finite Precision

On any real computer, the number of bits allocated to the representation of an integer is limited.
On most machines this limit is 32 bits. The actual number of bits is irrelevant to understanding
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Binary Decimal Binary Decimal
0000 0 1000 8
0001 1 1001 9
0010 2 1010 10
0011 3 1011 11
0100 4 1100 12
0101 5 1101 13
0110 6 1110 14
0111 7 1111 15

Figure 1: Unsigned 4 bit binary numbers.

binary arithmetic, but you do need to recognize that computer arithmetic has a finite precision.
This implies two important things:

1. There are some numbers that can not be represented in a computer. This includes integers
that require more bits than the computer uses to represent an integer and real numbers that
are non-terminating in binary notation. (We will examine the latter problem later in the
semester.)

2. If an integer is represented with n bits in a computer, then every integer is represented with
n bits. For example, if an integer is 32 bits long then 310 is not represented by 11 , but rather
00000000000000000000000000000011 .

We will use 4 bit precision as an example in this section. There are 24 = 16 different bit patterns
using 4 bits, as shown in Figure 1.

2.2 Two’s Complement

Most computers use a system called two’s complement to represent the integers. The basic idea
with any such system is this:

1. Choose some number of bits (precision) to represent the integers. This is usually either 32 or
64 on real computers.

2. Half of the bit patterns represent positive integers;
half of the bit patterns represent negative integers.

With 4 bit precision, the two’s complement numbers look like this:

Two’s Complement Decimal Two’s Complement Decimal
0000 0 1000 -8
0001 1 1001 -7
0010 2 1010 -6
0011 3 1011 -5
0100 4 1100 -4
0101 5 1101 -3
0110 6 1110 -2
0111 7 1111 -1
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To take the two’s complement of a binary number, you can use the following algorithm:

1. Take the one’s complement of the binary number by changing every 1 to a 0 and every 0 to a
1.

2. Add 1 to the number formed in step 1. Ignore the carry out of the most significant bit if there
is one. The result is the two’s complement.

Example 4 Find the 4 bit two’s complement representation of −610.

First, we find that 610 = 0110 . Then we take the one’s complement of 0110 , which is 1001 .
Finally, we add 1, giving 1001 + 1 = 1010 . Therefore, in two’s complement notation, −610 =
1010. �

On your own, find the 4 bit two’s complement representations of the integers 1 to 7 and check
your answers against the table above.

There are few things you should notice about two’s complement that hold no matter how
many bits we use:

1. An n bit finite precision two’s complement integer is negative if, and only if, its leftmost
(most significant) bit is a 1. For this reason, the leftmost bit is called the sign bit.

2. For n bits of precision, the largest positive n bit finite precision integer is 2n−1 − 1, and the
most negative n bit finite precision integer is −(2n−1). There is one more negative number
than positive.

3. If you add any n bit two’s complement number and its negative together, treating each as if
it were an unsigned binary number, the result will be 2n. Therefore, the negative of a two’s
complement number x is 2n − x (which is another way to compute the two’s complement).
This fact is the origin of the name “two’s complement”.

4. For any integer x, −(−x) = x.

5. The most negative integer in a two’s complement number system is an oddity because if you
take the two’s complement of it, you get itself back. For this reason, it is not used in most
two’s complement systems.

2.2.1 Two’s Complement Shortcut

There is an easier way to find the two’s complement of an integer. Simply complement each bit to
the left of the rightmost (lowest order) 1.

Example 5 Find the 7 bit two’s complement representation of −1710.

The 7 bit binary equivalent of 17 is 0010001 . If we complement each bit to the left of the
rightmost 1, we get 1101111 . Therefore, in two’s complement notation, −1710 = 1101111. �
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2.3 Two’s Complement Addition and Subtraction

The mechanics of two’s complement addition are just like unsigned binary addition except: If the
answer has more bits than the precision, truncate the most significant (left) bit.

Discarding the carry out of the most significant bit is a normal part of the process.

Example 6 Add 0110 and 1110 using 4 bit two’s complement arithmetic.

Binary Decimal
0110 6

+ 1110 + -2
610100 4

Therefore, 0110 + 1110 = 0100 .

The subtraction A− B is implemented as the addition A + (−B) where −B is the two’s com-
plement of B.

Example 7 Subtract 0110 from 1110 using 4 bit two’s complement arithmetic.

