
Page 1 Bressoud Spring 2010

Single Cycle Implementation Cycle Time

  Unfortunately, though simple, the single cycle
approach is not used because it is very slow

  Clock cycle must have the same length for every
instruction

  What is the longest (slowest) path (slowest
instruction)?

Page 3 Bressoud Spring 2010

Instruction Critical Paths

Instr. I Mem Reg Rd ALU Op D Mem Reg Wr Total
R-
type
load
store
beq
jump

200 100 100 100 500

200 100 100 200 100 700

  Calculate cycle time assuming negligible delays (for
muxes, control unit, sign extend, PC access, shift left 2,
wires, setup and hold times) except:

  Instruction and Data Memory (200 ps)
  ALU and adders (100 ps)
  Register File access (reads or writes) (100 ps)

200 100 100 200 600
200 100 100 400
200 200

Page 4 Bressoud Spring 2010

Single Cycle Disadvantages & Advantages
 Uses the clock cycle inefficiently – the clock cycle

must be timed to accommodate the slowest instr
  especially problematic for more complex instructions like

floating point multiply

 May be wasteful of area since some functional units
(e.g., adders) must be duplicated since they can not
be shared during a clock cycle

but
  It is simple and easy to understand

Clk

lw sw Waste

Cycle 1 Cycle 2

Page 5 Bressoud Spring 2010

Multicycle Implementation Overview
 Each instruction step takes 1 clock cycle

 Therefore, an instruction takes more than 1 clock cycle to
complete

 Not every instruction takes the same number of clock
cycles to complete

 Multicycle implementations allow
  faster clock rates
  different instructions to take a different number of clock

cycles
  functional units to be used more than once per instruction

as long as they are used on different clock cycles, as a
result

-  only need one memory
-  only need one ALU/adder

Page 6 Bressoud Spring 2010

The Multicycle Datapath – A High Level View

Address

Read Data
(Instr. or Data)

Memory

PC

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

Write Data
IR

M

D
R

A
B

 A
LU

ou
t

 Registers have to be added after every major
functional unit to hold the output value until it is used
in a subsequent clock cycle

Page 7 Bressoud Spring 2010

Clocking the Multicycle Datapath

Address

Read Data
(Instr. or Data)

Memory

PC

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

Write Data

IR

M
D

R

A
B

 A
LU

ou
t

System Clock

MemWrite RegWrite

clock cycle

Page 8 Bressoud Spring 2010

  Break up the instructions into steps where each step
takes a clock cycle while trying to
  balance the amount of work to be done in each step
  use only one major functional unit per clock cycle

  At the end of a clock cycle
  Store values needed in a later clock cycle by the current

instruction in a state element (internal register not visible to
the programmer)

 IR – Instruction Register
 MDR – Memory Data Register
 A and B – Register File read data registers
 ALUout – ALU output register

-  All (except IR) hold data only between a pair of adjacent clock
cycles (so they don’t need a write control signal)

  Data used by subsequent instructions are stored in
programmer visible state elements (i.e., Register File, PC,
or Memory)

Our Multicycle Approach

Page 9 Bressoud Spring 2010

The Complete Multicycle Data with Control

Address

Read Data
(Instr. or Data)

Memory

PC

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

Write Data

IR

M
D

R

A
B

 A
LU

ou
t

Sign
Extend

Shift
left 2 ALU

control

Shift
left 2

ALUOp
Control

IRWrite
MemtoReg

MemWrite
MemRead

IorD
PCWrite

PCWriteCond

RegDst
RegWrite

ALUSrcA
ALUSrcB

zero

PCSource

1

1

1

1

1

1
0

0

0

0

0

0

2

2

3

4

Instr[5-0]

Instr[25-0]

PC[31-28]

Instr[15-0]

Instr[31-26]

32

28

Page 10 Bressoud Spring 2010

Review: Our ALU Control
 Controlling the ALU uses of multiple decoding levels

 main control unit generates the ALUOp bits
 ALU control unit generates ALUcontrol bits

