
CS281 Page 1 Bressoud Spring 2010

Review: Single Cycle vs. Multiple Cycle Timing

Clk Cycle 1

Multiple Cycle Implementation:

IFetch Dec Exec Mem WB

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

IFetch Dec Exec Mem

lw sw
IFetch

R-type

Clk

Single Cycle Implementation:

lw sw Waste

Cycle 1 Cycle 2

multicycle clock
slower than 1/5th of
single cycle clock
due to stage
register overhead

CS281 Page 2 Bressoud Spring 2010

How Can We Make It Even Faster?

  Split the multiple instruction cycle design into smaller and
smaller steps

  There is a point of diminishing returns where as much time is
spent loading the state registers as doing the work

  Start fetching and executing the next instruction before the
current one has completed
  Pipelining – (all?) modern processors are pipelined for

performance

  Superpipelining – many pipeline stages, very fast clock

  Fetch (and execute) more than one instruction at a time (out-
of-order superscalar and VLIW (epic))

  Fetch (and execute) instructions from more than one
instruction stream (multithreading (hyperthreading)))

CS281 Page 3 Bressoud Spring 2010

A Pipelined MIPS Processor

 Start the next instruction before the current one has
completed
  improves throughput - total amount of work done in a given

time

  instruction latency (execution time, delay time, response
time - time from the start of an instruction to its completion)
is not reduced

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

IFetch Dec Exec Mem WB lw

Cycle 7 Cycle 6 Cycle 8

sw IFetch Dec Exec Mem WB

R-type IFetch Dec Exec Mem WB

-  clock cycle (pipeline stage time) is limited by the slowest stage

-  for some instructions, some stages are wasted cycles

CS281 Page 4 Bressoud Spring 2010

Single Cycle, Multiple Cycle, vs. Pipeline

Multiple Cycle Implementation:

Clk

Cycle 1

IFetch Dec Exec Mem WB

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

IFetch Dec Exec Mem

lw sw
IFetch

R-type

lw IFetch Dec Exec Mem WB

Pipeline Implementation:

IFetch Dec Exec Mem WB sw

IFetch Dec Exec Mem WB R-type

Clk

Single Cycle Implementation:

lw sw Waste

Cycle 1 Cycle 2

pipeline clock
same as multi-
cycle clock

CS281 Page 5 Bressoud Spring 2010

MIPS Pipeline Datapath Modifications
 What do we need to add/modify in our MIPS datapath?

 State registers between each pipeline stage to isolate them

Read
Address

Instruction
Memory

Add

P
C

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

16 32

ALU

Shift
left 2

Add

Data
Memory

Address

Write Data

Read
Data IF

et
ch

/D
ec

D
ec

/E
xe

c

E
xe

c/
M

em

M
em

/W
B

IF:IFetch ID:Dec EX:Execute MEM:
MemAccess

WB:
WriteBack

System Clock

Sign
Extend

CS281 Page 6 Bressoud Spring 2010

MIPS Pipeline Control Path Modifications
 All control signals can be determined during Decode

  and held in the state registers between pipeline stages

Read
Address

Instruction
Memory

Add

P
C

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

16 32

ALU

Shift
left 2

Add

Data
Memory

Address

Write Data

Read
Data

IF/ID

Sign
Extend

ID/EX
EX/MEM

MEM/WB

Control

CS281 Page 7 Bressoud Spring 2010

Pipelining the MIPS ISA

 What makes it easy
  all instructions are the same length (32 bits)

-  can fetch in the 1st stage and decode in the 2nd stage

  few instruction formats (three) with symmetry across
formats

-  can begin reading register file in 2nd stage

  memory operations can occur only in loads and stores
-  can use the execute stage to calculate memory addresses

  each MIPS instruction writes at most one result (i.e.,
changes the machine state) and does so near the end of
the pipeline (MEM and WB)

 What makes it hard
  structural hazards: what if we had only one memory?
  control hazards: what about branches?
  data hazards: what if an instruction’s input operands

depend on the output of a previous instruction?

CS281 Page 8 Bressoud Spring 2010

Graphically Representing MIPS Pipeline

 Can help with answering questions like:
 How many cycles does it take to execute this code?

 What is the ALU doing during cycle 4?

  Is there a hazard, why does it occur, and how can it be
fixed?

A
L

U

IM Reg DM Reg

CS281 Page 9 Bressoud Spring 2010

Why Pipeline? For Performance!

