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Single Cycle Implementation Cycle Time 

  Unfortunately, though simple, the single cycle 
approach is not used because it is very slow 

  Clock cycle must have the same length for every 
instruction 

  What is the longest (slowest) path (slowest 
instruction)? 
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Instruction Critical Paths 

Instr. I Mem Reg Rd ALU Op D Mem Reg Wr Total 
R-
type 
load 
store 
beq 
jump 

200 100 100 100 500 

200 100 100 200 100 700 

   Calculate cycle time assuming negligible delays (for 
muxes, control unit, sign extend, PC access, shift left 2, 
wires, setup and hold times) except: 

  Instruction and Data Memory (200 ps) 
  ALU and adders (100 ps) 
  Register File access (reads or writes) (100 ps) 

200 100 100 200 600 
200 100 100 400 
200 200 
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Single Cycle Disadvantages & Advantages 
 Uses the clock cycle inefficiently – the clock cycle 

must be timed to accommodate the slowest instr 
  especially problematic for more complex instructions like 

floating point multiply 

 May be wasteful of area since some functional units 
(e.g., adders) must be duplicated since they can not 
be shared during a clock cycle 

but 
  It is simple and easy to understand 

Clk 

lw sw Waste 

Cycle 1 Cycle 2 
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Multicycle Implementation Overview 
 Each instruction step takes 1 clock cycle 

 Therefore, an instruction takes more than 1 clock cycle to 
complete 

 Not every instruction takes the same number of clock 
cycles to complete 

 Multicycle implementations allow 
  faster clock rates 
  different instructions to take a different number of clock 

cycles 
  functional units to be used more than once per instruction 

as long as they are used on different clock cycles, as a 
result 

-  only need one memory 
-  only need one ALU/adder 
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The Multicycle Datapath – A High Level View 

Address 

Read Data 
(Instr. or Data) 
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Write Data 
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Read 
 Data 1 
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 Data 2 
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 Registers have to be added after every major 
functional unit to hold the output value until it is used 
in a subsequent clock cycle 
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Clocking the Multicycle Datapath 

Address 

Read Data 
(Instr. or Data) 
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System Clock 

MemWrite RegWrite 

clock cycle 
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  Break up the instructions into steps where each step 
takes a clock cycle while trying to 
  balance the amount of work to be done in each step 
  use only one major functional unit per clock cycle 

  At the end of a clock cycle 
  Store values needed in a later clock cycle by the current 

instruction in a state element (internal register not visible to 
the programmer) 

  IR – Instruction Register 
  MDR – Memory Data Register 
  A and B – Register File read data registers 
  ALUout – ALU output register 

-  All (except IR) hold data only between a pair of adjacent clock 
cycles (so they don’t need a write control signal) 

  Data used by subsequent instructions are stored in 
programmer visible state elements (i.e., Register File, PC, 
or Memory) 

Our Multicycle Approach 
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The Complete Multicycle Data with Control 
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Shift 
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Review: Our ALU Control 
 Controlling the ALU uses of multiple decoding levels 

 main control unit generates the ALUOp bits 
 ALU control unit generates ALUcontrol bits 

Instr op funct ALUOp action ALUcontrol 
lw xxxxxx 00 add 0110 
sw xxxxxx 00 add 0110 
beq xxxxxx 01 subtract 1110 
add 100000 10 add 0110 
subt 100010 10 subtract 1110 
and 100100 10 and 0000 
or 100101 10 or 0001 
xor 100110 10 xor 0010 
nor 100111 10 nor 0011 
slt 101010 10 slt 1111 
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  Reading from or writing to any of the internal registers, 
Register File, or the PC occurs (quickly) at the beginning 
(for read) or the end of a clock cycle (for write) 

  Reading from the Register File takes ~50% of a clock 
cycle since it has additional control and access 
overhead (but reading can be done in parallel with 
decode) 

  Had to add multiplexors in front of several of the 
functional unit input ports (e.g., Memory, ALU) because 
they are now shared by different clock cycles and/or do 
multiple jobs 

  All operations occurring in one clock cycle occur in 
parallel 
  This limits us to one ALU operation, one Memory access, 

and one Register File access per clock cycle 

Our Multicycle Approach, con’t 
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1.  Instruction Fetch 

2.  Instruction Decode and Register Fetch 

3.  R-type Instruction Execution, Memory Read/Write 
Address Computation, Branch Completion, or 
Jump Completion 

4.  Memory Read Access, Memory Write Completion 
or R-type Instruction Completion 

5.  Memory Read Completion (Write Back) 

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES! 

