
CS-281 Page 1 Bressoud Spring 2010

Review: Major Components of a Computer

 Processor

Control

Datapath

Memory

Devices

Input

Output

C
ach

e

M
ain

M

em
o

ry

S
eco

n
d

ary
M

em
o

ry
(D

isk)

CS-281 Page 2 Bressoud Spring 2010

The “Memory Wall”

 The Processor vs DRAM speed disparity continues to grow

C
lo

ck
s

pe
r

in
st

ru
ct

io
n

(C
P

I)

C
lo

ck
s

pe
r

D
R

A
M

 a
cc

es
s

 Good memory hierarchy (cache) design is
increasingly important to overall performance

CS-281 Page 3 Bressoud Spring 2010

The Memory Hierarchy

L1$

L2$

Main Memory

Secondary Memory

Increasing
distance
from the
processor in
access time

Processor

(Relative) size of the memory at each level

Inclusive– what
is in L1$ is a
subset of what
is in L2$ is a
subset of what
is in MM that is
a subset of is
in SM

4-8 bytes (word)

1 to 4 blocks

1,024+ bytes (disk sector = page)

8-32 bytes (block)

 Take advantage of the principle of locality to present the
user with as much memory as is available in the cheapest
technology at the speed offered by the fastest technology

CS-281 Page 4 Bressoud Spring 2010

The Memory Hierarchy: Why Does it Work?

 Temporal Locality (Locality in Time):
⇒ Keep most recently accessed data items closer to the

processor

 Spatial Locality (Locality in Space):
⇒ Move blocks consisting of contiguous words to the upper

levels

Lower Level
Memory Upper Level

Memory
To Processor

From Processor
Blk X

Blk Y

CS-281 Page 5 Bressoud Spring 2010

The Memory Hierarchy: Terminology
  Hit: data is in some block in the upper level (Blk X)

 Hit Rate: fraction of memory accesses found in upper level
 Hit Time: Time to access the upper level which consists of

- RAM access time + Time to determine hit/miss

  Miss: data is not in the upper level so needs to be retrieve from a
block in the lower level (Blk Y)
 Miss Rate = 1 - (Hit Rate)
 Miss Penalty: Time to bring in a block from the lower level

 and replace a block in the upper level with it
 + Time to deliver the block the processor

 Hit Time << Miss Penalty

Lower Level
Memory Upper Level

Memory
To Processor

From Processor
Blk X

Blk Y

CS-281 Page 6 Bressoud Spring 2010

How is the Hierarchy Managed?

 registers ↔ memory
  by compiler (programmer?)

 cache ↔ main memory
  by the cache controller hardware

 main memory ↔ disks
  by the operating system (virtual memory)

  virtual to physical address mapping assisted by the
hardware (TLB)

  by the programmer (files)

CS-281 Page 7 Bressoud Spring 2010

  Two questions to answer (in hardware):
  Q1: How do we know if a data item is in the cache?

  Q2: If it is, how do we find it?

  Direct mapped
  For each item of data at the lower level, there is exactly

one location in the cache where it might be - so lots of
items at the lower level must share locations in the
upper level

  Address mapping:

(block address) modulo (# of blocks in the cache)

  First consider block sizes of one word

The Cache

CS-281 Page 9 Bressoud Spring 2010

Caching: A Simple First Example

00

01
10
11

Cache

Main Memory

Q2: How do we find it?

Use next 2 low order
memory address bits
– the index – to
determine which
cache block (i.e.,
modulo the number of
blocks in the cache)

Tag Data

Q1: Is it there?

Compare the cache tag
to the high order 2
memory address bits to
tell if the memory block
is in the cache

Valid

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Two low order bits
define the byte in the
word (32b words)

(block address) modulo (# of blocks in the cache)

Index

CS-281 Page 11 Bressoud Spring 2010

Direct Mapped Cache

0 1 2 3

4 3 4 15

 Consider the main memory word reference string
 0 1 2 3 4 3 4 15

00 Mem(0) 00 Mem(0)
00 Mem(1)

00 Mem(0) 00 Mem(0)
00 Mem(1)
00 Mem(2)

miss miss miss miss

miss miss hit hit

00 Mem(0)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 Mem(4)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 Mem(4)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 Mem(4)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 4

11 15

00 Mem(1)
00 Mem(2)

00 Mem(3)

Start with an empty cache - all
blocks initially marked as not valid

  8 requests, 6 misses

CS-281 Page 12 Bressoud Spring 2010

  One word/block, cache size = 1K words

MIPS Direct Mapped Cache Example

20 Tag 10
Index

Data Index Tag Valid
0
1
2
.
.
.

1021
1022
1023

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

What kind of locality are we taking advantage of?

20

Data

32

Hit

CS-281 Page 13 Bressoud Spring 2010

  Read hits (I$ and D$)
  this is what we want!