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 0

Inst 1

Inst 2

Inst 4

Inst 3

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg
A

L
U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

Once the
pipeline is full,
one instruction

is completed
every cycle so

CPI = 1

Time to fill the pipeline

CS281 Page 10 Bressoud Spring 2010

Can Pipelining Get Us Into Trouble?

 Yes: Pipeline Hazards
  structural hazards: attempt to use the same resource by

two different instructions at the same time

  data hazards: attempt to use data before it is ready

-  An instruction’s source operand(s) are produced by a prior
instruction still in the pipeline

  control hazards: attempt to make a decision about
program control flow before the condition has been
evaluated and the new PC target address calculated

-  branch and jump instructions, exceptions

 Can always resolve hazards by waiting
  pipeline control must detect the hazard

  and take action to resolve hazards

CS281 Page 11 Bressoud Spring 2010

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw

Inst 1

Inst 2

Inst 4

Inst 3

A
L

U

Mem Reg Mem Reg

A
L

U

Mem Reg Mem Reg

A
L

U

Mem Reg Mem Reg
A

L
U

Mem Reg Mem Reg

A
L

U

Mem Reg Mem Reg

A Single Memory Would Be a Structural Hazard

Reading data from
memory

Reading
instruction from
memory

 Can fix with separate instr and data memories

CS281 Page 12 Bressoud Spring 2010

How About Register File Access?

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add $1,

Inst 1

Inst 2

add $2,$1,

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

CS281 Page 13 Bressoud Spring 2010

How About Register File Access?

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 1

Inst 2

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg
A

L
U

IM Reg DM Reg

Fix register file
access hazard by

doing reads in the
second half of the

cycle and writes in
the first half

add $1,

add $2,$1,

clock edge that
controls register
writing

clock edge that
controls loading of
pipeline state registers

CS281 Page 14 Bressoud Spring 2010

Register Usage Can Cause Data Hazards

I
n
s
t
r.

O
r
d
e
r

add $1,

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

 Dependencies backward in time cause hazards

 Read before write data hazard

CS281 Page 15 Bressoud Spring 2010

Register Usage Can Cause Data Hazards

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

 Dependencies backward in time cause hazards

add $1,

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

 Read before write data hazard

CS281 Page 16 Bressoud Spring 2010

Loads Can Cause Data Hazards

I
n
s
t
r.

O
r
d
e
r

lw $1,4($2)

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

 Dependencies backward in time cause hazards

CS281 Page 17 Bressoud Spring 2010

Loads Can Cause Data Hazards

I
n
s
t
r.

O
r
d
e
r

lw $1,4($2)

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

 Dependencies backward in time cause hazards

 Load-use data hazard

CS281 Page 18 Bressoud Spring 2010

stall

stall

One Way to “Fix” a Data Hazard

I
n
s
t
r.

O
r
d
e
r

add $1,

A
L

U

IM Reg DM Reg

sub $4,$1,$5

and $6,$1,$7

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

Can fix data
hazard by

waiting – stall

CS281 Page 19 Bressoud Spring 2010

Another Way to “Fix” a Data Hazard

I
n
s
t
r.

O
r
d
e
r

add $1,

A
L

U

IM Reg DM Reg

sub $4,$1,$5

and $6,$1,$7

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

Fix data hazards
by forwarding

results as soon as
they are available
to where they are

needed

xor $4,$1,$5

or $8,$1,$9

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

CS281 Page 20 Bressoud Spring 2010

Another Way to “Fix” a Data Hazard

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

Fix data hazards
by forwarding

results as soon as
they are available
to where they are

needed

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

I
n
s
t
r.

O
r
d
e
r

add $1,

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

CS281 Page 21 Bressoud Spring 2010

Forwarding with Load-use Data Hazards

I
n
s
t
r.

O
r
d
e
r

lw $1,4($2)

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg
A

L
U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

CS281 Page 22 Bressoud Spring 2010

Forwarding with Load-use Data Hazards

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

  Will still need one stall cycle even with forwarding

I
n
s
t
r.

O
r
d
e
r

lw $1,4($2)

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

CS281 Page 23 Bressoud Spring 2010

Control Hazards

 When the flow of instruction addresses is not
sequential (i.e., PC = PC + 4)
 Conditional branches (beq, bne)

 Unconditional branches (j, jal, jr)

 Exceptions

 Possible “solutions”
 Stall (impacts performance)

 Move branch decision point as early in the pipeline as
possible, thereby reducing the number of stall cycles

 Delay decision (requires compiler support)

 Predict and hope for the best !