Instr op funct ALUOp action ALUcontrol
lw xxxxxx 00 add 0110
sw xxxxxx 00 add 0110
beq xxxxxx 01 subtract 1110
add 100000 10 add 0110
subt 100010 10 subtract 1110
and 100100 10 and 0000
or 100101 10 or 0001
xor 100110 10 xor 0010
nor 100111 10 nor 0011
slt 101010 10 slt 1111

Page 11 Bressoud Spring 2010

  Reading from or writing to any of the internal registers,
Register File, or the PC occurs (quickly) at the beginning
(for read) or the end of a clock cycle (for write)

  Reading from the Register File takes ~50% of a clock
cycle since it has additional control and access
overhead (but reading can be done in parallel with
decode)

  Had to add multiplexors in front of several of the
functional unit input ports (e.g., Memory, ALU) because
they are now shared by different clock cycles and/or do
multiple jobs

  All operations occurring in one clock cycle occur in
parallel
  This limits us to one ALU operation, one Memory access,

and one Register File access per clock cycle

Our Multicycle Approach, con’t

Page 12 Bressoud Spring 2010

1.  Instruction Fetch

2.  Instruction Decode and Register Fetch

3.  R-type Instruction Execution, Memory Read/Write
Address Computation, Branch Completion, or
Jump Completion

4.  Memory Read Access, Memory Write Completion
or R-type Instruction Completion

5.  Memory Read Completion (Write Back)

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!

Five Instruction Steps

Page 13 Bressoud Spring 2010

  Use PC to get instruction from the memory and put it
in the Instruction Register

  Increment the PC by 4 and put the result back in the
PC

  Can be described succinctly using the RTL "Register-
Transfer Language“

 IR = Memory[PC];
 PC = PC + 4;

Step 1: Instruction Fetch

Can we figure out the values of the control signals?

What is the advantage of updating the PC now?

Page 15 Bressoud Spring 2010

Datapath Activity During Instruction Fetch

Address

Read Data
(Instr. or Data)

Memory

PC

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

Write Data

IR

M
D

R

A
B

 A
LU

ou
t

Sign
Extend

Shift
left 2 ALU

control

Shift
left 2

ALUOp
Control

IRWrite
MemtoReg

MemWrite
MemRead

IorD
PCWrite

PCWriteCond

RegDst
RegWrite

ALUSrcA
ALUSrcB

zero

PCSource

1

1

1

1

1

1
0

0

0

0

0

0

2

2

3

4

Instr[5-0]

Instr[25-0]

PC[31-28]

Instr[15-0]

Instr[31-26]
32

28

00

Page 17 Bressoud Spring 2010

Fetch Control Signals Settings

Start

Instr Fetch IorD=0
MemRead;IRWrite

ALUSrcA=0
ALUsrcB=01

PCSource,ALUOp=00
PCWrite

Unless otherwise assigned

 PCWrite,IRWrite,
 MemWrite,RegWrite=0
 others=X

Page 18 Bressoud Spring 2010

  Don’t know what the instruction is yet, so can only
  Read registers rs and rt in case we need them
  Compute the branch address in case the instruction is a

branch
  The RTL:

 A = Reg[IR[25-21]];
B = Reg[IR[20-16]];
ALUOut = PC
 +(sign-extend(IR[15-0])<< 2);

  Note we aren't setting any control lines based on the
instruction (since we don’t know what it is (the control
logic is busy "decoding" the op code bits))

Step 2: Instruction Decode and Register Fetch

Page 20 Bressoud Spring 2010

Datapath Activity During Instruction Decode

Address

Read Data
(Instr. or Data)

