MIIFPS

MIPS32® Architecture For Programmers
Volume I: Introduction to the MIPS32®
Architecture

Document Number: M D00082
Revision 2.60
June 25, 2008

MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043-1353

Copyright © 2001-2003,2005,2008 M I PS Technologies I nc. All rightsreserved.

Copyright © 2001-2003,2005,2008 MIPS Technologies, Inc. All rights reserved.
Unpublished rights (if any) reserved under the copyright laws of the United States of Americaand other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies'). Any copying, reproducing, modifying or use of
thisinformation (in whole or in part) that is not expressly permitted in writing by MIPS Technologies or an authorized third party is strictly prohibited. At a
minimum, thisinformation is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution
restrictions that are independent of and supplemental to any and al confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT
PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN
PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technol ogies reserves the right to change the information contained in this document to improve function, design or otherwise. M| PS Technol ogies does
not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether
express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded.
Except as expressly provided in any written license agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not
give recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in violation of the law of any
country or international law, regulation, treaty, Executive Order, statute, amendments or supplements thereto. Should a conflict arise regarding the export,
reexport, transfer, or release of the information contained in this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial computer software
documentation or other commercial items. If the user of thisinformation, or any related documentation of any kind, including related technical data or manuals,
isan agency, department, or other entity of the United States government ("Government"), the use, duplication, reproduction, release, modification, disclosure,
or transfer of thisinformation, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian
agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or an authorized third party.

MIPS, MIPSI, MIPSII, MIPSIII, MIPSIV, MIPSV, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-Based, MIPSsim, MIPSpro, MIPS Technologies
logo, MIPS-VERIFIED, MIPS-VERIFIED logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4K S, 4K Sc, 4KSd, M4K, 5K, 5Kc, 5Kf, 24K, 24K c, 24Kf,
24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, R3000, R4000, R5000, ASMACRO, Atlas, "At the core of the user
experience.", BusBridge, Bus Navigator, CLAM, CorExtend, CoreFPGA, CorelV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2
NAVIGATOR, HyperDebug, HyperJTAG, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, OCI, PDtrace, the Pipeline, Pro Series, SEAD, SEAD-2,
SmartMIPS, SOC-it, System Navigator, and YAMON are trademarks or registered trademarks of MIPS Technologies, Inc. in the United States and other
countries.

All other trademarks referred to herein are the property of their respective owners.

Template: nB1.03, Built with tags: 2B ARCH MIPS32

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

Contents

Chapter 1: About ThiS BOOK .o,
1.1: TypOgraphiCal CONVENTIONSttt e e e e e e e ettt et e e e e e e e s s s e nabe b be e e e e eeaaeeeeaaannbbsbreeeaaaaeas
0 | = o I = TP PO PP TP PT P PPPPPRPPPPPPPRN
g = o] o B =) PP T TR PPPRPRPRR
G O 0o U 1Y g I 4 AT PP TR PPPRRRPRR
1.2: UNPREDICTABLE and UNDEFINEDc.uutiiiiiiiiiie ittt ettt et e e snne e e s neeeanes
1.2.1: UNPREDICTABLE ...ttt ettt ekttt e bttt e ekt e e ekt e e e e nb e e e anb e e e enbe e e anneas
1.2.2: UNDEFRINEDceiiiiitit ittt ettt ettt ekttt e ettt skt e e ket e 4k bt e e eb b e e ekt e e emb e e e anbe e e enbneeanteas
L.2.3: UNSTABLE ..tttk bttt e e a bt o4kt e e kb e e ok bt e e eh bt e ekt e e e emb e e e anb e e e anbneeanneas
1.3: Special Symbols in PSeudoCode NOTATIONuuuiiiiiiiieee ettt e e e e e e e eeeaeaaeas
1.4: FOIr MOTE INFOIMALION ...ttt e et e et e e e ekt e e et e e e e e e s e e e e e e

Chapter 2: The MIPS Architecture: An INtrodUCTIONvuviiii i e e
2.5: MIPS32 aNd MIPSBZ4 OVEIVIEWuuvieiiiiiitiee e ettt e ettt e ettt e e e e ettt e e e e e st bt e e e e s bbbt e e e e anbbe e e e e abbreeaeaas
2.5.0: HIStONCAl PEISPECIIVE.ttt et e st e e e et e e sttt e e s annneeas
2.5.2: ArChiteCtural EVOIULIONcoiiiiiiiiiieit ettt ettt ettt e et e s eas
2.5.3: Architectural Changes Relative to the MIPS | through MIPS V Architectures............ccccooevvveeinnnnen.
2.6: CoMPlIaNCE ANA SUDSETIINGeeeeeiiiieiee ittt e et e e e et et e e e s bb et e e e e anba e e e e e abbreeaeaas
2.7: Components of the MIPS ArChItECIUIEeiiiiiiiie et e e e e e
2.7.1: MIPS Instruction Set ArchiteCture (ISA) ..ot
2.7.2: MIPS Privileged Resource ArchiteCture (PRA)ueiiioiiiiiie ettt
2.7.3: MIPS Application Specific EXIENSIONS (ASES) ...ciiuiiiiiiiiiiiiie et
2.7.4: MIPS User Defined INSrUCtIONS (UDIS).....ciuiiiiieiiiiiiee ettt
2.8: Architecture Versus IMpPlemENTatiON............ueii ittt et e e s b eee e
2.9: Relationship between the MIPS32 and MIPS64 ArChiteCtUIES..........uvviiiiiiiiiie e
2.10: INSIrUCHIONS, SOMEA DY ISA ... ettt e e e e et e ettt e e et e e e e e e e aa s bae e e eeeeeeaesaeannnseneaeeeeeeeens
2.10.1: List Of MIPS32 INSIIUCTIONSveieiieiiiieeie ittt ettt et e et e e e e s eas
2.10.2: List Of MIPSB4 INSIIUCTIONSeeieiieiiiieiie ettt ettt et e e sttt e e sttt e e s anene s
2.10: PIPEINE ATCRITECIUIEeeii ettt ettt ookt e e e h bt e e e e bt et e e e e anba e e e e e abbreeaeaas
2.11.1: Pipeline Stages and EXECULION RAESuiiiiiiiiiiiee ittt
2.10.2: PArallel PIPEINE ..ottt et ettt e st e s
2.10.3: SUPEIPIPEIINE ..ttt ettt ettt e e ettt e e o n bttt e e et e et s
2.10.4: SUPEISCAIAr PIPEIINE ...ttt ettt et
A e T (o f Sy (o] = A ol a1 (=T ol (1] £ RO RPPOPPPRPOTPPPR
2.13: Programming MOOE!coi ittt ettt e ekt e e e e a bt e e e e bt e e e et b e e e e e abbr e e e e
2.13.1: CPU Data FOIMMALS.. ...ttt e ettt e e e et e e e e et e e e e e e e e e et e e e e e eeas
2.13.2: FPU DAt FOMMALS ...ttt ettt et e e e et ettt e e e e e e e e e e e e e e eees
2.13.3: COProCESSOrS (CPO-CP3) ..ottt ettt ettt e s a bt e e e ettt e e sttt e e s aneneeas

P e R S O e B B =T] (= £ RO T PPPPP
2.13.5: FPU REQISTEIStteeti ettt etttk e o a ettt e ookttt a4 a bt e oo sttt e e et bt e e e e nbb e e e s annneeas
2.13.6: Byte Ordering and ENGIANNESSo.vueiiiiiiiiiiee ittt e st e s aneneeas
2.13.7: MEIMOIY ACCESS TYPES ... ittt e e ettt ettt et e et ettt e et e e e e e e ettt e e e e e e e e n e et eeeeeeeeas
2.13.8: Implementation-SPECIfiC ACCESS TYPESuiiiiieiiiiiit ettt ettt e e nnaeeas
2.13.9: Cacheability and Coherency Attributes and ACCESS TYPES......uuuiiii ettt
2.13.20: MiXiNG ACCESS TYPES ...eeeeeeiiutiiitee ittt e ettt e e ettt e a4 sttt e oo bttt e e o s b bt e e a1 s bttt e e e e bbbt e e e s st et e e s annne s
2.13. 11 INSIIUCHION FEICNES ...ttt ettt e s aaneeas

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

Chapter 3: Application Specific EXIENSIONS ..o, 45

3.14: DESCHIPLION OF ASES. ... eiiiiiiieie ittt e e e e e e e oo e bbbt ettt e e ea e e e e e s e e s enbb e e e e eeeaaaeeeaaannnbnbreeeeaaaens 45
3.15: List of Application SPecifiC INSIIUCIONSooiiiiiiiiiiii e e e e e eeeeeas 46
3.15.1: The MIPS16e™ Application Specific Extension to the MIPS32Architecture..............coooocivviveeeneen. 46
3.15.2: The MDMX™ Application Specific Extension to the MIPS64 Architecturecccccooiiiiiivieenen. 46
3.15.3: The MIPS-3D® Application Specific Extension to the MIPS32 Architecture...........ccccoooiiiiivinenen. 46
3.15.4: The SmartMIPS® Application Specific Extension to the MIPS32 Architecture..............ccccvvveeeeeen. 46
3.15.5: The MIPS® DSP Application Specific Extension to the MIPS32 Architectureccccvvvvieeneen. 46
3.15.6: The MIPS® MT Application Specific Extension to the MIPS32 Architecturecccoooeciiivvinenen. a7
Chapter 4: Overview of the CPU INSIIUCLION Stccoviiiiiiiiii i 49
4.16: CPU Instructions, Grouped BY FUNCLION..........ooiiiiiiiiiiiiiie et 49
4.16.1: CPU Load and StOre INSHIUCTIONS.iiieeeteiii et e e e e e e et e e e e e e e e e e s s eeeereeeeeeeaeannnennnnes 49
4.16.2: ComMPUEALIONAI INSTIUCTIONS.iiiiiiiie ittt e e e e e e e e e 52
4.16.3: Jump and Branch INSIIUCTIONS.coiiuiiiiiei et 56
4.16.4: MiISCEllaN@OUS INSIIUCTIONSuiiiiiiiiiiie e e ettt e e e e e e et e e e e e e e e e e e s eeeeeaeeeeaeannnennenes 58
4.16.5: COPrOCESSON INSIIUCTIONSeiiiiiiiiiie ettt ettt et e e e e e et e e e e st e e e e bt r e e e e e nees 61
4.17: CPU INSIIUCION FOMMALSeeiiiieeeiei ittt e e e e e e s ettt e e e e e e e e e s e et eeeeeeeeeaeaaaansseenaaeeeeeaeeeeseannnnennnees 62
Chapter 5: Overview of the FPU INSTrUCTION Sel........ccuiiiiiiiiiiiiiiiii e 65
LN S = 1T =Y VA @ 0] 7=] 1 L 2SSOSR 65
5.19: Enabling the Floating POINt COPIOCESSONcciiueiiiiiieie et ee e e e e s seei e e e e e e e e s e s s e e aeaaeaeesasaantrnaeeeeees 66
5.20: IEEE STANUAIT 754ottt e et e oottt e e ekttt e e e aabb et e e e s anbb e e e e e e bbeeeeeeanbaeeeeeabbneeeeaas 66
A e e e U I T - IV = 66
L I i Fo = L To T o T gL B o 4= PP 66
I A b (o B o] e 1 = PP 70
5.22: Floating POINt REGISIEN TYPES ...uuuiiiiiiiiiiiieeeei e e iesc ettt e e e e e e e e e st reeteae e e e s s st aaaeeeeeaaeeeesasssnssnrreneeeeeeas 71
L I o O I = To 1S3 =T g 1Y o o =Y £ RS 71
5.22.2: Binary Data Transfers (32-Bit @nd 64-Bit)ccuiiieeiiiiiiiiiiiiiiiieieee e e e e e e e e reeee e 71
5.22.3: FPRs and Formatted Operand LaYOULuuuriiieeeiiiiiiiiiiiiieie e e e e e e e eessteeee e e s e e e e e e e s e s snnrnaanaeeeaeeas 72
5.23: Floating Point Control REQISIErS (FCRS) ...iiciiiiiiciiiiiiiie et e e e e e e e e e s e s s rr e e e e e e e e e s e s snnbraaeeeaeeas 73
5.23.1: Floating Point Implementation Register (FIR, CP1 Control Register 0)cccccvvvveeeeeeiiiiciiinneeenenn. 73
5.23.2: Floating Point Control and Status Register (FCSR, CP1 Control Register 31)............cceccvvvvvveennn. 76
5.23.3: Floating Point Condition Codes Register (FCCR, CP1 Control Register 25)........ccccccoeevcvvvvvnennnn. 78
5.23.4: Floating Point Exceptions Register (FEXR, CP1 Control Register 26)ccccccvveveeeeeeiieiiivnrneenenn. 79
5.23.5: Floating Point Enables Register (FENR, CP1 Control Register 28)........cccccvvviieiieeeeeeiieciiiiieeeeen 79
5.24: Formats of Values Used iN FP REQISIEIScci ettt e e e e e e e e s et eaeees 80
LS T o O o =T o T 1SS 81
IS T I e CeT=T o) 1o T O 0] o T 11 o) 1SS 82
5.26: FPU INSITUCTIONS ...ttt ittette ettt ettt ettt e e e ettt e e e e a bttt e e e ekttt e e e aab e et e e e e anbbe e e e e anbbeteeeaanbbeeeeesnbbneeaenas 85
5.26.1: Data Transfer INSIIUCTIONSuviiie ettt ettt e e et e e e st e e e s e nneeeas 85
5.26.2: ArtNMELIC INSIIUCHIONSeeiiii ittt ettt ettt e e e st e e s et e e e st eee s ennneeas 87
5.26.3: CONVEISION INSIIUCTIONS.eiiiiiiiiiieeiiiie ettt s ettt e e ettt et e s ettt e e s st ee s annb et e e e s nnbeeeeesannnneeas 89
5.26.4: Formatted Operand-Value MoVe INSIIUCTIONSccoiiiiiiiiiiiiiii e e e e e e e e e e s eee s 90
5.26.5: Conditional Branch INSIIUCLIONSuuiiiiiiiiiiie ittt e e e e e e nnaeeas 91
5.26.6: MiSCEIlaN@OUS INSIIUCTIONSeeiiieiiiiiiie ettt e ettt e e s st e e e st e e e s anbeeeeesannneeeas 91
5.27: Valid Operands for FPU INSITUCHONSccoiiiiiiiiiiiiieee e ettt e e e e e e s st e e e e e e e e e e s e s snnenbraeeeeaaeas 92
5.28: FPU INSITUCION FOIMMALS. ... tiiiiieiiiiiiie ettt ettt e ettt e e ettt e e sttt e e e sttt e e e s ambb e e e e e e bbeeeeesanbaeeeessnbreeeenas 94
oS 0 I [0T 0] (=T g g T=T) = Lo] o 1 o] (PP 94
AppendixX A: INSTrucCtion Bit ENCOAINGS ..uuuuiiiiiiiiiiiiiieiiieieieeseeeieeeeeee e e e e e e ee e e e s eeeseeeseeeeaereeeeeaeeaeeeeeees 97
A.29: Instruction Encodings and INSrUCHON CIASSESccceeiiiiiiiiiiiiiiiie et a e eeea e e e e e 97
4 MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