 Control hazards occur less frequently than data
hazards, but there is nothing as effective against
control hazards as forwarding is for data hazards

CS281 Page 24 Bressoud Spring 2010

flush

Jumps Incur One Stall

I
n
s
t
r.

O
r
d
e
r

j

j target

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

 Fortunately, jumps are very infrequent – only 3% of
the SPECint instruction mix

 Jumps not decoded until ID, so one flush is needed
 To flush, set IF.Flush to zero the instruction field of the

IF/ID pipeline register (turning it into a noop)

Fix jump
hazard by
waiting –

flush

A
L

U

IM Reg DM Reg

CS281 Page 25 Bressoud Spring 2010

Review: MIPS Pipeline Control & Datapath
 All control signals can be determined during Decode

  and held in the state registers between pipeline stages

Read
Address

Instruction
Memory

Add

P
C

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

16 32

ALU

Shift
left 2

Add

Data
Memory

Address

Write Data

Read
Data

IF/ID

Sign
Extend

ID/EX
EX/MEM

MEM/WB

Control

CS281 Page 26 Bressoud Spring 2010

Branches Cause Control Hazards

I
n
s
t
r.

O
r
d
e
r

lw

Inst 4

Inst 3

beq

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

 Dependencies backward in time cause hazards

CS281 Page 27 Bressoud Spring 2010

flush

flush

flush

One Way to “Fix” a Branch Control Hazard

I
n
s
t
r.

O
r
d
e
r

beq

A
L

U

IM Reg DM Reg

beq target

A
L

U

IM Reg DM Reg

A
L

U
 Inst 3

IM Reg DM

Fix branch
hazard by
waiting –

flush – but
affects CPI

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg
A

L
U

IM Reg DM Reg

CS281 Page 28 Bressoud Spring 2010

flush

Another Way to “Fix” a Branch Control Hazard

I
n
s
t
r.

O
r
d
e
r

beq

beq target

A
L

U

IM Reg DM Reg

 Inst 3

A
L

U

IM Reg DM

Fix branch
hazard by
waiting –

flush

A
L

U

IM Reg DM Reg

 Move branch decision hardware back to as early
in the pipeline as possible – i.e., during the
decode cycle

A
L

U

IM Reg DM Reg

CS281 Page 29 Bressoud Spring 2010

flush

Yet Another Way to “Fix” a Control Hazard

4 beq $1,$2,2 I
n
s
t
r.

O
r
d
e
r

A
L

U

IM Reg DM Reg

16 and $6,$1,$7

20 or r8,$1,$9

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg
8 sub $4,$1,$5

  To flush, set IF.Flush to zero the instruction field
of the IF/ID pipeline register (turning it into a noop)

 “Predict branches are always not taken – and take
corrective action when wrong (i.e., taken)

Branch decision
hardware moved

to the decode
cycle

CS281 Page 30 Bressoud Spring 2010

Two “Types” of Stalls

 Noop instruction (or bubble) inserted between two
instructions in the pipeline (e.g., load-use hazards)
 Keep the instructions earlier in the pipeline (later in the

code) from progressing down the pipeline for a cycle
(“bounce” them in place with write control signals)

  Insert noop instruction by zeroing control bits in the
pipeline register at the appropriate stage

  Let the instructions later in the pipeline (earlier in the code)
progress normally down the pipeline

 Flushes (or instruction squashing) where an
instruction in the pipeline is replaced with a noop
instruction (as done for instructions located
sequentially after j and beq instructions)
 Zero the control bits for the instruction to be flushed

CS281 Page 31 Bressoud Spring 2010

Many Other Pipeline Structures Are Possible

 What about the (slow) multiply operation?
 Make the clock twice as slow or …

  let it take two cycles (since it doesn’t use the DM stage)

A
L

U

IM Reg DM Reg

MUL

A
L

U

IM Reg DM1 Reg DM2

 What if the data memory access is twice as slow
as the instruction memory?
 make the clock twice as slow or …

  let data memory access take two cycles (and keep the
same clock rate)

CS281 Page 32 Bressoud Spring 2010

Pipelining Summary

 All modern day processors use pipelining

 Pipelining doesn’t help latency of single task, it
helps throughput of entire workload

 Potential speedup: a really fast clock cycle and able
to complete one instruction every clock cycle (CPI)

 Pipeline rate limited by slowest pipeline stage
 Unbalanced pipe stages makes for inefficiencies

 The time to “fill” pipeline and time to “drain” it can impact
speedup for deep pipelines and short code runs

 Must detect and resolve hazards
 Stalling negatively affects CPI (makes CPI greater than

the ideal of 1)