Memory

PC

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

Write Data

IR

M
D

R

A
B

 A
LU

ou
t

Sign
Extend

Shift
left 2 ALU

control

Shift
left 2

ALUOp
Control

IRWrite
MemtoReg

MemWrite
MemRead

IorD
PCWrite

PCWriteCond

RegDst
RegWrite

ALUSrcA
ALUSrcB

zero

PCSource

1

1

1

1

1

1
0

0

0

0

0

0

2

2

3

4

Instr[5-0]

Instr[25-0]

PC[31-28]

Instr[15-0]

Instr[31-26]

32

28

00

Page 22 Bressoud Spring 2010

Decode Control Signals Settings

Start

Instr Fetch Decode
ALUSrcA=0
ALUSrcB=11
ALUOp=00

PCWriteCond=0

IorD=0
MemRead;IRWrite

ALUSrcA=0
ALUsrcB=01

PCSource,ALUOp=00
PCWrite

Unless otherwise assigned

 PCWrite,IRWrite,
 MemWrite,RegWrite=0
 others=X

Page 23 Bressoud Spring 2010

  ALU is performing one of four functions, based on
instruction type

  Memory reference (lw and sw):
 ALUOut = A + sign-extend(IR[15-0]);

  R-type:
 ALUOut = A op B;

  Branch:
 if (A==B) PC = ALUOut;
  Jump:
 PC = PC[31-28] || (IR[25-0] << 2);

Step 3 (instruction dependent)

Page 25 Bressoud Spring 2010

Datapath Activity During lw & sw Execute

Address

Read Data
(Instr. or Data)

Memory

PC

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

Write Data

IR

M
D

R

A
B

 A
LU

ou
t

Sign
Extend

Shift
left 2 ALU

control

Shift
left 2

ALUOp
Control

IRWrite
MemtoReg

MemWrite
MemRead

IorD
PCWrite

PCWriteCond

RegDst
RegWrite

ALUSrcA
ALUSrcB

zero

PCSource

1

1

1

1

1

1
0

0

0

0

0

0

2

2

3

4

Instr[5-0]

Instr[25-0]

PC[31-28]

Instr[15-0]

Instr[31-26]
32

28

00

Page 27 Bressoud Spring 2010

Datapath Activity During R-type Execute

Address

Read Data
(Instr. or Data)

Memory

PC

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

Write Data

IR

M
D

R

A
B

 A
LU

ou
t

Sign
Extend

Shift
left 2 ALU

control

Shift
left 2

ALUOp
Control

IRWrite
MemtoReg

MemWrite
MemRead

IorD
PCWrite

PCWriteCond

RegDst
RegWrite

ALUSrcA
ALUSrcB

zero

PCSource

1

1

1

1

1

1
0

0

0

0

0

0

2

2

3

4

Instr[5-0]

Instr[25-0]

PC[31-28]

Instr[15-0]

Instr[31-26]

32

28

10

Page 29 Bressoud Spring 2010

Datapath Activity During beq Execute

Address

Read Data
(Instr. or Data)

Memory

PC

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

Write Data

IR

M
D

R

A
B

 A
LU

ou
t

Sign
Extend

Shift
left 2 ALU

control

Shift
left 2

ALUOp
Control

IRWrite
MemtoReg

MemWrite
MemRead

IorD
PCWrite

PCWriteCond

RegDst
RegWrite

ALUSrcA
ALUSrcB

zero

PCSource

1

1

1

1

1

1
0

0

0

0

0

0

2

2

3

4

Instr[5-0]

Instr[25-0]

PC[31-28]

Instr[15-0]

Instr[31-26]
32

28

01

Page 31 Bressoud Spring 2010

Datapath Activity During j Execute

Address

Read Data
(Instr. or Data)

Memory

PC

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

Write Data

IR

M
D

R

A
B

 A
LU

ou
t

Sign
Extend

Shift
left 2 ALU

control

Shift
left 2

ALUOp
Control

IRWrite
MemtoReg

MemWrite
MemRead

IorD
PCWrite

PCWriteCond

RegDst
RegWrite

ALUSrcA
ALUSrcB

zero

PCSource

1

1

1

1

1

1
0

0

0

0

0

0

2

2

3

4

Instr[5-0]