A.30: Instruction Bit ENCOAING TADIES........viiiiiiiiciie e e e e e e e e e e e e e e ee e e e e e e eeeeensanrnanne 97

A.31: Floating Point Unit Instruction Format ENCOAINGScccoiiiiiiiiiiiieie e e e e e e e e e 105
ApPpPeNndiX B: REVISION HISTOIY ..ot et e e e e et s e e e e e e e e e e aaaa e e e eeaeeeeenenes 107
MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60 5

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

Figures

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 2-8:
Figure 2-9:

Figure 2-10:
Figure 2-11:
Figure 2-12:
Figure 2-13:
Figure 2-14:
Figure 2-15:
Figure 2-16:
Figure 2-17:
Figure 3-18:
Figure 4-19:
Figure 4-20:
Figure 4-21:
Figure 5-22:
Figure 5-23:
Figure 5-24:
Figure 5-25:
Figure 5-26:
Figure 5-27:
Figure 5-28:
Figure 5-29:
Figure 5-30:
Figure 5-31:
Figure 5-32:
Figure 5-33:
Figure 5-34:
Figure 5-35:
Figure 5-36:
Figure 5-37:
Figure 5-38:
Figure 5-39:
Figure 5-40:
Figure 5-41:
Figure 5-42:
Figure 5-43:
Figure 5-44:
Figure 5-45:
Figure 5-46:
Figure 5-47:

Relationship between the MIPS32 and MIPS64 ArChiteCtUIeS...........oooiiiiiiiiiiiiiieeee e 22
One-Deep Single-Completion INStruction PIPEliNeooiiiiiiiiiiiiiieee e 25
Four-Deep Single-Completion PIPEIINEoeii e 25
FOUr-DEEP SUPEIPIPEIINE. ... ittt et e e e e e e e s sttt r et e e e e e e e e e aaan 26
Four-Way SUupersCalar PIPEIINE ...t e e e e e e e e e e 26
(08 S U =T 1S3 (=] £ 30
FPU Registers for @ 32-DIt FPUu i e aeaeaannanas 32
FPU Registers for a 64-bit FPU if STAIUSER IS L ...eciiiuiiiiiiiiiiiic ettt 33
FPU Registers for a 64-bit FPU if StAtUSER IS 0 ...vviiiiiiiiiiiiiiiii et 34
Big-ENndian BYE OFUEIINGeeeeeeiiiiiiiiiiiesee e e et e e e e e e e ettt e s s e e s e e e e e e e eeaaaeaeaeeeeesesesnssnsnnnnan 35
Little-ENdian BYLE OFOeIING. veeeeeieiiiiiiiieses et e et e e e e e e e e et et et ettt s s s s e s e e e e e e aeeaaaeaeaeeeeesesesesensnnnnan 35
Big-Endian Data in Doubleword FOrMAL...........cooiiiiiiiiiiiei s e e e e e e e e e e e e e e e e ae e eananaaa 36
Little-Endian Data in Doubleword FOIMAL............oiiiiiiiiiiiie et 36
Big-Endian Misaligned Word AAAreSSINGccoiiiieiieee et s e aeae e ennenaanaaas 37
Little-Endian Misaligned Word AdAreSSINgGccoieeeeiiiiee s a e anaraaannaa 37
Two instructions placed in a 64-bit wide, little-endian MEeMmMOrY.............oiiiiiiiiiiiiii e 39
Two instructions placed in a 64-bit wide, big-endian Memoryc..eoiiii e 40
IMIPS ISAS QNG ASES ..ottt ettt ettt e e e ettt e e e ettt e e e e a bttt e e e ns et e eeeansse e e e e eansteeeeeaneeeeas 45
Immediate (I-Type) CPU INSrUCtON FOIMEAL.........oiiiiiiiiiiiiie e 63
Jump (J-Type) CPU INSIIUCLION FOIMMALooiiiiiiiiiiii et e e e e e e e e eenneees 63
Register (R-Type) CPU INSIrUCHION FOIMAL.........oiiiiiiiiiiii et 63
Single-Precisions Floating Point FOrMat (S).......uuuuuiiiiiiiiiieeie e 67
Double-Precisions Floating Point FOrmat (D)ccooiiiiiiiiiiieeeeee s e e ee e 68
Paired Single Floating Point FOrmMat (PS)........ccooiiiiiiiiiii s e e 68
Word Fixed POINt FOIMALt (VW)oooiiiieiieeee s e e e e e ettt a e s e e e e e e e e e e eaeaaaaaaaaanes 70
Longword Fixed POINt FOIMAL (L) ...uuuurureiiiie i e s e s e e e e e e e e e e e e e e e e e e e aeeeseaanenennnnes 70
FPU Word Load and MoVe-t0 OPEIratiONSociiiuiiiiiiiiiieeeee ettt e e e e e e e e e e e e e e e e e e sainaees 72
FPU Doubleword Load and MoVe-t0 OPEIatiONS..........uuuiiiiiaiiiiiiiiiiiiiiiee e e e e e e e e e e e e e e e aiiniees 72
Single Floating Point or Word Fixed Point Operand in an FPRccccoiiiiiii e 72
Double Floating Point or Longword Fixed Point Operand in an FPRcccooiiiiiiiiiiie 73
Paired-Single Floating Point Operand in an FPRooii e 73
FIR REQISIEI FOIMAL ...t e e e ettt e e s e e e e e e e e aaeaeaeaaeeseeeeeesesnrnrnnes 73
FCSR REQISTEI FOMMALcoiiiiiiiiiiiieiee s e e ettt e s s e e e e e e aeeaeaeaaaaeeeeeeeeesesnenrnnes 76
FCCR REQISIEr FOIMIALcciiiiiiiieiieieie e e e e et e e e e e e e et et et e e et e e s e e e e e e aeeaeaeaaaeeeeeeeseesennrnrnnes 78
FEXR REQISIEr FOIMMAL ...oiiiiiiiiiieieeietei e s e e e ettt e e e e e e e e e e eeeeaeaaaaeeeeeeseenesnrnnnnes 79
FENR REQISEI FOIMALcoiiiiiiiiiiiiiieii e s e e e e ettt e e s e e e e e e e e aaeaeaaaeeeeeeeeeesesnsnranes 79
Effect of FPU Operations on the Format of Values Held in FPRSciiiiiieeee 81
I-Type (Immediate) FPU INSruCtion FOIMALooiiiiiiiiiiiee e 94
R-Type (Register) FPU INStrUCLION FOIMAL..........oiiiiiiiiiieiiie et 94
Register-Immediate FPU INStruCtion FOIMALccoooiiiiiiiiiiieee e 94
Condition Code, Immediate FPU INStruction FOIMAL...........cuuuiiiiiiiiiiiaei e 95
Formatted FPU Compare INStruCtion FOIMALuuiiiiiiiiiiiee it 95
FP RegisterMove, Conditional INStruction FOrMaAL.............oovviiiiiiiiiiiiiiiiee e 95
Four-Register Formatted Arithmetic FPU Instruction FOrmatcccoeeeiiiiiiiiiiiiiic e 95
Register Index FPU INStruCtion FOIMALccooiiiiiiiiiiii s e e e e e e e naanaaes 95
Register Index Hint FPU INStruction FOrMaL...........coooiiiiiiiiiiee s 95
Condition Code, Register Integer FPU Instruction FOrmat.............cccoooiiiiiiiiiiiiiiese e 95

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

Figure A.48: Sample Bit ENCOAING TabBI@oooiiiieeee e e e e e e e e e e e e aeaees

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

Tables

Table 1.1:
Table 2.2:
Table 2.3:
Table 2.4:
Table 2.5:
Table 4.6:
Table 4.7:
Table 4.8:
Table 4.9:

Table 4.10:
Table 4.11:
Table 4.12:
Table 4.13:
Table 4.14:
Table 4.15:
Table 4.16:
Table 4.17:
Table 4.18:
Table 4.19:
Table 4.21:
Table 4.20:
Table 4.22:
Table 4.23:
Table 4.24:
Table 4.25:
Table 4.26:
Table 4.27:
Table 4.28:
Table 4.29:
Table 5.30:
Table 5.31:

Table 5.32

Table 5.33:
Table 5.34:
Table 5.35:
Table 5.36:
Table 5.38:
Table 5.37:
Table 5.39:
Table 5.40:
Table 5.41:
Table 5.42:
Table 5.43:
Table 5.45:
Table 5.44:
Table 5.46:
Table 5.47:

Symbols Used in Instruction Operation State@mMENTS........coooiiiiiiiiiiiiii e 13
MIPS32 INSITUCTIONS ...ttt ettt e e e e oo 4o e o bbb bttt et e e e e e e e e b bbbt e e e eaeeaeeeaaaanns 22
MIPSB4 INSIFUCTIONS ...ttt ettt et e e e e oo 4o e o bbbt et e et e e e e e e e e e bbbt e e e e e e aaeeeaaaanns 24
Unaligned Load and StOre INSITUCHIONSooiiiiiiiieieeee s e e e e e e e e e e as 36
Speculative INSIIUCHION TEICNES it 40
Load and Store Operations Using Register + Offset Addressing Mode............ccccoeeiiiiiiiiiiiiiiiiiieeeenn. 50
Aligned CPU Load/Store INSITUCHIONS.i it e e e e e e e e e e e e e e e e e e eeeeeaeeeeasennnnnnas 50