Five Instruction Steps 
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  Use PC to get instruction from the memory and put it 
in the Instruction Register 

  Increment the PC by 4 and put the result back in the 
PC 

  Can be described succinctly using the RTL "Register-
Transfer Language“  

   IR = Memory[PC]; 
  PC = PC + 4; 

Step 1:  Instruction Fetch 

Can we figure out the values of the control signals? 

What is the advantage of updating the PC now?                                   
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Datapath Activity During Instruction Fetch 
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Fetch Control Signals Settings 

Start 

Instr Fetch IorD=0 
MemRead;IRWrite 

ALUSrcA=0 
ALUsrcB=01 

PCSource,ALUOp=00 
PCWrite 

Unless otherwise assigned 

 PCWrite,IRWrite, 
 MemWrite,RegWrite=0 
 others=X 



Page 18 Bressoud Spring 2010 

  Don’t know what the instruction is yet, so can only 
  Read registers rs and rt in case we need them 
  Compute the branch address in case the instruction is a 

branch 
  The RTL: 

  A = Reg[IR[25-21]]; 
B = Reg[IR[20-16]]; 
ALUOut = PC      
    +(sign-extend(IR[15-0])<< 2); 

  Note we aren't setting any control lines based on the 
instruction (since we don’t know what it is (the control 
logic is busy "decoding" the op code bits)) 

Step 2:  Instruction Decode and Register Fetch 
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Datapath Activity During Instruction Decode 
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Decode Control Signals Settings 

Start 

Instr Fetch Decode 
ALUSrcA=0 
ALUSrcB=11 
ALUOp=00 

PCWriteCond=0 

IorD=0 
MemRead;IRWrite 

ALUSrcA=0 
ALUsrcB=01 

PCSource,ALUOp=00 
PCWrite 

Unless otherwise assigned 

 PCWrite,IRWrite, 
 MemWrite,RegWrite=0 
 others=X 

Page 23 Bressoud Spring 2010 

  ALU is performing one of four functions, based on 
instruction type 

  Memory reference (lw and sw): 
      ALUOut = A + sign-extend(IR[15-0]); 

  R-type: 
      ALUOut = A op B; 

  Branch: 
      if (A==B) PC = ALUOut; 
  Jump: 
      PC = PC[31-28] || (IR[25-0] << 2); 

Step 3 (instruction dependent) 
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Datapath Activity During lw & sw Execute 
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Datapath Activity During R-type Execute 
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Datapath Activity During beq Execute 
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Datapath Activity During j Execute 
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Execute Control Signals Settings 

Start 

Instr Fetch Decode 

(Op 
= R-

type
) 

(Op
 = 

beq
) 

(Op = 
lw or 

sw) (Op = j) 

ALUSrcA=1 
ALUSrcB=10 
ALUOp=00 

PCWriteCond=0 

ALUSrcA=1 
ALUSrcB=00 
ALUOp=10 

PCWriteCond=0 

ALUSrcA=1 
ALUSrcB=00 
ALUOp=01 

PCSource=01 
PCWriteCond 

PCSource=10 
PCWrite Execute 

Unless otherwise assigned 

 PCWrite,IRWrite, 
 MemWrite,RegWrite=0 
 others=X 

ALUSrcA=0 
ALUSrcB=11 
ALUOp=00 

PCWriteCond=0 

IorD=0 
MemRead;IRWrite 

ALUSrcA=0 
ALUsrcB=01 

PCSource,ALUOp=00 
PCWrite 
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  Memory reference: 
    MDR = Memory[ALUOut];    -- lw 

or 
 Memory[ALUOut] = B;             -- sw 

  R-type instruction completion 
     Reg[IR[15-11]] = ALUOut; 