Instr[25-0]

PC[31-28]

Instr[15-0]

Instr[31-26]

32

28

Page 33 Bressoud Spring 2010

Execute Control Signals Settings

Start

Instr Fetch Decode

(Op
= R-

type
)

(Op
 =

beq
)

(Op =
lw or

sw) (Op = j)

ALUSrcA=1
ALUSrcB=10
ALUOp=00

PCWriteCond=0

ALUSrcA=1
ALUSrcB=00
ALUOp=10

PCWriteCond=0

ALUSrcA=1
ALUSrcB=00
ALUOp=01

PCSource=01
PCWriteCond

PCSource=10
PCWrite Execute

Unless otherwise assigned

 PCWrite,IRWrite,
 MemWrite,RegWrite=0
 others=X

ALUSrcA=0
ALUSrcB=11
ALUOp=00

PCWriteCond=0

IorD=0
MemRead;IRWrite

ALUSrcA=0
ALUsrcB=01

PCSource,ALUOp=00
PCWrite

Page 34 Bressoud Spring 2010

  Memory reference:
 MDR = Memory[ALUOut]; -- lw

or
 Memory[ALUOut] = B; -- sw

  R-type instruction completion
 Reg[IR[15-11]] = ALUOut;

  Remember, the register write actually takes place
at the end of the cycle on the clock edge

Step 4 (also instruction dependent)

Page 36 Bressoud Spring 2010

Datapath Activity During lw Memory Access

Address

Read Data
(Instr. or Data)

Memory

PC

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

Write Data

IR

M
D

R

A
B

 A
LU

ou
t

Sign
Extend

Shift
left 2 ALU

control

Shift
left 2

ALUOp
Control

IRWrite
MemtoReg

MemWrite
MemRead

IorD
PCWrite

PCWriteCond

RegDst
RegWrite

ALUSrcA
ALUSrcB

zero

PCSource

1

1

1

1

1

1
0

0

0

0

0

0

2

2

3

4

Instr[5-0]

Instr[25-0]

PC[31-28]

Instr[15-0]

Instr[31-26]
32

28

Page 38 Bressoud Spring 2010

Datapath Activity During sw Memory Access

Address

Read Data
(Instr. or Data)

Memory

PC

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

Write Data

IR

M
D

R

A
B

 A
LU

ou
t

Sign
Extend

Shift
left 2 ALU

control

Shift
left 2

ALUOp
Control

IRWrite
MemtoReg

MemWrite
MemRead

IorD
PCWrite

PCWriteCond

RegDst
RegWrite

ALUSrcA
ALUSrcB

zero

PCSource

1

1

1

1

1

1
0

0

0

0

0

0

2

2

3

4

Instr[5-0]

Instr[25-0]

PC[31-28]

Instr[15-0]

Instr[31-26]

32

28

Page 40 Bressoud Spring 2010

Datapath Activity During R-type Completion

Address

Read Data
(Instr. or Data)

Memory

PC

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

Write Data

IR

M
D

R

A
B

 A
LU

ou
t

Sign
Extend

Shift
left 2 ALU

control

Shift
left 2

ALUOp
Control

IRWrite
MemtoReg

MemWrite
MemRead

IorD
PCWrite

PCWriteCond

RegDst
RegWrite

ALUSrcA
ALUSrcB

zero

PCSource

1

1

1

1

1

1
0

0

0

0

0

0

2

2

3

4

Instr[5-0]

Instr[25-0]

PC[31-28]

Instr[15-0]

Instr[31-26]
32

28

Page 42 Bressoud Spring 2010

Memory Access Control Signals Settings

Start

Instr Fetch Decode

Memory Access

Execute

(Op
= R-

type
)

(Op
 =

beq
)

(Op =
lw or

sw) (Op = j)

(Op = lw)
(Op = sw)