Unaligned CPU Load and Store INSIFUCHIONScveviiiiiiiiiiiiiiei e e e 51
Atomic Update CPU Load and Store INSIIUCIONSuuiiiiiiiiieiiiiiiiii et 51
Coprocessor Load and StOre INSTIUCTIONSuuuiiiiiieie et e e e e e e e e e e e eas 52
FPU Load and Store Instructions Using Register + Register AddreSSing..........cevvvvvvvvieriiiiiiieeieieeeeenn. 52
ALU Instructions With an Immediate OPerand............cccuuiiiiiiiiiiieaai et 53
Three-Operand ALU INSITUCTIONSuuiiiiiiiieeai ittt e e e e e e s bbb e e e e e e e e e e e annnneees 53
TWO-OpPEerand ALU INSTIUCTIONSuiuiiiiiiieiieeee ettt ettt e e e e e e e e s st bbb r e e e aeeeeeeaaaannneee 54
SHIFEINSIIUCTIONS ..ottt et e e e e e e e bbbt e e e e e e e e e e e e s snbbbbeeeeeeeeeas 54
MUILIPIY/DIVIAE INSIIUCTIONS. ...ttt e et e e e e e e e e e e s bbbt e e e e e aaeeeaaan 55
Unconditional Jump Within a 256 Megabyte RegiONueeiiiiiiiiiiiiiiiiecce e 57
PC-Relative Conditional Branch Instructions Comparing TW0O ReQIStersS.........cccoeeeiiiiiiiiiiiiiiiiieeeeeeenn 57
PC-Relative Conditional Branch Instructions Comparing With Zero............ccccccieiiiiiiiiiiiiiiiiieeeeeen 57
SerialiZation INSTIUCTIONoiii ettt e e e e e e s e e bbb et et e e e e e e e e e e e bbneeeeeeeas 58
Deprecated Branch LiKely INSITUCHIONS.uuuiiiiiiiiiai e e e e e 58
System Call and Breakpoint INSIIUCLIONSuuiiiiiiiiiie e 59
Trap-on-Condition Instructions Comparing TWO REQISIEISooiiiiiiiiiiiiiiieee et 59
Trap-on-Condition Instructions Comparing an Immediate Valueccccccoiiiiiiiiiiiiiiiie 59
CPU Conditional MOVE INSIIUCHIONSccoeiiiiiiiiiiiiiiiit ettt e e e e e e e e e e e e s eeeeeeeas 60
PrefetCh INSITUCTIONSttt e e e e e e e bbbttt et e e e e e e s et eeeeeaeeas 60
N[O [Y U o £ o] PP PRSPPI 60
Coprocessor Definition and Use in the MIPS ArchiteCture. ... 61
CPU INStruction FOrMAL FIEIUSueeiiiiiieeeei it e e e e et e e eas 62
Parameters of Floating POINt DAta TYPESuuiiiiiiiieiiiiiiiiie ettt e e e e e e e 67
Value of Single or Double Floating Point DataType ENCOdiNg...........oooouiiiiiiiiiiiieeai e 68
: Value Supplied When a New Quiet NaN IS Created ...t 70
FIR Register Field DESCHPLIONScooiiiiiiiiiiiii ittt e e e e e e e e e s bbb e e e e e aaeeeaaan 73
FCSR Register Field DESCIPLIONSoiiiiiiiiiiiii ettt e e e e e e et r e e e aaeeeaaan 76
Cause, Enable, and Flag Bit DefiNitiONS............uuuuuiiiiiieie e a e e e e e e e e e e eaaaaees 78
R (o]0 gTo [T o TN\YiToTo ST B 1= 1T o111 o] g 78
FEXR Register Field DeSCIIPLIONS.oiiiiitiiiieie ettt e ettt e e e e e e e e e e e eeeeaaeeeaean 79
FCCR Register Field DEeSCIPLIONSoiiiiiiiiiiiiie ettt e et r e e e e e e e e e s bbb e e e e eaeeeeaaaan 79
FENR Register Field DESCHPLIONSoiiiiiiiiiiiie ettt et e e e e e e s bbb eeeeaaaeeaaan 80
Default Result for IEEE Exceptions Not Trapped PreCiSely ... 83
FPU Data Transfer INSIIUCTIONS.ooiiiiiiiiii ettt e e e e e e e e e e e e e aaeeeaaan 85
FPU Loads and Stores Using Register+Offset Adress Modecoooiiiiiiiiiiieeeiiiiceee e 86
FPU Loads and Using Register+Register AddreSS MOAE.......ccociiieiiiiiiiiiiiiiie e 86
FPU IEEE ArithmetiC OPEIraAtiONScooiiiiiiiiiiiiiie et e ettt e e e et e et e e e e e e e bbb b e e e e eaaeeeeaaan 87
FPU Move To and From INSTIUCTIONSueiiiiiiieiiee ettt e e e e e et e e e e e e e e e e an 87
FPU-Approximate Arithmetic OPEratiONSiiiiiiiiiiiiiiiii ettt a e e e e e 88
FPU Multiply-Accumulate Arithmetic OPErationsSoooouviiiiiiiiiiee et a e e 88

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

Table 5.48: FPU Conversion Operations Using the FCSR Rounding MOde.............cciiiiiiiiiiiiiiiiiieceee e 89
Table 5.49: FPU Conversion Operations Using a Directed Rounding MOGEeeeiiiiiiiiiiiiiiiiiiiieeeieeee e 89
Table 5.50: FPU Formatted Operand MOVe INSITUCHIONSooiiiiiiiiiiiiiiee ettt e e e e e s 90
Table 5.51: FPU Conditional Move on True/FalSe INSITUCIONS.uiiiiiiiiiiiiiii et 90
Table 5.52: FPU Conditional Move on Zero/NONZEero INSITUCHONScuuiiiiiiiiiiiiiiiit e 90
Table 5.53: FPU Conditional BranCh INSITUCHIONSoiiiiiiiiiiiiiie et e e e e 91
Table 5.54: Deprecated FPU Conditional Branch Likely INStrUCHONSooiiiiiiiiiiiiiee e 91
Table 5.55: CPU Conditional Move on FPU True/False INStrUCHIONScooiiiiiiiiiiieii et 92
Table 5.56: FPU Operand Format Field (fmt, fmt3) ENCOINGuuuuiiiiiiiiiaiiiiiiiiiei e 92
Table 5.57: Valid FOrmats for FPU OPEIratiONSeeiiiiiiaaiiiiiiiiiieie ittt ettt e e e e e e e e e s bbb e e e e e e e e e e s e s annnenes 93
Table 5.58: FPU INStruction FOrmMat FIIASooiiiiiiiieeee ettt e e e e e 96
Table A.59: Symbols Used in the Instruction ENcoding TabIEsuuuiiiiiiiii e 98
Table A.60: MIPS32 Encoding of the Opcode FIeld ... 99
Table A.61: MIPS32 SPECIAL Opcode Encoding of FUuNction Field............cooiiiiiiiii e 100
Table A.62: MIPS32 REGIMM ENcoding Of It FIEldccooiiiiieeeeee e 100
Table A.63: MIPS32 SPECIAL2 Encoding of FUNCLION Fieldouiiiiiiiiiii e 100
Table A.64: MIPS32 SPECIAL3 Encoding of Function Field for Release 2 of the Architecture.............ccccoeeeenn... 101
Table A.65: MIPS32 MOVCI ENCOING Of tf Bit......ccciiii e 101
Table A.66: MIPS32 SRL Encoding Of Shift/ROTAtEcooiiiiiiieie e 101
Table A.67: MIPS32 SRLV Encoding of ShIft/ROtALE.............oooiiiiiiicee s 101
Table A.68: MIPS32 BSHFL Encoding of Sa FIeld...........coooiiiiiii e 102
Table A.69: MIPS32 COPO ENcoding Of 1S FIeldcccoiiiiii e 102
Table A.70: MIPS32 COPO Encoding of Function Field When rS=CO ... 102
Table A.71: MIPS32 COP1 ENcoding Of 1S FIeldccooiiiiiii et 103
Table A.72: MIPS32 COP1 Encoding of Function Field When IS=S.......uuiiiiiiii e 103
Table A.73: MIPS32 COP1 Encoding of Function Field When rS=Duuuiiiiiiiiiii e 103
Table A.74: MIPS32 COP1 Encoding of Function Field When rS=W OF Lccoooviiiiiiiiiccee 104
Table A.75: MIPS64 COP1 Encoding of Function Field When rS=PS ... 104
Table A.76: MIPS32 COP1 Encoding of tf Bit When rs=S, D, or PS, Function=MOVCF.............ccccccvvrrniiiinieennn. 104
Table A.77: MIPS32 COP2 ENcoding Of 1S FIeldccoooiiiiii e 105
Table A.78: MIPS64 COP1X Encoding of FUNCLON FIeldoovviiiiiiiiiiiii e 105
Table A.79: Floating Point Unit Instruction Format ENCOAINGS.............uuuuiiiiiiiiiiieie e eeeeeeee e 105
MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60 9

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

10

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

Chapter 1

About This Book

The MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture comes as a
multi-volume set.

* Volume| describes conventions used throughout the document set, and provides an introduction to the MIPS32®
Architecture

* Volumell provides detailed descriptions of each instruction in the MIPS32® instruction set

* Volume Il describes the MIPS32® Privileged Resource Architecture which defines and governs the behavior of
the privileged resources included in a MIPS32® processor implementation

* Volume IV-a describes the MIPS16e™ Application-Specific Extension to the MIPS32® Architecture

* Volume IV-b describes the MDMX ™ Application-Specific Extension to the MIPS32® Architecture and is not
applicable to the MIPS32® document set

* Volume IV-c describes the MIPS-3D® A pplication-Specific Extension to the MIPS32® Architecture

* Volume IV-d describes the SmartM I PS®A pplication-Specific Extension to the MIPS32® Architecture
1.1 Typographical Conventions

This section describes the use of italic, bold and courier fontsin this book.
1.1.1 Italic Text
* isused for emphasis
» isusedfor bits, fields, registers, that are important from a software perspective (for instance, address bits used by
:;gv;ege, and programmabl e fields and registers), and various floating point instruction formats, suchas S D,

* isused for the memory access types, such as cached and uncached

1.1.2 Bold Text

* represents aterm that is being defined

* isused for bits and fields that are important from a hardware perspective (for instance, register bits, which are
not programmabl e but accessible only to hardware)

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60 11
Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

About This Book

» isusedfor ranges of numbers; therangeisindicated by an ellipsis. For instance, 5..1 indicates numbers 5 through
1

* isused to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined below.

1.1.3 Courier Text

courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

12

Theterms UNPREDICTABL E and UNDEFINED are used throughout this book to describe the behavior of the pro-
cessor in certain cases. UNDEFINED behavior or operations can occur only asthe result of executing instructionsin
aprivileged mode (i.e., in Kernel Mode or Debug Mode, or with the CPO usable bit set in the Status register). Unpriv-
ileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and unprivileged
software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDI CTABLE results may vary from processor implementation to implementation, instruction to instruction,
or as afunction of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause aresult to be generated or not. If aresult is gener-
ated, it isUNPREDICTABLE. UNPREDICTABL E operations may cause arbitrary exceptions.

UNPREDI CTABLE results or operations have several implementation restrictions:

* Implementations of operations generating UNPREDICTABL E results must not depend on any data source
(memory or internal state) which isinaccessible in the current processor mode

* UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
isinaccessible in the current processor mode. For example, UNPREDICTABL E operations executed in user
mode must not access memory or internal state that isonly accessible in Kernel Mode or Debug Mode or in
another process

* UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as afunction of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED opera-
tions or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:
 UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which

thereisno exit other than powering down the processor). The assertion of any of the reset signals must restore the
processor to an operational state

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

1.3 Special Symbols in Pseudocode Notation

1.2.3 UNSTABLE

UNSTABLE results or values may vary as a function of time on the same implementation or instruction. Unlike
UNPREDICTABL E values, software may depend on the fact that a sampling of an UNSTABLE value resultsin a
legal transient value that was correct at some point in time prior to the sampling.