  Remember, the register write actually takes place 
at the end of the cycle on the clock edge 

Step 4 (also instruction dependent) 
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Datapath Activity During lw Memory Access 
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Datapath Activity During sw Memory Access 
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Datapath Activity During R-type Completion 
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Memory Access Control Signals Settings 

Start 

Instr Fetch Decode 

Memory Access 

Execute 

(Op 
= R-

type
) 

(Op
 = 

beq
) 

(Op = 
lw or 

sw) (Op = j) 

(Op = lw) 
(Op = sw) 

MemRead 
IorD=1 

PCWriteCond=0 

MemWrite 
IorD=1 

PCWriteCond=0 

RegDst=1 
RegWrite 

MemtoReg=0 
PCWriteCond=0 

Unless otherwise assigned 

 PCWrite,IRWrite, 
 MemWrite,RegWrite=0 
 others=X 

IorD=0 
MemRead;IRWrite 

ALUSrcA=0 
ALUsrcB=01 

PCSource,ALUOp=00 
PCWrite 

ALUSrcA=0 
ALUSrcB=11 
ALUOp=00 

PCWriteCond=0 

ALUSrcA=1 
ALUSrcB=10 
ALUOp=00 

PCWriteCond=0 

ALUSrcA=1 
ALUSrcB=00 
ALUOp=10 

PCWriteCond=0 

ALUSrcA=1 
ALUSrcB=00 
ALUOp=01 

PCSource=01 
PCWriteCond 

PCSource=10 
PCWrite 
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  All we have left is the write back into the register 
file the data just read from memory for lw 
instruction 

       Reg[IR[20-16]]= MDR; 

What about all the other instructions? 

Step 5: Memory Read Completion (Write Back) 
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Datapath Activity During lw Write Back 
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Write Back Control Signals Settings 

Start 

Instr Fetch Decode 

Write Back 

Memory Access 

Execute 

(Op 
= R-

type
) 

(Op
 = 

beq
) 

(Op = 
lw or 

sw) (Op = j) 

(Op = lw) 
(Op = sw) 

RegDst=0 
RegWrite 

MemtoReg=1 
PCWriteCond=0 

Unless otherwise assigned 

 PCWrite,IRWrite, 
 MemWrite,RegWrite=0 
 others=X 

IorD=0 
MemRead;IRWrite 

ALUSrcA=0 
ALUsrcB=01 

PCSource,ALUOp=00 
PCWrite 

ALUSrcA=0 
ALUSrcB=11 
ALUOp=00 

PCWriteCond=0 

ALUSrcA=1 
ALUSrcB=10 
ALUOp=00 

PCWriteCond=0 

ALUSrcA=1 
ALUSrcB=00 
ALUOp=10 

PCWriteCond=0 

ALUSrcA=1 
ALUSrcB=00 
ALUOp=01 

PCSource=01 
PCWriteCond 

PCSource=10 
PCWrite 

MemRead 
IorD=1 

PCWriteCond=0 

MemWrite 
IorD=1 

PCWriteCond=0 

RegDst=1 
RegWrite 

MemtoReg=0 
PCWriteCond=0 
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RTL Summary 
Step  R-type Mem Ref Branch Jump 

Instr 
fetch 

IR = Memory[PC];                                  
PC = PC + 4; 

Decode A = Reg[IR[25-21]]; 
B = Reg[IR[20-16]]; 

ALUOut = PC +(sign-extend(IR[15-0])<< 2); 

Execute ALUOut =    
A op B; 

ALUOut =       
A + sign-extend 

(IR[15-0]); 

if 
(A==B) 
PC = 

ALUOut; 

 PC =  PC
[31-28]   

||(IR
[25-0] << 

2); 

Memory 
access 

Reg[IR
[15-11]] 
= ALUOut; 

MDR = Memory
[ALUOut];  

or 
Memory[ALUOut] 

= B;              
Write-
back 

Reg[IR[20-16]] 
= MDR; 
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  How many cycles will it take to execute this code?  

  lw   $t2, 0($t3) 
  lw   $t3, 4($t3) 
  beq  $t2, $t3, Label    
 #assume not 
  add  $t5, $t2, $t3 
  sw   $t5, 8($t3) 

Label:  ... 