  Write hits (D$ only)
  allow cache and memory to be inconsistent

-  write the data only into the cache (then write-back the cache
contents to the memory when that cache block is “evicted”)

-  need a dirty bit for each cache block to tell if it needs to be
written back to memory when it is evicted

  require the cache and memory to be consistent
-  always write the data into both the cache and the memory

(write-through)

-  don’t need a dirty bit

-  writes run at the speed of the main memory - slow! – or can
use a write buffer, so only have to stall if the write buffer is full

Handling Cache Hits

CS-281 Page 16 Bressoud Spring 2010

Another Reference String Mapping

0 4 0 4

0 4 0 4

 Consider the main memory word reference string
 0 4 0 4 0 4 0 4

miss miss miss miss

miss miss miss miss

00 Mem(0) 00 Mem(0)
01 4

01 Mem(4)
0 00

00 Mem(0)
01

4

00 Mem(0)
01 4

00 Mem(0)
01

4
01 Mem(4)

0 00
01 Mem(4)

0 00

Start with an empty cache - all
blocks initially marked as not valid

 Ping pong effect due to conflict misses - two memory
locations that map into the same cache block

  8 requests, 8 misses

CS-281 Page 17 Bressoud Spring 2010

Sources of Cache Misses

 Compulsory (cold start or process migration, first
reference):
 First access to a block, “cold” fact of life, not a whole lot

you can do about it

  If you are going to run “millions” of instruction, compulsory
misses are insignificant

 Conflict (collision)
 Multiple memory locations mapped to the same cache

location
-  Solution 1: increase cache size

-  Solution 2: increase associativity

 Capacity
 Cache cannot contain all blocks accessed by the program

-  Solution: increase cache size

CS-281 Page 20 Bressoud Spring 2010

Taking Advantage of Spatial Locality

0

 Let cache block hold more than one word
 0 1 2 3 4 3 4 15

1 2

3 4 3

4 15

00 Mem(1) Mem(0)

miss

00 Mem(1) Mem(0)

hit

00 Mem(3) Mem(2)
00 Mem(1) Mem(0)

miss

hit

00 Mem(3) Mem(2)
00 Mem(1) Mem(0)

miss

00 Mem(3) Mem(2)
00 Mem(1) Mem(0)

01 5 4
hit

00 Mem(3) Mem(2)
01 Mem(5) Mem(4)

hit

00 Mem(3) Mem(2)
01 Mem(5) Mem(4)

00 Mem(3) Mem(2)
01 Mem(5) Mem(4)

miss

11 15 14

Start with an empty cache - all
blocks initially marked as not valid

  8 requests, 4 misses

CS-281 Page 21 Bressoud Spring 2010

Multiword Block Direct Mapped Cache

8
Index

Data Index Tag Valid
0
1
2
.
.
.

253
254
255

31 30 . . . 13 12 11 . . . 4 3 2 1 0
Byte
offset

20

20 Tag

Hit Data

32

Block offset

  Four words/block, cache size = 1K words

What kind of locality are we taking advantage of?

CS-281 Page 24 Bressoud Spring 2010

Miss Rate vs Block Size vs Cache Size

 Miss rate goes up if the block size becomes a
significant fraction of the cache size because the
number of blocks that can be held in the same size
cache is smaller (increasing capacity misses)

CS-281 Page 25 Bressoud Spring 2010

Block Size Tradeoff

  Larger block size means larger miss penalty
-  Latency to first word in block + transfer time for remaining words

Miss
Penalty

Block Size

Miss
Rate Exploits Spatial Locality

Fewer blocks
compromises
Temporal Locality

Block Size

Average
Access

Time
Increased Miss

Penalty
& Miss Rate

Block Size

  In general, Average Memory Access Time
 = Hit Time x Hit Rate + Miss Penalty x Miss Rate

 Larger block sizes take advantage of spatial locality but
  If the block size is too big relative to the cache size, the miss

rate will go up

CS-281 Page 27 Bressoud Spring 2010

Other Ways to Reduce Cache Miss Rates

1.  Allow more flexible block placement
  In a direct mapped cache a memory block maps to

exactly one cache block

  At the other extreme, could allow a memory block to be
mapped to any cache block – fully associative cache

  A compromise is to divide the cache into sets each of
which consists of n “ways” (n-way set associative)

3.  Use multiple levels of caches
  Add a second level of caches on chip – normally a

unified L2 cache (i.e., it holds both instructions and data)
-  L1 caches focuses on minimizing hit time in support of a

shorter clock cycle (smaller with smaller block sizes)

-  L2 cache focuses on reducing miss rate to reduce the
penalty of long main memory access times (larger with
larger block sizes)

CS-281 Page 28 Bressoud Spring 2010

Improving Cache Performance
Reduce the hit time

  smaller cache

  direct mapped
cache

  smaller blocks

  for writes
-  no write

allocate – just
write to write
buffer

-  write allocate –
write to a
delayed write
buffer that then
writes to the
cache

Reduce the miss rate
  bigger cache
  associative

cache
  larger blocks

(16 to 64 bytes)
  use a victim

cache – a small
buffer that
holds the most
recently
discarded
blocks

Reduce the miss penalty
  smaller blocks

-  for large blocks
fetch critical
word first

  use a write buffer
-  check write

buffer (and/or
victim cache) on
read miss – may
get lucky

  use multiple cache
levels – L2 cache
not tied to CPU
clock rate

  faster backing
store/improved
memory bandwidth
-  wider buses
-  SDRAMs

CS-281 Page 29 Bressoud Spring 2010

Cache Summary

 The Principle of Locality:
 Program likely to access a relatively small portion of the

address space at any instant of time
-  Temporal Locality: Locality in Time

-  Spatial Locality: Locality in Space

 Three major categories of cache misses:
 Compulsory misses: sad facts of life, e.g., cold start misses

 Conflict misses: increase cache size and/or associativity
Nightmare Scenario: ping pong effect!

 Capacity misses: increase cache size

 Cache design space
  total size, block size, associativity (replacement policy)

 write-hit policy (write-through, write-back)

 write-miss policy (write allocate, write buffers)