UNSTABL E values have one implementation restriction:

* Implementations of operations generating UNSTABL E results must not depend on any data source (memory or
internal state) which isinaccessible in the current processor mode

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol Meaning
«— Assignment
=% Tests for equality and inequality
[Bit string concatenation
xY A y-bit string formed by y copies of the single-bit value x
b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the
binary value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#"
prefix is omitted, the default baseis 10.
Obn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).
0oxn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).
Xy 2 Selection of bitsy through z of bit string x. Little-endian bit notation (rightmost bit is0) isused. If yisless
than z, this expression is an empty (zero length) bit string.
+, — 2's complement or floating point arithmetic: addition, subtraction
* X 2's complement or floating point multiplication (both used for either)
div 2's complement integer division
mod 2's complement modulo
/ Floating point division
< 2's complement less-than comparison
> 2's complement greater-than comparison
< 2's complement less-than or equal comparison
> 2's complement greater-than or equal comparison
nor Bitwiselogical NOR
xor Bitwiselogical XOR
and Bitwise logical AND
or Bitwise logical OR

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

13

About This Book

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning
GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers
GPR[X] CPU general -purpose register x. The content of GPR[0] is always zero. In Release 2 of the Architecture,
GPR([x] isashort-hand notation for SGPR[SRSCtlcgs, X].
SGPR[s,X] In Release 2 of the Architecture, multiple copies of the CPU general -purpose registers may be implemented.
SGPR([s,X] refersto GPR set s, register x.
FPR{X] Floating Point operand register x
FCC[C(C] Floating Point condition code CC. FCC[0] has the same value as COC[1].
FPR[X] Floating Point (Coprocessor unit 1), general register x
CPR[zx,9] Coprocessor unit z, general register x, select s
CP2CPR[X] Coprocessor unit 2, general register x
CCR[zX] Coprocessor unit z, control register x
CP2CCR[X] Coprocessor unit 2, control register x
COC[7] Coprocessor unit z condition signal
Xlat[x] Translation of the MIPS16e GPR number X into the corresponding 32-bit GPR number

BigEndianMem Endian mode as configured at chip reset (0 —Little-Endian, 1 — Big-Endian). Specifiesthe endianness of the
memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endian-
ness of Kernel and Supervisor mode execution.

BigEndianCPU The endiannessfor |oad and store instructions (0 — Little-Endian, 1 — Big-Endian). In User mode, this endi-
anness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be computed
as (BigendianMem XOR ReverseEndian).

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is available in User mode only,
and isimplemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as
(SRgE and User mode).

LLbit Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is
set when alinked load occurs and istested by the conditional store. It is cleared, during other CPU operation,
when astore to the location would no longer be atomic. In particular, it is cleared by exception return instruc-
tions.

I, Thisoccurs as aprefix to Operation description lines and functions as alabel. It indicates the instruction time
I+n:, during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
I-n: instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a
timelabel of |. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections
labeled with the instruction time, relative to the current instruction |, in which the effect of that pseudocode
appears to occur. For example, an instruction may have aresult that is not available until after the next
instruction. Such an instruction has the portion of the instruction operation description that writes the result
register in asection labeled 1+1.
The effect of pseudocode statements for the current instruction labelled | +1 appears to occur “at the same
time” asthe effect of pseudocode statements labeled | for the following instruction. Within one pseudocode
sequence, the effects of the statements take place in order. However, between sequences of statementsfor dif-
ferent instructions that occur “at the sametime,” there is no defined order. Programs must not depend on a
particular order of evaluation between such sections.

14 MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60
Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

1.4 For More Information

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol

Meaning

PC

The Program Counter value. During the instruction time of an instruction, thisis the address of the instruc-
tion word. The address of the instruction that occurs during the next instruction timeis determined by assign-
ing avalue to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc-
tion) or 4 before the next instruction time. A taken branch assigns the target address to the PC during the
instruction time of the instruction in the branch delay slot.

Inthe MIPS Architecture, the PC valueisonly visibleindirectly, such aswhen the processor storesthe restart
addressinto a GPR on ajump-and-link or branch-and-link instruction, or into a Coprocessor O register on an
exception. The PC value contains afull 32-bit address al of which are significant during a memory refer-
ence.

ISA Mode

In processors that implement the MIPS16e Application Specific Extension, the ISA Mode isasingle-hit reg-
ister that determines in which mode the processor is executing, as follows:

Encoding Meaning

0 The processor is executing 32-bit MIPS instructions
1 The processor is executing M11PS16e instructions

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Mode into a GPR on ajump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

PABITS

The number of physical address bitsimplemented is represented by the symbol PABITS. Assuch, if 36 phys-
ical address bits were implemented, the size of the physical address space would be 2PABITS = 236 pytes,

FP32RegistersMode

Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). In MIPS32, the FPU has 32
32-bit FPRs in which 64-bit data types are stored in even-odd pairs of FPRs. In M1PS64, the FPU has 32
64-bit FPRs in which 64-bit data types are stored in any FPR.

In MIPS32 implementations, FP32Register sMode is aways a 0. MIPS64 implementations have a compati-
bility mode in which the processor references the FPRs as if it were a MIPS32 implementation. In such a
case FP32Register M ode is computed from the FR bit in the Status register. If thisbit is a0, the processor
operates asif it had 32 32-bit FPRs. If thisbit isa 1, the processor operates with 32 64-bit FPRs.

The value of FP32Register sM ode is computed from the FR bit in the Satus register.

InstructionlnBranchDe-
laySlot

Indicates whether the instruction at the Program Counter address was executed in the delay slot of abranch
or jJump. This condition reflects the dynamic state of the instruction, not the static state. That is, the value is
falseif abranch or jump occursto an instruction whose PC immediately follows abranch or jump, but which
is not executed in the delay dlot of abranch or jump.

Signal Exception(excep-
tion, argument)

Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
parameter as an exception-specific argument). Control does not return from this pseudocode function—the
exception is signaled at the point of the call.

1.4 For More Information

Various MIPS RISC processor manuals and additional information about M1PS products can be found at the MIPS

URL:

http://www.mips.com

Comments or questions on the MIPS32® Architecture or this document should be directed to

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

15

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

http://www.mips.com/

About This Book

MIPS Architecture Group
MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043

or via E-mail to architecture@mips.com.

16

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

mailto:architecture@mips.com

Chapter 2

The MIPS Architecture: An Introduction

2.5 MIPS32 and MIPS64 Overview

2.5.1 Historical Perspective

The MIPS® Instruction Set Architecture (ISA) has evolved over time from the original MIPS 1™ |SA, through the
MIPSV™ |SA, to the current MIPS32® and Ml Architectures. Asthe ISA evolved, all extensions have been
backward compatible with previous versions of the ISA. Inthe MIPS I11™ level of the ISA, 64-bit integers and
addresses were added to the instruction set. The MIPS IV ™ and MIPSV ™ |evels of the |SA added improved floating
point operations, as well as a set of instructions intended to improve the efficiency of generated code and of data
movement. Because of the strict backward-compatible requirement of the ISA, such changes were unavailable to 32-
bit implementations of the ISA which were, by definition, MIPS 1™ or MIPS [1™ implementations.

While the user-mode | SA was always backward compatible, the privileged environment was allowed to change on a
per-implementation basis. Asaresult, the R3000® privileged environment was different from the R4000® privileged
environment, and subsequent implementations, while similar to the R4000 privileged environment, included subtle
differences. Because the privileged environment was never part of the MIPS ISA, an implementation had the flexibil-
ity to make changes to suit that particular implementation. Unfortunately, this required kernel software changes to
every operating system or kernel environment on which that implementation was intended to run.

Many of the origina MIPS implementations were targeted at computer-like applications such as workstations and
servers. In recent years MIPS implementations have had significant success in embedded applications. Today, most
of the MIPS parts that are shipped go into some sort of embedded application. Such applications tend to have differ-
ent trade-offs than computer-like applications including a focus on cost of implementation, and performance as a
function of cost and power.

The MIPS32 and M1PS64 Architectures are intended to address the need for a high-performance but cost-sensitive
MIPSinstruction set. The MIPS32 Architectureis based on the MIPS 11 1SA, adding selected instructions from MIPS
[, MIPS 1V, and MIPS V to improve the efficiency of generated code and of data movement. The MIPS64 Architec-
tureis based on the MIPS V ISA and is backward compatible with the M1PS32 Architecture. Both the MIPS32 and
MIPS64 Architectures bring the privileged environment into the Architecture definition to address the needs of oper-
ating systems and other kernel software. Both also include provision for adding MIPS Application Specific Exten-
sions (ASEs), User Defined Instructions (UDIs), and custom coprocessors to address the specific needs of particular
markets.

MIPS32 and MIPS64 Architectures provides a substantial cost/performance advantage over microprocessor imple-
mentations based on traditional architectures. This advantage is aresult of improvements made in several contiguous
disciplines: VLS process technology, CPU organization, system-level architecture, and operating system and com-
piler design.

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60 17
Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

The MIPS Architecture: An Introduction

18

2.5.2 Architectural Evolution

The evolution of an architecture is a dynamic process that takes into account both the need to provide a stable plat-
form for implementations, as well as new market and application areas that demand new capabilities. Enhancements
to an architecture are appropriate when they:

are applicable to awide market

provide long-term benefit

maintain architectural scalability

are standardized to prevent fragmentation

are asuperset of the existing architecture

The MIPS Architecture community constantly evaluates suggestions for architectural changes and enhancements
against these criteria. New releases of the architecture, while infrequent, are made at appropriate points, following
these criteria. At present, there are two releases of the MIPS Architecture: Release 1 (the original version of the
MIPS32 Architecture) and Release 2 which was added in 2002.

2.5.2.1 Release 2 of the MIPS32 Architecture

Enhancements included in Release 2 of the MIPS32 Architecture are:

Vectored interrupts: This enhancement provides the ability to vector interrupts directly to ahandler for that inter-
rupt. Vectored interrupts are an option in Release 2 implementations and the presence of that option is denoted by
the Config3y bit.

Support for an external interrupt controller: This enhancement reconfigures the on-core interrupt logic to take
full advantage of an external interrupt controller. This support is an option in Release 2 implementations and the
presence of that option is denoted by the Config3g ¢ bit.

Programmable exception vector base: This enhancement allows the base address of the exception vectors to be
moved for exceptions that occur when Statusggy, is 0. Doing so allows multi-processor systems to have separate

exception vectors for each processor, and allows any system to place the exception vectors in memory that is
appropriate to the system environment. This enhancement is required in a Release 2 implementation.

Atomic interrupt enable/disable: Two instructions have been added to atomically enable or disableinterrupts, and
return the previous value of the Status register. These instructions are required in a Release 2 implementation.

The ability to disable the Count register for highly power-sensitive applications. This enhancement isrequiredin
a Release 2 implementation.

GPR shadow registers: This addition provides the addition of GPR shadow registers and the ability to bind these
registers to avectored interrupt or exception. Shadow registers are an option in Release 2 implementations and
the presence of that option is denoted by a non-zero value in SRSCtlss. While shadow registers are most useful

when either vectored interrupts or support for an external interrupt controller is also implemented, neither is
required.

Field, Rotate and Shuffle instructions: These instructions add additional capability in processing bit fieldsin reg-
isters. These instructions are required in a Release 2 implementation.

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

2.6 Compliance and Subsetting

» Explicit hazard management: This enhancement provides a set of instructions to explicitly manage hazards, in
place of the cycle-based SSNOP method of dealing with hazards. These instructions are required in a Release 2
implementation.

* Accessto anew class of hardware registers and state from an unprivileged mode. This enhancement is required
in a Release 2 implementation.

» Coprocessor 0 Register changes: These changes add or modify CPO registersto indicate the existence of new and
optional state, provide L2 and L3 cache identification, add trigger bitsto the Watch registers, and add support for
64-bit performance counter count registers. This enhancement is required in a Release 2 implementation.

» Support for 64-bit coprocessors with 32-bit CPUs: These changes allow a 64-bit coprocessor (including an FPU)
to be attached to a 32-bit CPU. This enhancement is optional in a Release 2 implementation.

* New Support for Virtual Memory: These changes provide support for a 1K Byte page size. This changeis
optional in Release 2 implementations, and support is denoted by Config3gp.

2.5.3 Architectural Changes Relative to the MIPS | through MIPS V Architectures

In addition to the MIPS32 Architecture described in this document set, the following changes were made to the archi-
tecture relative to the earlier MIPS RISC Architecture Specification, which describes the MIPS | through MIPS V
Architectures.

* TheMIPSIV ISA added arestriction to the load and store instructions which have natural alignment require-
ments (all but load and store byte and load and store | eft and right) in which the base register used by the instruc-
tion must also be naturally aligned (the restriction expressed in the MIPS RISC Architecture Specification is that
the offset be aligned, but the implication is that the base register is aso aligned, and this is more consistent with
the indexed load/store instructions which have no offset field). The restriction that the base register be naturally-
aligned is eliminated by the MIPS32 Architecture, leaving the restriction that the effective address be naturally-
aligned.