Binary Decimal
1110 1110 14

- 0110 ⇒ + 1010 - 6
611000 8

Therefore, 1110 - 0110 = 1000 .

2.3.1 Overflow

Consider the following example:

Example 8 Add 0111 and 0100 using 4 bit two’s complement arithmetic.

Binary Decimal
0111 7

+ 0100 + 4
1011 -5 !!

What happened here? The value of the answer was too large to represent accurately with 4 bit
precision. The result is called overflow. Fortunately, overflow is very easy to detect. �

The Overflow Rule:

Overflow in finite precision addition occurs only when two numbers of the same sign
are added and the result has the opposite sign. Overflow in finite precision addition
can never occur when numbers of opposite signs are added. This is because the answer
in this case cannot be larger than either operand.

Overflow in finite precision subtraction can only occur when subtracting numbers of
the opposite sign. To determine whether overflow occurs in finite precision subtrac-
tion, convert the problem to an addition problem and check for addition overflow.
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Do not confuse overflow with discarding the most significant carry bit, which is a normal part
of the process.

3 The Hexadecimal Number System

The problem with the binary number system is that relatively small numbers use a large number
of bits, which human beings have trouble reading. For example,

819210 = 10000000000000 6= 1000000000000 = 409610,

but it is hard for us to tell that by just looking. The hexadecimal number system (base 16) has two
things going for it:

1. Numbers represented in hexadecimal are far easier for humans to compare (and write) than
are binary numbers.

2. The conversion between binary and hexadecimal is very easy, much easier than between
binary and decimal.

Therefore, hexadecimal is often used as a shorthand for binary strings. Since hexadecimal is
base 16, we need 16 digits. The hexadecimal digits are the decimal digits, plus the digits A, B, C,
D, E, and F which denote the values 10, 11, 12, 13, 14, and 15, respectively. As you should expect
by now, the place values in hexadecimal are 160, 161, 162, etc.. For example, here is a table of the
first 34 hexadecimal numbers and their decimal equivalents:

dec hex dec hex dec hex dec hex dec hex dec hex dec hex
0 0 5 5 10 A 15 F 20 14 25 19 30 1E
1 1 6 6 11 B 16 10 21 15 26 1A 31 1F
2 2 7 7 12 C 17 11 22 16 27 1B 32 20
3 3 8 8 13 D 18 12 23 17 28 1C 33 21
4 4 9 9 14 E 19 13 24 18 29 1D 34 22

You can easily convert a hexadecimal number to decimal by multiplying each digit by its place
value and adding, just as we did with binary.

Example 9 Convert BE316 to decimal.

The hexadecimal number BE3 is equivalent to

11 · 162 + 14 · 161 + 3 · 160 = 11 · 256 + 14 · 16 + 3 · 1 = 2816 + 224 + 3 = 3043

in decimal. �

3.1 Converting from Decimal to Hexadecimal

To convert from decimal to hexadecimal, you can use the division method again, but with base 16
instead of 2.
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Example 10 Convert 479810 to hexadecimal.

We use the division method:

division quotient remainder
4798/16 299 14 (E)
299/16 18 11 (B)
18/16 1 2
1/16 0 1

Therefore, 479810 = 12BE16. To check you work, make sure that

1 · 163 + 2 · 162 + 11 · 161 + 14 · 160 = 1 · 4096 + 2 · 256 + 11 · 16 + 14 · 1 = 4798.

�

3.2 Converting between Binary and Hexadecimal

Converting between binary and hexadecimal is easy because each hexadecimal digit, which has a
value between 0 and 15, is equivalent to 4 bits, as can be seen in Figure 1. Therefore, to convert
from hexadecimal to binary, simply replace each hexadecimal digit with its 4 bit binary equivalent.

Example 11 Convert 12BE16 to binary.

We simply replace each digit by its corresponding bit pattern:

1 2 B E
0001 0010 1011 1110

Therefore, 12BE16 = 10010101111102. �

Converting from binary to hexadecimal is almost as easy. Starting on the right, group the
binary digits in groups of 4, then replace each group with its corresponding hexadecimal digit.

Example 12 Convert 111001010100011001100100001110 to hexadecimal.

Group the bits in groups of 4, starting at the right, and then replace each group with its hex-
adecimal equivalent:

11 1100 0101 0001 1001 1001 0000 1110
3 C 5 1 9 9 0 E

Therefore, 111001010100011001100100001110 = 3C51990E16. �
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