MemRead
IorD=1

PCWriteCond=0

MemWrite
IorD=1

PCWriteCond=0

RegDst=1
RegWrite

MemtoReg=0
PCWriteCond=0

Unless otherwise assigned

 PCWrite,IRWrite,
 MemWrite,RegWrite=0
 others=X

IorD=0
MemRead;IRWrite

ALUSrcA=0
ALUsrcB=01

PCSource,ALUOp=00
PCWrite

ALUSrcA=0
ALUSrcB=11
ALUOp=00

PCWriteCond=0

ALUSrcA=1
ALUSrcB=10
ALUOp=00

PCWriteCond=0

ALUSrcA=1
ALUSrcB=00
ALUOp=10

PCWriteCond=0

ALUSrcA=1
ALUSrcB=00
ALUOp=01

PCSource=01
PCWriteCond

PCSource=10
PCWrite

Page 43 Bressoud Spring 2010

  All we have left is the write back into the register
file the data just read from memory for lw
instruction

 Reg[IR[20-16]]= MDR;

What about all the other instructions?

Step 5: Memory Read Completion (Write Back)

Page 45 Bressoud Spring 2010

Datapath Activity During lw Write Back

Address

Read Data
(Instr. or Data)

Memory

PC

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

Write Data

IR

M
D

R

A
B

 A
LU

ou
t

Sign
Extend

Shift
left 2 ALU

control

Shift
left 2

ALUOp
Control

IRWrite
MemtoReg

MemWrite
MemRead

IorD
PCWrite

PCWriteCond

RegDst
RegWrite

ALUSrcA
ALUSrcB

zero

PCSource

1

1

1

1

1

1
0

0

0

0

0

0

2

2

3

4

Instr[5-0]

Instr[25-0]

PC[31-28]

Instr[15-0]

Instr[31-26]

32

28

Page 47 Bressoud Spring 2010

Write Back Control Signals Settings

Start

Instr Fetch Decode

Write Back

Memory Access

Execute

(Op
= R-

type
)

(Op
 =

beq
)

(Op =
lw or

sw) (Op = j)

(Op = lw)
(Op = sw)

RegDst=0
RegWrite

MemtoReg=1
PCWriteCond=0

Unless otherwise assigned

 PCWrite,IRWrite,
 MemWrite,RegWrite=0
 others=X

IorD=0
MemRead;IRWrite

ALUSrcA=0
ALUsrcB=01

PCSource,ALUOp=00
PCWrite

ALUSrcA=0
ALUSrcB=11
ALUOp=00

PCWriteCond=0

ALUSrcA=1
ALUSrcB=10
ALUOp=00

PCWriteCond=0

ALUSrcA=1
ALUSrcB=00
ALUOp=10

PCWriteCond=0

ALUSrcA=1
ALUSrcB=00
ALUOp=01

PCSource=01
PCWriteCond

PCSource=10
PCWrite

MemRead
IorD=1

PCWriteCond=0

MemWrite
IorD=1

PCWriteCond=0

RegDst=1
RegWrite

MemtoReg=0
PCWriteCond=0

Page 48 Bressoud Spring 2010

RTL Summary
Step R-type Mem Ref Branch Jump

Instr
fetch

IR = Memory[PC];
PC = PC + 4;

Decode A = Reg[IR[25-21]];
B = Reg[IR[20-16]];

ALUOut = PC +(sign-extend(IR[15-0])<< 2);

Execute ALUOut =
A op B;

ALUOut =
A + sign-extend

(IR[15-0]);

if
(A==B)
PC =

ALUOut;

 PC = PC
[31-28]

||(IR
[25-0] <<

2);

Memory
access

Reg[IR
[15-11]]
= ALUOut;

MDR = Memory
[ALUOut];

or
Memory[ALUOut]

= B;
Write-
back

Reg[IR[20-16]]
= MDR;

Page 50 Bressoud Spring 2010

  How many cycles will it take to execute this code?

 lw $t2, 0($t3)
 lw $t3, 4($t3)
 beq $t2, $t3, Label
 #assume not
 add $t5, $t2, $t3
 sw $t5, 8($t3)

Label: ...