* Early MIPSimplementations required two instructions separating a mflo or mfhi from the next integer multiply
or divide operation. This hazard was eliminated in the MIPS IV |SA, although the MIPS RISC Architecture
Specification does not clearly explain this fact. The MIPS32 Architecture explicitly eliminates this hazard and
requires that the hi and lo registers be fully interlocked in hardware for all integer multiply and divide instruc-
tions (including, but not limited to, the madd, maddu, msub, msubu, and mul instructions introduced in this spec-
ification).

* Thelmplementation and Programming Notes included in the instruction descriptions for the madd, maddu,
msub, msubu, and mul instructions should also be applied to al integer multiply and divide instructionsin the
MIPS RISC Architecture Specification.

2.6 Compliance and Subsetting

To be compliant with the MIPS32 Architecture, designs must implement a set of required features, as described in
this document set. To allow flexibility in implementations, the M1PS32 Architecture does provide subsetting rules.
An implementation that follows these rules is compliant with the MIPS32 Architecture aslong as it adheres strictly to
the rules, and fully implements the remaining instructions.Supersetting of the MIPS32 Architecture is only allowed
by adding functions to the SPECIAL2 major opcode, by adding control for co-processors viathe COP2, LWC2,
SWC2, LDC2, and/or SDC2, or viathe addition of approved Application Specific Extensions.

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60 19

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

The MIPS Architecture: An Introduction

20

Note: The use of COP3 as a customizable coprocessor has been removed in the Release 2 of the M1PS32 architecture.
The use of the COP3 is now reserved for the future extension of the architecture. Implementations using Releasel of
the MIPS32 architecture are strongly discouraged from using the COP3 opcode for a user-available coprocessor as
doing so will limit the potential for an upgrade path to a 64-bit floating point unit.

The instruction set subsetting rules are as follows:

All CPU instructions must be implemented - no subsetting is allowed.

The FPU and related support instructions, including the MOVF and MOVT CPU instructions, may be omitted.
Software may determine if an FPU isimplemented by checking the state of the FP bit in the Configl CPO regis-
ter. If the FPU isimplemented, it must include S, D, and W formats, operate instructions, and all supporting
instructions. Software may determine which FPU data types are implemented by checking the appropriate bit in
the FIR CP1 register. The following allowable FPU subsets are compliant with the M1PS32 architecture:

* NoFPU
 FPUwith S, D, and W formats and all supporting instructions

Coprocessor 2 is optional and may be omitted. Software may determine if Coprocessor 2 isimplemented by
checking the state of the C2 bit in the Configl CPO register. If Coprocessor 2 isimplemented, the Coprocessor 2
interface instructions (BC2, CFC2, COP2, CTC2, LDC2, LWC2, MFC2, MTC2, SDC2, and SWC2) may be
omitted on an instruction-by-instruction basis.

Supervisor Mode is optional. If Supervisor Mode is not implemented, bit 3 of the Status register must be
ignored on write and read as zero.

The standard TLB-based memory management unit may be replaced with asimpler MMU (e.g., a Fixed Map-
ping MMU). If thisis done, the rest of the interface to the Privileged Resource Architecture must be preserved. If
a TLB-based memory management unit isimplemented, it must be the standard TL B-based MMU as described
in the Privileged Resource Architecture chapter. Software may determine the type of the MMU by checking the
MT field in the Config CPO register.

The Privileged Resource Architecture includes several implementation options and may be subsetted in accor-
dance with those options.

Instruction, CPO Register, and CP1 Control Register fields that are marked “ Reserved” or shown as“0” in the
description of that field are reserved for future use by the architecture and are not available to implementations.
Implementations may only use those fields that are explicitly reserved for implementation dependent use.

Supported ASEs are optional and may be subsetted out. If most cases, software may determineif a supported
ASE isimplemented by checking the appropriate bit in the Configl or Config3 CPO register. If they areimple-
mented, they must implement the entire ISA applicable to the component, or implement subsets that are
approved by the ASE specifications.

EJTAG is optional and may be subsetted out. If it isimplemented, it must implement only those subsets that are
approved by the EJTAG specification.

If any instruction is subsetted out based on the rules above, an attempt to execute that instruction must cause the
appropriate exception (typically Reserved Instruction or Coprocessor Unusable).

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

2.7 Components of the MIPS Architecture

2.7 Components of the MIPS Architecture

2.7.1 MIPS Instruction Set Architecture (ISA)

The MIPS32 and M1PS64 Instruction Set Architectures define a compatible family of 32-bit and 64-bit instructions
within the framework of the overall MIPS32 and M1PS64 Architectures. Included in the ISA are all instructions, both
privileged and unprivileged, by which the programmer interfaces with the processor. The ISA guarantees object code
compatibility for unprivileged and, often, privileged programs executing on any MI1PS32 or MIPS64 processor; al
instructions in the M1PS64 I1SA are backward compatible with those instructions in the MIPS32 1SA. Using condi-
tional compilation or assembly language macros, it is often possible to write privileged programs that run on both
MIPS32 and MIPS64 implementations.

2.7.2 MIPS Privileged Resource Architecture (PRA)

The MIPS32 and M1PS64 Privileged Resource Architecture defines a set of environments and capabilities on which
the ISA operates. The effects of some components of the PRA are visible to unprivileged programs; for instance, the
virtual memory layout. Many other components are visible only to privileged programs and the operating system. The
PRA provides the mechanisms necessary to manage the resources of the processor: virtual memory, caches, excep-
tions, user contexts, etc.

2.7.3 MIPS Application Specific Extensions (ASES)

The MIPS32 and MI1PS64 Architectures provide support for optional application specific extensions. As optional
extensions to the base architecture, the ASEs do not burden every implementation of the architecture with instruc-
tions or capability that are not needed in a particular market. An ASE can be used with the appropriate |SA and PRA
to meet the needs of a specific application or an entire class of applications.

2.7.4 MIPS User Defined Instructions (UDIs)

In addition to support for ASEs as described above, the MIPS32 and MI1PS64 Architectures define specific instruc-
tions for the use of each implementation. The Special 2 instruction function fields and Coprocessor 2 are reserved for
capability defined by each implementation.

2.8 Architecture Versus Implementation

When describing the characteristics of MIPS processors, architecture must be distinguished from the hardware
implementation of that architecture.

» Architecturerefersto the instruction set, registers and other state, the exception model, memory management,
virtual and physical address layout, and other features that all hardware executes.

* Implementation refersto the way in which specific processors apply the architecture.
Here are two examples:
1. A floating point unit (FPU) is an optional part of the MIPS32 Architecture. A compatible implementation of the

FPU may have different pipeline lengths, different hardware algorithms for performing multiplication or divi-
sion, etc.

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60 21

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

The MIPS Architecture: An Introduction

2. Most MIPS processors have caches; however, these caches are not implemented in the same manner in all MIPS
processors. Some processors implement physically-indexed, physically tagged caches. Other implement virtu-
ally-indexed, physically-tagged caches. Still other processor implement more than one level of cache.

The MIPS32 architecture is decoupled from specific hardware implementations, |eaving microprocessor designers
free to create their own hardware designs within the framework of the architectural definition.

2.9 Relationship between the MIPS32 and MIPS64 Architectures

The MIPS Architecture evolved as a compromise between software and hardware resources. The architecture guar-
antees object-code compatibility for User-Mode programs executed on any MIPS processor. In User Mode MIPS64
processors are backward-compatible with their M1PS32 predecessors. As such, the MIPS32 Architecture is a strict
subset of the MIPS64 Architecture. The relationship between the architectures is shown in Figure 2-1.

Figure 2-1 Relationship between the MIPS32 and MIPS64 Architectures
" " High-performance 64-bit

Ar(IYII:iI:escGt‘lljr - Instruction Set Architecture
and Privileged Resource
High-performance 32-bit MIPS32 Architecture, fully backward

compatible with the 32-bit

Instruction Set Architecture
architecture

and Privileged Resource
Architecture

Architecture

High-pertu.
Instruction Set .
Privileged Resource
Architecture

2.10 Instructions, Sorted by ISA
This section lists the instructions that are a part of the MIPS32 and MIPS64 I1SAs.
2.10.1 List of MIPS32 Instructions

Table 2.2 lists of those instructions included in the MIPS32 | SA.
Table 2.2 MIPS32 Instructions

ABSD ABS.PS! ABSS ADD ADD.D ADD.PS! ADD.S
ADDI ADDIU ADDU ALNV.PSt AND ANDI BC1F
BC1FL BC1T BC1TL BC2F BC2FL BC2T BC2TL
BEQ BEQL BGEZ BGEZAL BGEZALL BGEZL BGTZ
BGTZL BLEZ BLEZL BLTZ BLTZAL BLTZALL BLTZL
BNE BNEL BREAK C.cond.D C.cond.pst C.cond.S CACHE

22

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

2.10 Instructions, Sorted by ISA

Table 2.2 MIPS32 Instructions (Continued)

CEIL.L.D?

CEIL.L.St

CEILW.D

CEILW.S

CFC1 CFC2 CLO
CLZ COP2 CTC1 CcTC2 CcVTDLL CVTD.S CVT.D.W
CVvT.L.D? CcvTL.S! CVT.Psst CVT.SD cvTsL?! CVvT.SPLL CVT.SPU!
CVT.SW CVT.W.D CVT.W.S DERET DI2 DIV DIV.D
DIV.S DIVU EHB? EI? ERET EXT? FLOOR.L.D!
FLOORL.S! | FLOORW.D | FLOORW.S INS2 J JAL JALR
JALR.HB2 JR JR.HB2 LB LBU LDC1 LDC2
LDXC1Y LH LHU LL LUI Luxcit LW
LwC1 LWC2 LWL LWR LWXC1L MADD MADD D!
MADD.Pst MADD.St MADDU MFCO MFC1 MFC2 MEHC12
MEHC22 MFHI MFLO MOV.D MOV.PSt MOV.S MOVF
MOVF.D MOVEPS! MOVF.S MOVN MOVN.D MOVN.PS! MOVN.S
MOVT MOVT.D MOVT.PSt MOVT.S MOVZ MOVZ.D MOVZ.pst
MOVZ.S MSUB MSUB.D? MSUB.PS! MSUB.S! MSUBU MTCO
MTC1 MTC2 MTHC12 MTHC2?2 MTHI MTLO MUL
MUL.D MUL.pst MUL.S MULT MULTU NEG.D NEG.Pst
NEG.S NMADD.D! | NMADD.PS* | NMADD.S! | NMSUB.D! | NMSUB.PS' | NMSUB.S!
NOR OR ORI PAUSE? PLL.PSt PLU.PS! PREF
PREFX! PUL.PSt PUU.PS! RDHWR? RDPGPR? RECIPD?! RECIPS!
ROTR? ROTRV? ROUND.L.D! | ROUND.L.St | ROUND.WD | ROUNDW.S | RsQRT.D!
RSQRT.Sl SB SC SDBBP SDC1 SDC2 spxc1t
SEB? SEH?2 SH SLL SLLV SLT SLTI
SLTIU SLTU SQRT.D SQRT.S SRA SRAV SRL
SRLV SSNOP suB SUB.D SUB.PS! SUB.S SUBU
suxcat SW SWC1 SWC2 SWL SWR swxcit
SYNC SYNCI2 SYSCALL TEQ TEQI TGE TGEI
TGEIU TGEU TLBP TLBR TLBWI TLBWR TLT
TLTI TLTIU TLTU TNE TNEI TRUNC.L.DY TRUNC.L.St
TRUNCW.D | TRUNCW.S WAIT WRPGPR? WSBH?2 XOR XORI

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

23

The MIPS Architecture: An Introduction

1. In Release 1 of the Architecture, these instructions are legal only with a MI1PS64 processor with 64-bit operations
enabled (they are, in effect, actually MIPS64 instructions). In Release 2 of the Architecture, these instructions are legal
with either aMIPS32 or MIPS64 processor which includes a 64-bit floating point unit.

2. These instructions are legal only in an implementation of Release 2 of the Architecture

2.10.2 List of MIPS64 Instructions

Table 2.3 lists of those instructions introduced in the MIPS64 |SA.