  What is going on during the 8th cycle of execution? 
  In what cycle does the actual addition of $t2 and 
$t3 takes place? 

  In what cycle is the branch target address calculated?

Answering Simple Questions 

5 
5 
3 

4 
4 
= 
21 cycles address for second lw being calculated 

16th  cycle 12th  cycle 
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  Multicycle datapath control signals are not determined 
solely by the bits in the instruction 
  e.g., op code bits tell what operation the ALU should be doing, 

but not what instruction cycle is to be done next 
  We can use a finite state machine for control 

  a set of states (current state stored in State Register) 
  next state function       

(determined by current                                                                 
state and the input) 

  output function              
(determined by current                                                                                  
state) 

  So we are using a Moore machine                                                       
(datapath control signals based only on current state) 

Multicycle Control 

Combinational 
control logic 

State Reg 
Inst 

Opcode 

Datapath 
control 
points 

Next State 

. . . . . . 

. . . 
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Multicycle Datapath   Finite State Machine 

Start 

Instr Fetch Decode 

Write Back 

Memory Access 

Execute 

(Op 
= R-

type
) 

(Op
 = 

beq
) 

(Op = 
lw or 

sw) (Op = j) 

(Op = lw) 
(Op = sw) 

0 1 

2 

3 

4 

5 

6 

7 

8 9 

Unless otherwise assigned 

 PCWrite,IRWrite, 
 MemWrite,RegWrite=0 
 others=X 

IorD=0 
MemRead;IRWrite 

ALUSrcA=0 
ALUsrcB=01 

PCSource,ALUOp=00 
PCWrite 

ALUSrcA=0 
ALUSrcB=11 
ALUOp=00 

PCWriteCond=0 

ALUSrcA=1 
ALUSrcB=10 
ALUOp=00 

PCWriteCond=0 

ALUSrcA=1 
ALUSrcB=00 
ALUOp=10 

PCWriteCond=0 

ALUSrcA=1 
ALUSrcB=00 
ALUOp=01 

PCSource=01 
PCWriteCond 

PCSource=10 
PCWrite 

MemRead 
IorD=1 

PCWriteCond=0 

MemWrite 
IorD=1 

PCWriteCond=0 

RegDst=1 
RegWrite 

MemtoReg=0 
PCWriteCond=0 

RegDst=0 
RegWrite 

MemtoReg=1 
PCWriteCond=0 

State Assignment 
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Finite State Machine Implementation 

Combinational 
control logic 

State Reg 
Inst[31-26] 

Next 
State 

Inputs 

O
ut

pu
ts

 

O
p0

 
O

p1
 

O
p2

 
O

p3
 

O
p4

 
O

p5
 

PCWrite 
PCWriteCond 
IorD 
MemRead 
MemWrite 
IRWrite 
MemtoReg 
PCSource 
ALUOp 
ALUSourceB 
ALUSourceA 
RegWrite 
RegDst 

System Clock 
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Datapath Control Outputs Truth Table 
Outputs Input Values (Current State[3-0]) 

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 

PCWrite 1 0 0 0 0 0 0 0 0 1 
PCWriteCond X 0 0 0 0 0 0 0 1 X 
IorD 0 X X 1 X 1 X X X X 
MemRead 1 0 0 1 0 0 0 0 0 0 
MemWrite 0 0 0 0 0 1 0 0 0 0 
IRWrite 1 0 0 0 0 0 0 0 0 0 
MemtoReg X X X X 1 X X 0 X X 
PCSource 00 XX XX XX XX XX XX XX 01 10 
ALUOp 00 00 00 XX XX XX 10 XX 01 XX 
ALUSrcB 01 11 10 XX XX XX 00 XX 00 XX 
ALUSrcA 0 0 1 X X X 1 X 1 X 
RegWrite 0 0 0 0 1 0 0 1 0 0 
RegDst X X X X 0 X X 1 X X 
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Next State Truth Table 
Current 
State 
[3-0] 