  What is going on during the 8th cycle of execution?
  In what cycle does the actual addition of $t2 and
$t3 takes place?

  In what cycle is the branch target address calculated?

Answering Simple Questions

5
5
3

4
4
=
21 cycles address for second lw being calculated

16th cycle 12th cycle

Page 51 Bressoud Spring 2010

  Multicycle datapath control signals are not determined
solely by the bits in the instruction
  e.g., op code bits tell what operation the ALU should be doing,

but not what instruction cycle is to be done next
  We can use a finite state machine for control

  a set of states (current state stored in State Register)
  next state function

(determined by current
state and the input)

  output function
(determined by current
state)

  So we are using a Moore machine
(datapath control signals based only on current state)

Multicycle Control

Combinational
control logic

State Reg
Inst

Opcode

Datapath
control
points

Next State

.

. . .

Page 52 Bressoud Spring 2010

Multicycle Datapath Finite State Machine

Start

Instr Fetch Decode

Write Back

Memory Access

Execute

(Op
= R-

type
)

(Op
 =

beq
)

(Op =
lw or

sw) (Op = j)

(Op = lw)
(Op = sw)

0 1

2

3

4

5

6

7

8 9

Unless otherwise assigned

 PCWrite,IRWrite,
 MemWrite,RegWrite=0
 others=X

IorD=0
MemRead;IRWrite

ALUSrcA=0
ALUsrcB=01

PCSource,ALUOp=00
PCWrite

ALUSrcA=0
ALUSrcB=11
ALUOp=00

PCWriteCond=0

ALUSrcA=1
ALUSrcB=10
ALUOp=00

PCWriteCond=0

ALUSrcA=1
ALUSrcB=00
ALUOp=10

PCWriteCond=0

ALUSrcA=1
ALUSrcB=00
ALUOp=01

PCSource=01
PCWriteCond

PCSource=10
PCWrite

MemRead
IorD=1

PCWriteCond=0

MemWrite
IorD=1

PCWriteCond=0

RegDst=1
RegWrite

MemtoReg=0
PCWriteCond=0

RegDst=0
RegWrite

MemtoReg=1
PCWriteCond=0

State Assignment

Page 53 Bressoud Spring 2010

Finite State Machine Implementation

Combinational
control logic

State Reg
Inst[31-26]

Next
State

Inputs

O
ut

pu
ts

O
p0

O

p1

O
p2

O

p3

O
p4

O

p5

PCWrite
PCWriteCond
IorD
MemRead
MemWrite
IRWrite
MemtoReg
PCSource
ALUOp
ALUSourceB
ALUSourceA
RegWrite
RegDst

System Clock

Page 54 Bressoud Spring 2010

Datapath Control Outputs Truth Table
Outputs Input Values (Current State[3-0])

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

PCWrite 1 0 0 0 0 0 0 0 0 1
PCWriteCond X 0 0 0 0 0 0 0 1 X
IorD 0 X X 1 X 1 X X X X
MemRead 1 0 0 1 0 0 0 0 0 0
MemWrite 0 0 0 0 0 1 0 0 0 0
IRWrite 1 0 0 0 0 0 0 0 0 0
MemtoReg X X X X 1 X X 0 X X
PCSource 00 XX XX XX XX XX XX XX 01 10
ALUOp 00 00 00 XX XX XX 10 XX 01 XX
ALUSrcB 01 11 10 XX XX XX 00 XX 00 XX
ALUSrcA 0 0 1 X X X 1 X 1 X
RegWrite 0 0 0 0 1 0 0 1 0 0
RegDst X X X X 0 X X 1 X X

Page 55 Bressoud Spring 2010

Next State Truth Table
Current
State
[3-0]