Table 2.3 MIPS64 Instructions

DADD DADDI DADDIU DADDU DCLO DDIV DDIVU
DEXT?! DEXTM? DEXTU?! DINS! DINSM?® DINSU? DLCz
DMFCO DMFC1 DMFC2 DMTCO DMTC1 DMTC2 DMULT
DMULTU DROTR?! DROTR32! DROTRV? DSBH? DSHD? DSLL
DSLL32 DSLLV DSRA DSRA32 DSRAV DSRL DSRL32
DSRLV DSUB DSUBU LD LDL LDR LLD
LWU SCD SD SDL SDR

1. These instructions are legal only in an implementation of Release 2 of the Architecture

2.11 Pipeline Architecture

This section describes the basic pipeline architecture, along with two types of improvements: superpipelines and
superscalar pipelines. (Pipelining and multipleissuing are not defined by the ISA, but are implementation dependent.)

2.11.1 Pipeline Stages and Execution Rates

MIPS processors all use some variation of apipelinein their architecture. A pipelineisdivided into the following dis-
crete parts, or stages, shown in Figure 2-2:

* Fetch
» Arithmetic operation
* Memory access

e Write back

24 MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

2.11 Pipeline Architecture

Figure 2-2 One-Deep Single-Completion Instruction Pipeline

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8
__Instruction completion

Instruction 1 Write

ALU Memory

Fetch

Stage 4

Stage 1 Stage 2 Stage 3 Cycle 3

Execution Rate Instruction 2 Fetch ALU Memory Write

Stage 1 Stage 2 Stage 3 Stage 4

In the example shown in Figure 2-2, each stage takes one processor clock cycle to complete. Thusit takes four clock
cycles (ignoring delays or stalls) for the instruction to complete. In this example, the execution rate of the pipelineis
one instruction every four clock cycles. Conversely, because only a single execution can be fetched before comple-
tion, only one stage is active at any time.

2.11.2 Parallel Pipeline

Figure 2-3 illustrates aremedy for the latency (the time it takes to execute an instruction) inherent in the pipeline
shown in Figure 2-2.

Instead of waiting for an instruction to be completed before the next instruction can be fetched (four clock cycles), a
new instruction is fetched each clock cycle. There are four stages to the pipeline so the four instructions can be exe-
cuted simultaneously, one at each stage of the pipeline. It still takes four clock cyclesfor the first instruction to be
completed; however, in this theoretical example, anew instruction is completed every clock cycle thereafter. Instruc-
tionsin Figure 2-3 are executed at arate four times that of the pipeline shown in Figure 2-2.

Figure 2-3 Four-Deep Single-Completion Pipeline
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

Fetch ALU Memory Write

Instruction 1

Fetch ALU Memory Write

Instruction 2

Fetch ALU Memory Write

Instruction 3

Fetch ALU Memory Write

Instruction 4

2.11.3 Superpipeline

Figure 2-4 shows a super pipelined architecture. Each stage is designed to take only afraction of an external clock
cycle—in this case, half aclock. Effectively, each stageis divided into more than one substage. Therefore more than
one instruction can be completed each cycle.

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60 25

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

The MIPS Architecture: An Introduction

Figure 2-4 Four-Deep Superpipeline

Cyclel Cycle2 Cycle3 Cycle4 Cycle5 Cycle6 Cycle7 Cycle8

Clock

Phase 1 | 2

Fetch| ALU | Mem Writel
ALU [Mem
[Feten] ALU | Mem | it
Fetch| ALU | Mem Writel

Fetch| ALU | Mem Write'

2.11.4 Superscalar Pipeline

A superscalar architecture also allows more than one instruction to be completed each clock cycle. Figure 2-5 shows
afour-way, five-stage superscalar pipeline.

Figure 2-5 Four-Way Superscalar Pipeline

Instruction 1 IF ID IS EX WB
Instruction 2 = D IS EX WB
Instruction 3 = D IS EX WB
Instruction 4 T= ID IS EX WB

Instruction 5 IF D IS EX WB
Instruction 6 IE ID IS EX WB
Instruction 7 IF D IS EX WB
Instruction 8 IF ID IS EX WB

Five-stage

> Four-way

IF = instruction fetch

ID = instruction decode and dependency
IS = instruction issue

EX = execution

WB = write back

2.12 Load/Store Architecture

Generally, it takes longer to perform operations in memory than it does to perform them in on-chip registers. Thisis
because of the difference in time it takes to access aregister (fast) and main memory (slower).

To eliminate the longer access time, or latency, of in-memory operations, M1PS processors use aload/stor e design.
The processor has many registers on chip, and all operations are performed on operands held in these processor regis-
ters. Main memory is accessed only through load and store instructions. This has several benefits:

26 MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

Reducing the number of memory accesses, easing memory bandwidth requirements
Simplifying the instruction set

Making it easier for compilers to optimize register alocation

2.13 Programming Model

This section describes the following aspects of the programming model:

CPU Data Formats
Coprocessors (CP0O-CP3)

CPU Registers

FPU Data Formats

Byte Ordering and Endianness

Memory Access Types

2.13.1 CPU Data Formats

The CPU defines the following data formats:

Bit (b)
Byte (8 bits, B)
Halfword (16 bits, H)

Word (32 bits, W)

Doubleword (64 bits, D)*

2.13.2 FPU Data Formats

The FPU defines the following data formats:

32-hit single-precision floating point (.fmt type S
32-bit single-precision floating point paired-single (.fmt type PS)1
64-bit double-precision floating point (.fmt type D)

32-bit Word fixed point (.fmt type W)

2.13 Programming Model

1. The CPU Doubleword and FPU floating point paired-single and Long fixed point data formats are available in a Release 1
implementation of the MIPS64 Architecture, or in a Release 2 implementation either the MIPS32 or M1PS64 Architecture
that includes a 64-bit floating point unit

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60 27

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

The MIPS Architecture: An Introduction

« 64-bit Long fixed point (.fmt type L)*
2.13.3 Coprocessors (CP0O-CP3)

The MIPS Architecture defines four coprocessors (designated CPO, CP1, CP2, and CP3):

e Coprocessor 0 (CPQ) isincorporated on the CPU chip and supports the virtual memory system and exception
handling. CPO is also referred to as the System Control Coprocessor.

e Coprocessor 1 (CP1) isreserved for the floating point coprocessor, the FPU.
e Coprocessor 2 (CP2) is available for specific implementations.

e Coprocessor 3 (CP3) isreserved for the floating point unit in a Release 1 implementation of the MIPS64 Archi-
tecture, and on all Release 2 implementations of the Architecture.

CPO trandlates virtual addresses into physical addresses, manages exceptions, and handles switches between kernel,
supervisor, and user states. CP0 also controls the cache subsystem, as well as providing diagnostic control and error
recovery facilities. The architectural features of CPO are defined in Volume 1.

2.13.4 CPU Registers

The MIPS32 Architecture defines the following CPU registers:
e 32 32-bit genera purpose registers (GPRS)

e apair of specia-purpose registers to hold the results of integer multiply, divide, and multiply-accumulate opera-
tions (HI and LO)

e aspecia-purpose program counter (PC), which is affected only indirectly by certain instructions - it is not an
architecturally-visible register.

2.13.4.1 CPU General-Purpose Registers
Two of the CPU general-purpose registers have assigned functions:

* rOishard-wired to avaue of zero, and can be used as the target register for any instruction whose result isto be
discarded. r0 can also be used as a source when a zero value is needed.

* r3listhedestination register used by JAL, BLTZAL, BLTZALL, BGEZAL, and BGEZALL without being
explicitly specified in the instruction word. Otherwise r31 is used as a normal register.

The remaining registers are available for general-purpose use.

2.13.4.2 CPU Special-Purpose Registers
The CPU contains three special -purpose registers:
e PC—Program Counter register

e HI—Multiply and Divide register higher result

28 MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

2.13 Programming Model

* LO—Multiply and Divide register lower result
* During amultiply operation, the HI and LO registers store the product of integer multiply.

* During amultiply-add or multiply-subtract operation, the HI and LO registers store the result of the integer
multiply-add or multiply-subtract.

* During adivision, the HI and LO registers store the quotient (in LO) and remainder (in HI) of integer divide.
* During a multiply-accumulate, the HI and LO registers store the accumulated result of the operation.

Figure 2-6 shows the layout of the CPU registers.

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60 29

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

The MIPS Architecture: An Introduction

Figure 2-6 CPU Registers

31 0 31 0
rO (hardwired to zero) HI

rl LO
r2
r3
r4
5
6
r7
r8
r9
r10
ri1
ri2
r13
rl4
r1s
rl6
r17
rl8
r19
r20
r21
r22
r23
r24
r25
r26
r27
r28
r29
r30 31 0
r3l | PC

General Purpose Registers Specia Purpose Registers

2.13.5 FPU Registers

The MI1PS32 Architecture defines the following FPU registers:

» 32floating point registers (FPRs). These registers are 32 bitswide in a 32-bit FPU and 64 bits wide on a 64-bit
FPU.

30 MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

2.13 Programming Model

» Five FPU control registers are used to identify and control the FPU.
» Eight floating point condition codes that are part of the FCSR register

In Release 1 of the Architecture, 64-bit floating point units were supported only by implementations of the M1PS64
Architecture. Similarly, implementations of M1PS32 of the Architecture only supported 32-bit floating point units. In
Release 2 of the Architecture, a 64-bit floating point unit is supported on implementations of both the M1PS32 and
MIPS64 Architectures.

A 32-bit floating point unit contains 32 32-hit FPRs, each of which is capable of storing a 32-bit data type. Double-
precision (type D) data types are stored in even-odd pairs of FPRs, and the long-integer (type L) and paired single
(type PS) data types are not supported. Figure 2-7 shows the layout of these registers.

A 64-hit floating point unit contains 32 64-bit FPRs, each of which is capable of storing any data type. For compati-
bility with 32-bit FPUs, the FR bit in the CPO Status register is used by aMI1PS64 Release 1, or any Release 2 pro-
cessor that supports a 64-bit FPU to configure the FPU in amode in which the FPRs are treated as 32 32-bit registers,
each of which is capable of storing only 32-bit data types. In this mode, the double-precision floating point (type D)
datatypeis stored in even-odd pairs of FPRs, and the long-integer (type L) and paired single (type PS) data types are
not supported.

Figure 2-8 shows the layout of the FPU Registers when the FR bit in the CPO Status register is 1; Figure 2-9 shows
the layout of the FPU Registers when the FR bit in the CPO Status register is 0.

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60 31

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

The MIPS Architecture: An Introduction

Figure 2-7 FPU Registers for a 32-bit FPU

31 0
fo
f1
f2
3
f4
5
6
f7
8
9

f10
f11
f12
f13
f14
f15
f16
f17
f18
f19
f20
f21
f22
f23
f24
f25
f26 31 0
f27 FIR
f28 FCCR
f29 FEXR
f30 FENR
f31 FCSR

Genera Purpose Registers Specia Purpose Registers

32 MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

2.13 Programming Model

Figure 2-8 FPU Registers for a 64-bit FPU if Statusgg is 1

63

32 31

fo

f1

f2

3

f4

5

6

f7

8

9

f10

f11

f12

f13

f14

f15

f16

f17

f18

f19

f20

f21

f22

f23

f24

f25

f26

31

f27

FIR

f28

FCCR

f29

FEXR

f30

FENR

f31

FCSR

Genera Purpose Registers

Special Purpose Registers

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

33

The MIPS Architecture: An Introduction

34

Figure 2-9 FPU Registers for a 64-bit FPU if Statusgg is O

63

32 31

UNPREDICTABLE

fo

f1

f2

3

f4

5

6

f7

8

f9

f10

f11

f12

f13

f14

f15

f16

f17

f18

19

f20

f21

f22

23

f24

f25

f26

31

f27

FCRO

f28

FCR25

29

FCR26

30

FCR28

31

FCSR

General Purpose Registers

Special Purpose Registers

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

2.13 Programming Model

2.13.6 Byte Ordering and Endianness

Bytes within larger CPU data formats—halfword, word, and doubleword—can be configured in either big-endian or
little-endian order, as described in the following subsections:

» Big-Endian Order

o Little-Endian Order

* MIPSBIt Endianness

Endianness defines the location of byte O within alarger data structure (in this book, bits are always numbered with

0 on theright). Figures 2-10 and 2-11 show the ordering of bytes within words and the ordering of words within mul-
tiple-word structures for both big-endian and little-endian configurations.

2.13.6.1 Big-Endian Order

When configured in big-endian order, byte 0 is the most-significant (left-hand) byte. Figure 2-10 shows this config-
uration.

Figure 2-10 Big-Endian Byte Ordering

Higher Word Bi,t #
Address Address[31 24 23 16 15 8 7 0]
12 | 12 | 138 | 14 | 15 |
| | o | 0 | 1 |
a |4] 5 | 8 | |
Lower o | | 1 | 2 | 3 ‘} 1 word = 4 bytes

Address

2.13.6.2 Little-Endian Order

When configured in little-endian order, byte O is always the least-significant (right-hand) byte. Figure 2-11 shows
this configuration.