Inst[31-26]     (Op[5-0]) 
000000 

(R-
type) 

000010 
(jmp) 

000100 
(beq) 

100011 
(lw) 

101011 
(sw) 

Any 
other 

0000 0001 0001 0001 0001 0001 0001 
0001 0110 1001 1000 0010 0010 illegal 
0010 XXXX XXXX XXXX 0011 0101 illegal 
0011 XXXX XXXX XXXX 0100 XXXX illegal 
0100 XXXX XXXX XXXX 0000 XXXX illegal 
0101 XXXX XXXX XXXX XXXX 0000 illegal 
0110 0111 XXXX XXXX XXXX XXXX illegal 
0111 0000 XXXX XXXX XXXX XXXX illegal 
1000 XXXX XXXX 0000 XXXX XXXX illegal 
1001 XXXX 0000 XXXX XXXX XXXX illegal 



Page 56 Bressoud Spring 2010 

Simplifying the Control Unit Design 
 For an implementation of the full MIPS ISA instr’s 

can take from 3 clock cycles to 20+ clock cycles 
  resulting in finite state machines with hundreds to 

thousands of states with even more arcs (state 
sequences) 

-  Such state machine representations become impossibly 
complex 

  Instead, can represent the set of control signals that 
are asserted during a state as a low-level control 
“instruction” to be executed by the datapath 

microinstructions 
 “Executing” the microinstruction is equivalent to 

asserting the control signals specified by the 
microinstruction 
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Microprogramming 
  A microinstruction has to specify 

  what control signals should be asserted 
  what microinstruction should be executed next 

  Each microinstruction corresponds to one state in the 
FSM and is assigned a state number (or “address”) 

1.  Sequential behavior – increment the state (address) of the 
current microinstruction to get to the state (address) of the next 

2.  Jump to the microinstruction that begins execution of the next 
MIPS instruction (state 0) 

3.  Branch to a microinstruction based on control unit input using 
dispatch tables 
-  need one for microinstructions following state 1 
-  need another for microinstructions following state 2 

  The set of microinstructions that define a MIPS 
assembly language instruction (macroinstruction) is 
its microroutine 
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Defining a Microinstruction Format 
 Format – the fields of the microinstruction and the 

control signals that are affected by each field 
  control signals specified by a field usually have functions 

that are related 
  format is chosen to simplify the representation and to 

make it difficult to write inconsistent microinstructions 
-  i.e., that allow a given control signal be set to two different 

values 

 Make each field of the microinstruction responsible 
for specifying a nonoverlapping set of control signals 
  signals that are never asserted simultaneously may share 

the same field 
  seven fields for our simple machine 

-  ALU control; SRC1; SRC2; Register control; Memory; 
PCWrite control; Sequencing 
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Our Microinstruction Format 
Field Value Signal setting Comments 

ALU 
control 

Add ALUOp = 00 Cause ALU to add 
Subt ALUOp = 01 Cause ALU to subtract (compare op for beq) 
Func code ALUOp = 10 Use IR function code to determine ALU control 

SRC1 PC ALUSrcA = 0 Use PC as top ALU input 
A ALUSrcA = 1 Use reg A as top ALU input 

SRC2 B ALUSrcB = 00 Use reg B as bottom ALU input 
4 ALUSrcB = 01 Use 4 as bottom ALU input 
Extend ALUSrcB = 10 Use sign ext output as bottom ALU input 
Extshft ALUSrcB = 11 Use shift-by-two output as bottom ALU input 

Register 
control 

Read Read RegFile using rs and rt fields of IR as 
read addr’s; put data into A and B 

Write ALU RegWrite, 
RegDst = 1, 
MemtoReg = 0 

Write RegFile using rd field of IR as write addr 
and ALUOut as write data 

Write 
MDR 

RegWrite, 
RegDst = 0, 
MemtoReg = 1 

Write RegFile using rt field of IR as write addr 
and MDR as write data 
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Our Microinstruction Format, con’t 
Field Value Signal setting Comments 