Inst[31-26] (Op[5-0])
000000

(R-
type)

000010
(jmp)

000100
(beq)

100011
(lw)

101011
(sw)

Any
other

0000 0001 0001 0001 0001 0001 0001
0001 0110 1001 1000 0010 0010 illegal
0010 XXXX XXXX XXXX 0011 0101 illegal
0011 XXXX XXXX XXXX 0100 XXXX illegal
0100 XXXX XXXX XXXX 0000 XXXX illegal
0101 XXXX XXXX XXXX XXXX 0000 illegal
0110 0111 XXXX XXXX XXXX XXXX illegal
0111 0000 XXXX XXXX XXXX XXXX illegal
1000 XXXX XXXX 0000 XXXX XXXX illegal
1001 XXXX 0000 XXXX XXXX XXXX illegal

Page 56 Bressoud Spring 2010

Simplifying the Control Unit Design
 For an implementation of the full MIPS ISA instr’s

can take from 3 clock cycles to 20+ clock cycles
  resulting in finite state machines with hundreds to

thousands of states with even more arcs (state
sequences)

-  Such state machine representations become impossibly
complex

  Instead, can represent the set of control signals that
are asserted during a state as a low-level control
“instruction” to be executed by the datapath

microinstructions
 “Executing” the microinstruction is equivalent to

asserting the control signals specified by the
microinstruction

Page 57 Bressoud Spring 2010

Microprogramming
  A microinstruction has to specify

  what control signals should be asserted
  what microinstruction should be executed next

  Each microinstruction corresponds to one state in the
FSM and is assigned a state number (or “address”)

1.  Sequential behavior – increment the state (address) of the
current microinstruction to get to the state (address) of the next

2.  Jump to the microinstruction that begins execution of the next
MIPS instruction (state 0)

3.  Branch to a microinstruction based on control unit input using
dispatch tables
-  need one for microinstructions following state 1
-  need another for microinstructions following state 2

  The set of microinstructions that define a MIPS
assembly language instruction (macroinstruction) is
its microroutine

Page 58 Bressoud Spring 2010

Defining a Microinstruction Format
 Format – the fields of the microinstruction and the

control signals that are affected by each field
  control signals specified by a field usually have functions

that are related
  format is chosen to simplify the representation and to

make it difficult to write inconsistent microinstructions
-  i.e., that allow a given control signal be set to two different

values

 Make each field of the microinstruction responsible
for specifying a nonoverlapping set of control signals
  signals that are never asserted simultaneously may share

the same field
  seven fields for our simple machine

-  ALU control; SRC1; SRC2; Register control; Memory;
PCWrite control; Sequencing

Page 59 Bressoud Spring 2010

Our Microinstruction Format
Field Value Signal setting Comments

ALU
control

Add ALUOp = 00 Cause ALU to add
Subt ALUOp = 01 Cause ALU to subtract (compare op for beq)
Func code ALUOp = 10 Use IR function code to determine ALU control

SRC1 PC ALUSrcA = 0 Use PC as top ALU input
A ALUSrcA = 1 Use reg A as top ALU input

SRC2 B ALUSrcB = 00 Use reg B as bottom ALU input
4 ALUSrcB = 01 Use 4 as bottom ALU input
Extend ALUSrcB = 10 Use sign ext output as bottom ALU input
Extshft ALUSrcB = 11 Use shift-by-two output as bottom ALU input

Register
control

Read Read RegFile using rs and rt fields of IR as
read addr’s; put data into A and B

Write ALU RegWrite,
RegDst = 1,
MemtoReg = 0

Write RegFile using rd field of IR as write addr
and ALUOut as write data

Write
MDR

RegWrite,
RegDst = 0,
MemtoReg = 1

Write RegFile using rt field of IR as write addr
and MDR as write data

Page 60 Bressoud Spring 2010

Our Microinstruction Format, con’t
Field Value Signal setting Comments

Memory Read PC MemRead,
IorD = 0,IRWrite

Read memory using PC as addr; write
result into IR (and MDR)