Figure 2-11 Little-Endian Byte Ordering

Higher Word Bif#

Address Address [31 24 23 16 15 8 7 ol
12 | 15 | 14 | 13 | 12 |
g | 1 | 10 | 9 | 8 |
. e T s T+

o o 5 2 T 1 | o

Address
2.13.6.3 MIPS Bit Endianness

In this book, bit O is always the least-significant (right-hand) bit. Although no instructions explicitly designate bit
positions within words, MIPS bit designations are always little-endian.

2-12 shows big-endian and 2-13 shows little-endian byte ordering in doublewords.

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60 35

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

The MIPS Architecture: An Introduction

Figure 2-12 Big-Endian Data in Doubleword Format

Most-significant byte Least-significant byte

Word
I

Bit # 63\\56 55 4847 4039 32/31 2423 1615 87 /Ol
Bye# | O || 1 | 2 || 3 || 4 | 5 [6 | 7|

I | I
Halfword Byte

|
Bit# [7 6 5 4 3 2 1 0

I I I

Bits in a byte

Figure 2-13 Little-Endian Data in Doubleword Format

Most-significant byte Least-signjficant byte
Word
1
Bit# 63 \56 55 48 47 40 39 32031 2423 1615 87 /Ol
sye# [7 6 | 5 | & | 3 2] 1| 0]
I
Halfword Byte

1
Bit# 7 6 54 32 1 0]

NN EEEEn

Bits in a byte

2.13.6.4 Addressing Alignment Constraints

The CPU uses byte addressing for halfword, word, and doubleword accesses with the following alignment con-
straints:

« Halfword accesses must be aligned on an even byte boundary (0, 2, 4...).
e Word accesses must be aligned on a byte boundary divisible by four (0, 4, 8...).
» Doubleword accesses must be aligned on a byte boundary divisible by eight (0, 8, 16...).
2.13.6.5 Unaligned Loads and Stores
The following instructions |oad and store words that are not aligned on word (W) or doubleword (D) boundaries:

Table 2.4 Unaligned Load and Store Instructions

Alignment Instructions Instruction Set
Word LWL, LWR, SWL, SWR MIPS32 ISA
Doubleword LDL, LDR, SDL, SDR MIPS64 | SA

2-14 show a big-endian access of amisaligned word that has byte address 3, and 2-15 shows a little-endian access of
amisaligned word that has byte address 1.2

36 MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

2.13 Programming Model

Figure 2-14 Big-Endian Misaligned Word Addressing

Higher

Address Bilt#
|31 24 23 16 15 87 0|
L 2 L s L8 | |
| H [I

Lower

Address

Figure 2-15 Little-Endian Misaligned Word Addressing

Higher

Address Bit|#
31 2423 16 15 87 ol
| H | I
[3 [2 | 1] |

Lower

Address

2.13.7 Memory Access Types

MIPS systems provide several memory access types. These are characteristic ways to use physical memory and
caches to perform a memory access.

The memory accesstypeisidentified by the Cacheability and Coherency Attribute (CCA) bitsin the TLB entry for
each mapped virtual page. The access type used for alocation is associated with the virtual address, not the physical
address or the instruction making the reference. Memory access types are available for both uniprocessor and multi-
processor (MP) implementations.

All implementations must provide the following memory access types:

* Uncached

» Cached

These memory access types are described in the following sections:

e Uncached Memory Access

e Cached Memory Access

2.13.7.1 Uncached Memory Access

In an uncached access, physical memory resolves the access. Each reference causes aread or write to physical mem-
ory. Caches are neither examined nor modified.

2. Thesetwo figures show left-side misalignment.

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60 37

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

The MIPS Architecture: An Introduction

38

2.13.7.2 Cached Memory Access

In a cached access, physical memory and all cachesin the system containing a copy of the physical location are used
to resolve the access. A copy of alocation is coherent if the copy was placed in the cache by a cached coherent
access; acopy of alocation is noncoherent if the copy was placed in the cache by a cached noncoherent access.
(Coherency is dictated by the system architecture, not the processor implementation.)

Caches containing a coherent copy of the location are examined and/or modified to keep the contents of the location
coherent. It is not possible to predict whether caches holding a noncoherent copy of the location will be examined
and/or modified during a cached coherent access.

Prefetches for data and instructions are allowed. Speculative prefetching of datathat may never be used or instruc-
tions which may never be executed are allowed.

2.13.8 Implementation-Specific Access Types

An implementation may provide memory access types other than uncached or cached. |mplementation-specific doc-
umentation accompanies each processor, and defines the properties of the new access types and their effect on all
memory-related operations.

2.13.9 Cacheability and Coherency Attributes and Access Types

Memory access types are specified by architecturally-defined and implementati on-specific Cacheability and Coher-
ency Attribute bits (CCAs) kept in TLB entries.

Slightly different cacheability and coherency attributes such as “ cached coherent, update on write” and “ cached
coherent, exclusive on write” can map to the same memory access type; in this case they both map to cached coher-
ent. In order to map to the same access type, the fundamental mechanisms of both CCAs must be the same.

When the operation of the instruction is affected, the instructions are described in terms of memory accesstypes. The
load and store operations in a processor proceed according to the specific CCA of the reference, however, and the
pseudocode for load and store common functions uses the CCA value rather than the corresponding memory access
type.

2.13.10 Mixing Access Types

It is possible to have more than one virtual location mapped to the same physical location (known as aliasing). The
memory access type used for the virtual mappings may be different, but it is not generally possible to use mappings
with different access types at the same time.

For all accesses to virtual locations with the same memory access type, a processor executing load and store instruc-
tions on a physical location must ensure that the instructions occur in proper program order.

A processor can execute aload or store to a physical location using one access type, but any subsequent load or store
to the same location using a different memory access typeis UNPREDICTABLE, unless a privileged instruction
seguence to change the access type is executed between the two accesses. Each implementation has a privileged
implementati on-specific mechanism to change access types.

The memory access type of alocation affects the behavior of I-fetch, load, store, and prefetch operations to that loca-
tion. In addition, memory access types affect some instruction descriptions. Load Linked (LL, LLD) and Store Con-
ditional (SC, SCD) have defined operation only for locations with cached memory access type.

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

2.13 Programming Model

2.13.11 Instruction Fetches

2.13.11.1 Instruction fields layout

For MIPS32 instructions, the layout of the bit fields within the instructions stays the same regardless of the endian-
ness mode in which the processor is executing. The MIPS architecture only uses Little-Endian bit orderings. Bit 0 of
aninstruction is always the right-most bit within the instruction while bit 31 is always the left-most bit within a 32-bit
instruction. The major opcode is always the left-most 6 bits within the instruction.

2.13.11.2 Instruction placement and endianness

For the MIPS32 base architecture, instructions are always 32 bits. All instructions are naturally aligned in memory
(address bits 1.0 are 0b0O0).

Instruction words are always placed in memory according to the endianness.

Figure 2-16 shows an example where the width of external memory is 64-bits (two words) and the processor is exe-
cuting in little-endian mode and the instructions are placed in memory for little-endian execution. In this case, theless
significant address is the the right-most word of the dword while the more significant addressis the left-most word
within the dword.

Figure 2-16 Two instructions placed in a 64-bit wide, little-endian memory

Most-significant byte Double Word

|
Bit # within dword | 63 g\SG 556 48 47 4039 3231 2423 1615 87 /0 |
2 1 0

Least-sig?ficant byte

Address Bits[2:0] 6 5 4 3
Word Word
I 1
Bit # withinword 131 2423 16 15 87 0 [31 24 23 16 15 8 7 0l
Byte # within word 3 2 1 0 3 2 1 0
Program order | Younger Instruction || Older Instruction |
Major opcode here Major opcode here

Figure 2-17 shows the equivalent Big-Endian example where the less significant address refers to the left-most word
within the dword and the more significant address refers to the right-most word within the dword. In both BE and LE
examples, the bit locations within the instruction words has not changed. The location of the major opcode is always
at the left-most bits within the word.

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60 39

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

The MIPS Architecture: An Introduction

Figure 2-17 Two instructions placed in a 64-bit wide, big-endian memory

Least-significant byte Most-significant byte
Double Word

|
Bit # within dword | 63 \mse 55 48 47 4039 3231 2423 1615 8 7 /o |
5 6 7

Address Bits[2:0] 1 2 3 4
Word Word
I 1
Bit # withinword 131 2423 16 15 87 031 24 23 16 15 8 7 0]
Byte # within word 0 1 2 3 0 1 2 3
Program order | Older Instruction || Younger Instruction |
Major opcode here Major opcode here

2.13.11.3 Instruction fetches using uncached access to memory without side-effects

Memory regions having no access side-effects can be read an infinite amount of times without changing the value
received. For such regions accessed with uncached instruction fetches, the following behaviors are all owed:

Itisallowed for the fetch transfer size for uncached memory access to be larger than one instruction word. In this
case, it isimplementation specific whether multiple instruction fetches are done to the same memory location. It
isnot required for the processor to have aregister to buffer the un-used instructions of the transfer for subsequent
execution.

Speculative instruction fetches are allowed. Table 2.5 list some types of speculative instruction fetches.

Table 2.5 Speculative instruction fetches

Sequential instructions located after branch/jump fetched before the branch/jump taken/not-taken
decision has been determined.

Predicted branch/jump target addresses fetched before branch/jump taken/not-taken decision has
been determined or before when target address has been cal cul ated.

Predicted jump target register values before target register has been read.
Predicted return addresses before return register has been read.
Any other type of prefetching ahead of execution.

2.13.11.4 Instruction fetches using uncached access to memory with side-effects
Access side-effects for amemory region might include FIFO behavior, stack behavior or have location-specific
behavior (one memory location defining the behavior of another memory location). For such regions accessed with
uncached instruction fetches, these are the architectural regquirements:

The transfer size can only be oneinstruction word per instruction fetch.

Speculative instruction fetches are not allowed. The types of instruction fetches listed in Table 2.5 are not
alowed.

40 MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

2.13 Programming Model

The architecture defines this memory segment with access side-effects:
» EJTAG Debug Memory space (dmseg). Please refer to MIPS document - MD00047 EJTAG Specification.

Beyond this defined segment, the system programmer/designer is reminded that it is possible to memory map an 10
device with access side-effects to any uncached memory location, even within segments which the architecture does
not define to have access side-effects. For that reason, any implementation which allows behaviorslisted in
2.13.11.3 “Instruction fetches using uncached access to memory without side-effects’ should restrict software from
executing code within any memory region with side-effects.

2.13.11.5 Instruction fetches using cacheable access to memory
The minimum transfer size for cacheable accessis one cacheline. The transfer size may be multiple whole cachelines.

Specul ative accesses to cacheable memory spaces are allowed as cacheable memory spaces are defined to have no
access side-effects. Table 2.5 list some types of speculative instruction fetches.

2.13.11.6 Instruction fetchs and exceptions
Precise exception model for instruction fetches

The MIPS architecture uses the precise exception model for instruction fetches. A precise exception meansthat for an
instruction-sourced exception, the cause of an exception is reported on the exact instruction which the processor has
attempted to execute and has caused the exception.

Itis not allowed to report an exception for an instruction which could not be executed due to program control flow.
For example, if abranch/jump is taken and the instruction after the branch is not to be executed, the address checks
(aignment, MMU match/validity, access priviledge) for that not-to-be-executed instruction may not generate any
exception.

Instruction fetch exceptions on branch delay-slots

For instructions occupying a branch delay-slot, any exceptions, including those generated by the fetch of that instruc-
tion, should report the exception results so that the branch can be correctly replayed upon return from the exception
handler.

2.13.11.7 Self-Modified Code

When the processor writes memory with new instructions at run-time, there are some software steps that must be
taken to ensure that the new instructions are fetched properly.

1. Thepath of instruction fetchs to external memory may not be the same as the path of dataloads/storesto external
memory (this feature is known as a Harvard architecture). The new instructions must be flushed out to the first
level of the memory hierarchy which is shared by both the instruction fetchs and the data | oad/stores.

2. The processor must wait until all of the new instructions have actually been written to this shared level of the
memory hierarchy.

3. If there are caches which hold instructions between that first shared level of memory hierarchy and the processor
pipeling, any stale instructions within those caches must be first invalidated before executing the new instruc-
tions.