Memory Read PC MemRead,    
IorD = 0,IRWrite 

Read memory using PC as addr; write 
result into IR (and MDR) 

Read ALU MemRead,    
lorD = 1 

Read memory using ALUOut as addr; 
write results into MDR 

Write ALU MemWrite,    
IorD = 1 

Write memory using ALUOut as addr 
and B as write data 

PC write 
control 

ALU PCSource = 00 
PCWrite 

Write PC with output of ALU 

ALUOut-
cond 

PCSource = 01, 
PCWriteCond 

If Zero output of ALU is true, write PC 
with the contents of ALUOut 

Jump 
address 

PCSource = 10,  
PCWrite 

Write PC with IR jump address after 
shift-by-two 

Sequen-
cing 

Seq AddrCtl = 11 Choose next microinstruction 
sequentially 

Fetch AddrCtl = 00 Jump to the first microinstruction (i.e., 
Fetch) to begin a new instruction 

Dispatch 1 AddrCtl = 01 Branch using PLA_1 
Dispatch 2 AddrCtl = 10 Branch using PLA_2 
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Creating the Microprogram 
 Fetch microinstruction 

Label 
(Addr) 

ALU 
control 

SRC1 SRC2 Reg 
control 

Memory PCWrite 
control 

Seq’ing 

Fetch 
(0) 

Add PC 4 Read PC ALU Seq 

compute PC + 4 fetch instr 
into IR 

write ALU 
output into 

PC 

go to µinstr 
1 

  Label field represents the state (address) of the 
microinstruction 

 Fetch microinstruction assigned state (address) 0 
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The Entire Control Microprogram 
Addr ALU 

control 
SRC1 SRC2 Reg 

control 
Memory PCWrite 

control 
Seq’ing 

0 Add PC 4 Read PC ALU Seq 

1 Add PC Ext 
shft 

Read Disp 1 

2 Add A Extend Disp 2 

3 Read ALU Seq 

4 Write 
MDR 

Fetch 

5 Write 
ALU 

Fetch 

6 Func 
code 

A B Seq 

7 Write 
ALU 

Fetch 

8 Subt A B ALUOut-
cond 

Fetch 

9 Jump 
address 

Fetch 
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Microcode Implementation 

Control 
PLA 

Inst[31-26] 

sequencing 
control 

O
ut

pu
ts

 

O
p0

 
O

p1
 

O
p2

 
O

p3
 

O
p4

 
O

p5
 

PCWrite 
PCWriteCond 
IorD 
MemRead 
MemWrite 
IRWrite 
MemtoReg 
PCSource 
ALUOp 
ALUSourceB 
ALUSourceA 
RegWrite 
RegDst 

System clock 

Microprogram Counter 

1 

Adder 

Addr select logic 

AddrCtl 
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Control Path Design Alternatives 

Initial 
representation 

Sequencing 
control 

Logic 
representation 

Implementation 
technique 

Finite state 
diagram Microprogram 

Explicit next 
state function 

Microprogram counter 
+ dispatch PLAs 

Microcode 
Logic 

equations 

Programmable 
Logic Array (PLA) 

  Microprogram representation advantages 
  Easier to design, write, and debug 
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Multicycle Advantages & Disadvantages 
 Uses the clock cycle efficiently – the clock cycle is 

timed to accommodate the slowest instruction step 
  balance the amount of work to be done in each step 
  restrict each step to use only one major functional unit 

 Multicycle implementations allow 
  faster clock rates 
  different instructions to take a different number of clock 

cycles  
  functional units to be used more than once per 

instruction as long as they are used on different clock 
cycles 

but 
 Requires additional internal state registers, muxes, 

and more complicated (FSM) control 
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Single Cycle vs. Multiple Cycle Timing 

Clk Cycle 1 

Multiple Cycle Implementation: 

IFetch Dec Exec Mem WB 

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 

IFetch Dec Exec Mem 
lw sw 

IFetch 
R-type 

Clk 

Single Cycle Implementation: 

lw sw Waste 

Cycle 1 Cycle 2 

multicycle clock 
slower than 1/5th of 
single cycle clock 
due to state register  
overhead 