Read ALU MemRead,
lorD = 1

Read memory using ALUOut as addr;
write results into MDR

Write ALU MemWrite,
IorD = 1

Write memory using ALUOut as addr
and B as write data

PC write
control

ALU PCSource = 00
PCWrite

Write PC with output of ALU

ALUOut-
cond

PCSource = 01,
PCWriteCond

If Zero output of ALU is true, write PC
with the contents of ALUOut

Jump
address

PCSource = 10,
PCWrite

Write PC with IR jump address after
shift-by-two

Sequen-
cing

Seq AddrCtl = 11 Choose next microinstruction
sequentially

Fetch AddrCtl = 00 Jump to the first microinstruction (i.e.,
Fetch) to begin a new instruction

Dispatch 1 AddrCtl = 01 Branch using PLA_1
Dispatch 2 AddrCtl = 10 Branch using PLA_2

Page 62 Bressoud Spring 2010

Creating the Microprogram
 Fetch microinstruction

Label
(Addr)

ALU
control

SRC1 SRC2 Reg
control

Memory PCWrite
control

Seq’ing

Fetch
(0)

Add PC 4 Read PC ALU Seq

compute PC + 4 fetch instr
into IR

write ALU
output into

PC

go to µinstr
1

  Label field represents the state (address) of the
microinstruction

 Fetch microinstruction assigned state (address) 0

Page 63 Bressoud Spring 2010

The Entire Control Microprogram
Addr ALU

control
SRC1 SRC2 Reg

control
Memory PCWrite

control
Seq’ing

0 Add PC 4 Read PC ALU Seq

1 Add PC Ext
shft

Read Disp 1

2 Add A Extend Disp 2

3 Read ALU Seq

4 Write
MDR

Fetch

5 Write
ALU

Fetch

6 Func
code

A B Seq

7 Write
ALU

Fetch

8 Subt A B ALUOut-
cond

Fetch

9 Jump
address

Fetch

Page 64 Bressoud Spring 2010

Microcode Implementation

Control
PLA

Inst[31-26]

sequencing
control

O
ut

pu
ts

O
p0

O

p1

O
p2

O

p3

O
p4

O

p5

PCWrite
PCWriteCond
IorD
MemRead
MemWrite
IRWrite
MemtoReg
PCSource
ALUOp
ALUSourceB
ALUSourceA
RegWrite
RegDst

System clock

Microprogram Counter

1

Adder

Addr select logic

AddrCtl

Page 65 Bressoud Spring 2010

Control Path Design Alternatives

Initial
representation

Sequencing
control

Logic
representation

Implementation
technique

Finite state
diagram Microprogram

Explicit next
state function

Microprogram counter
+ dispatch PLAs

Microcode
Logic

equations

Programmable
Logic Array (PLA)

  Microprogram representation advantages
  Easier to design, write, and debug

Page 66 Bressoud Spring 2010

Multicycle Advantages & Disadvantages
 Uses the clock cycle efficiently – the clock cycle is

timed to accommodate the slowest instruction step
  balance the amount of work to be done in each step
  restrict each step to use only one major functional unit

 Multicycle implementations allow
  faster clock rates
  different instructions to take a different number of clock

cycles
  functional units to be used more than once per

instruction as long as they are used on different clock
cycles

but
 Requires additional internal state registers, muxes,

and more complicated (FSM) control

Page 67 Bressoud Spring 2010

Single Cycle vs. Multiple Cycle Timing

Clk Cycle 1

Multiple Cycle Implementation:

IFetch Dec Exec Mem WB

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

IFetch Dec Exec Mem
lw sw

IFetch
R-type

Clk

Single Cycle Implementation:

lw sw Waste

Cycle 1 Cycle 2

multicycle clock
slower than 1/5th of
single cycle clock
due to state register
overhead