4. Some processors might implement some type of instruction prefetching. Precautions must be used to ensure that
the prefetching does not interfere with the previous steps.

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60 41

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

The MIPS Architecture: An Introduction

42

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

2.13 Programming Model

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

43

The MIPS Architecture: An Introduction

44

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

Chapter 3

Application Specific Extensions

This section gives an overview of the Architecture Specific Extensions that are supported by the MIPS32 Architec-

ture.

3.14 Description of ASEs

Asthe MIPS architecture is adopted into awider variety of markets, the need to extend this architecture in different
directions becomes more and more apparent. Therefore various optional application-specific extensions are provided
for use with the base ISAs (MIPS32 and M1PS64). The ASEs are optional, so the architecture is not permanently

bound to support them and the ASEs are used only as needed.

Extensionsto the ISA are driven by the requirements of the computer segment, or by customers whose focusis prima-
rily on performance. An ASE can be used with the appropriate | SA to meet the needs of a specific application or an

entire class of applications.
Figure 3-18shows how ASEsinterrelate with I1SAs.

Figure 3-18 MIPS ISAs and ASEs

Enhanced Geometry Processing Code Compaction

MIPS-3D

ASE ’ MIPS16e
ASE
MDMX
MIPS32 ASE
Architecture
SmartMIPS MIPS64
ASE Architecture
Smart Cards
MIPS DSP
MIPS MT ASE
ASE

Signal Processing
Multi-Threading

Media Processing

The MIPS32 Architectureis a strict subset of the MIPS64 Architecture. ASEs are applicable to one or both of the
base architectures as dictated by market need and the requirements placed on the base architecture by the ASE defini-

tion.

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60 45

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

Application Specific Extensions

3.15 List of Application Specific Instructions

46

As of the publishing date of this document, the following Application Specific Extensions were supported by the

architecture.
Base Architecture
ASE Requirement Use
MIPS16e™ MIPS32 or MIPS64 Code Compaction
MDMX™ MIPS64 Digital Media
MIPS-3D® MIPS32 or MIPS64 Geometry Processing
SmartMIPS® MIPS32 Smart Cards and Smart Objects
MIPS® DSP MIPS32 or MIPS64 Signal Processing
MIPS® MT MIPS32 or MIPS64 Multi-Threading

3.15.1 The MIPS16e™ Application Specific Extension to the MIPS32Architecture

The MIPS16e ASE is composed of 16-bit compressed code instructions, designed for the embedded processor market
and situations with tight memory constraints. The core can execute both 16- and 32-bit instructions intermixed in the
same program, and is compatible with both the MIPS32 and MIPS64 Architectures. Volume | V-a of this document set
describes the MIPS16e ASE.

3.15.2 The MDMX™ Application Specific Extension to the MIPS64 Architecture

The MIPS Digital Media Extension (MDMX) provides video, audio, and graphics pixel processing through vectors of
small integers. Although not a part of the MIPS ISA, this extension isincluded for informational purposes. Because
the MDMX ASE reqguires the MIPS64 Architecture, it is not discussed in this document set.

3.15.3 The MIPS-3D® Application Specific Extension to the MIPS32 Architecture

The MIPS-3D A SE provides enhanced performance of geometry processing calculations by building on the paired
single floating point data type, and adding specific instructions to accel erate computations on these data types.Volume
IV-c of this document set describes the MIPS-3D ASE. Because the MIPS-3D A SE requires a 64-bit floating point
unit, it isonly available with a Release 1 M1PS64 processor, or a Release 2 MIPS32 or MIPS64 processor that
includes a 64-bit FPU.

3.15.4 The SmartMIPS® Application Specific Extension to the MIPS32 Architecture

The SmartM I PS ASE extends the MIPS32 Architecture with a set of new and modified instruction designed to
improve the performance and reduce the memory consumption of MIPS-based smart card or smart object systems.
Volume IV-d of this document set describes the SmartMIPS ASE.

3.15.5 The MIPS® DSP Application Specific Extension to the MIPS32 Architecture

The MIPS DSP A SE provides enhanced performance of signal-processing applications by providing computational
support for fractional datatypes, SIMD, saturation, and other elements that are commonly used in such applications.
Volume 1V-e of this document set describes the MIPS DSP ASE.

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

3.15 List of Application Specific Instructions

3.15.6 The MIPS® MT Application Specific Extension to the MIPS32 Architecture

The MIPSMT ASE provides the architecture to support multi-threaded implementations of the Architecture. This
includes support for both virtual processors and lightweight thread contexts. Volume I V-f of this document set
describesthe MIPSMT ASE.

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60 47

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

Application Specific Extensions

48

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

Chapter 4

Overview of the CPU Instruction Set

This chapter gives an overview of the CPU instructions, including a description of CPU instruction formats. An over-
view of the FPU instructionsis given in Chapter 5.

4.16 CPU Instructions, Grouped By Function

CPU ingtructions are organized into the following functional groups:
* Load and store

e Computationa

e Jump and branch

* Miscellaneous

» Coprocessor

Each instruction is 32 bitslong.

4.16.1 CPU Load and Store Instructions

MIPS processors use aload/store architecture; all operations are performed on operands held in processor registers
and main memory is accessed only through load and store instructions.

4.16.1.1 Types of Loads and Stores
There are several different types of load and store instructions, each designed for a different purpose:
» Transferring variously-sized fields (for example, LB, SW)
» Trading transferred data as signed or unsigned integers (for example, LHU)
» Accessing unaligned fields (for example, LWR, SWL)
» Selecting the addressing mode (for example, SDXCL, in the FPU)
» Atomic memory update (read-modify-write: for instance, LL/SC)

Regardless of the byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the lowest
byte address among the bytes forming the object:

» For big-endian ordering, thisis the most-significant byte.

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60 49
Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

Overview of the CPU Instruction Set

» For alittle-endian ordering, thisisthe least-significant byte.

Refer to “Byte Ordering and Endianness’ on page 35 for more information on big-endian and little-endian data order-
ing.

4.16.1.2 Load and Store Access Types

Table 4.6 lists the data sizes that can be accessed through CPU load and store operations. These tables also indicate
the particular | SA within which each operation is defined.

Table 4.6 Load and Store Operations Using Register + Offset Addressing Mode

CPU Coprocessors 1 and 2
Load Load
Data Size Signed Unsigned Store Load Store

Byte MIPS32 MIPS32 MIPS32
Halfword MIPS32 MIPS32 MIPS32
Word MIPS32 MIPS64 MIPS32 MIPS32 MIPS32
Doubleword (FPU) MIPS32 MIPS32
Unaligned word MIPS32 MIPS32
Linked word (atomic modify) MIPS32 MIPS32

4.16.1.3 List of CPU Load and Store Instructions

The following data sizes (as defined in the AccessLength field) are transferred by CPU load and store instructions:

 Byte
» Halfword
« Word

Signed and unsigned integers of different sizes are supported by |oads that either sign-extend or zero-extend the data
loaded into the register.

Table 4.7 lists aligned CPU load and store instructions, while unaligned loads and stores arelisted in Table 4.8. Each
table also lists the MIPS | SA within which an instruction is defined.

Table 4.7 Aligned CPU Load/Store Instructions

Mnemonic Instruction Defined in MIPS ISA
LB Load Byte MIPS32
LBU Load Byte Unsigned MIPS32
LH Load Halfword MIPS32
LHU Load Halfword Unsigned MIPS32
LW Load Word MIPS32
50 MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

Table 4.7 Aligned CPU Load/Store Instructions (Continued)

Mnemonic Instruction Defined in MIPS ISA
SB Store Byte MIPS32
SH Store Halfword MIPS32
SW Store Word MIPS32

Unaligned words and doublewords can be loaded or stored in just two instructions by using a pair of the special

4.16 CPU Instructions, Grouped By Function

instructionslisted in Table 4.8. Theload instructions read the | eft-side or right-side bytes (Ieft or right side of register)
from an aligned word and merge them into the correct bytes of the destination register.

Unaligned CPU load and store instructions are listed in Table 4.8, along with the MIPS I SA within which an instruc-

tion is defined.
Table 4.8 Unaligned CPU Load and Store Instructions
Mnemonic Instruction Defined in MIPS ISA
LWL Load Word Left MIPS32
LWR Load Word Right MIPS32
SWL Store Word L eft MIPS32
SWR Store Word Right MIPS32

4.16.1.4 Loads and Stores Used for Atomic Updates

The paired instructions, Load Linked and Store Conditional, can be used to perform an atomic read-modify-write of
word or doubleword cached memory locations. These instructions are used in carefully coded sequences to provide

one of several synchronization primitives, including test-and-set, bit-level locks, semaphores, and sequencers and
event counts. Table 4.9 liststhe LL and SC instructions, along with the MIPS ISA within which an instruction is

defined.
Table 4.9 Atomic Update CPU Load and Store Instructions
Mnemonic Instruction Defined in MIPS ISA
LL Load Linked Word MIPS32
SC Store Conditional Word MIPS32

4.16.1.5 Coprocessor Loads and Stores

If aparticular coprocessor is not enabled, loads and stores to that processor cannot execute and the attempted load or

store causes a Coprocessor Unusable exception. Enabling a coprocessor is a privileged operation provided by the

System Control Coprocessor, CPO.

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

51

Overview of the CPU Instruction Set

Table 4.10 lists the coprocessor load and store instructions.

Table 4.10 Coprocessor Load and Store Instructions

Mnemonic Instruction Defined in MIPS ISA
LDCz Load Doubleword to Coprocessor-z, z=1 or 2 MIPS32
LwCz Load Word to Coprocessor-z, z= 1 or 2 MIPS32
SDCz Store Doubleword from Coprocessor-z,z=1 or 2 MIPS32
SWCz Store Word from Coprocessor-z,z=1or 2 MIPS32

Table 4.11 lists the specific FPU load and store instructions;! it also lists the MIPS ISA within which an instruction
was first defined.

Table 4.11 FPU Load and Store Instructions Using Register + Register Addressing

Mnemonic Instruction Defined in MIPS ISA

LWXC1 Load Word Indexed to Floating Point MIPS64
MIPS32 Release 2

SWXC1 Store Word Indexed from Floating Point MIPS64
MIPS32 Release 2

LDXC1 Load Doubleword Indexed to Floating Point MIPS64
MIPS32 Release 2

SDXC1 Store Doubleword Indexed from Floating Point MIPS64
MIPS32 Release 2

LUXC1 Load Doubleword Indexed Unaligned to Floating Point MIPS64
MIPS32 Release 2

SUXC1 Store Doubleword Indexed Unaligned from Floating Point MIPS64
MIPS32 Release 2

4.16.2 Computational Instructions

This section describes the following:

* ALU Immediate and Three-Operand Instructions
e ALU Two-Operand Instructions

» Shift Instructions

e Multiply and Divide Instructions

2's complement arithmetic is performed on integers represented in 2's complement notation. These are signed ver-
sions of the following operations:

+ Add

1. FPU loadsand stores are listed here with the other coprocessor |oads and stores for convenience.

52 MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

* Subtract
e Multiply
* Divide

The add and subtract operations labelled “unsigned” are actually modulo arithmetic without overflow detection.

4.16 CPU Instructions, Grouped By Function

There are also unsigned versions of multiply and divide, as well as afull complement of shift and logical operations.

Logical operations are not sensitive to the width of the register.

MIPS32 provided 32-bit integers and 32-bit arithmetic.

4.16.2.1 ALU Immediate and Three-Operand Instructions

Table 4.12 lists those arithmetic and logical instructions that operate on one operand from a register and the other

from a 16-bit immediate value supplied by the instruction word. This table also lists the MIPS | SA within which an
instruction is defined.

Theimmediate operand is treated as a signed value for the arithmetic and compare instructions, and treated as alogi-

cal value (zero-extended to register length) for the logical instructions.

Table 4.12 ALU Instructions With an Immediate Operand

Mnemonic Instruction Defined in MIPS ISA

ADDI Add Immediate Word MIPS32
ADDIUL Add Immediate Unsigned Word MIPS32
ANDI And Immediate MIPS32
LUI Load Upper Immediate MIPS32
ORI Or Immediate MIPS32
SLTI Set on Less Than Immediate MIPS32
SLTIU Set on Less Than Immediate Unsigned MIPS32
XORI Exclusive Or Immediate MIPS32

1. Theterm “unsigned” in the instruction nameis a misnomer; this operation is 32-bit modulo arithmetic that does not trap

on overflow.

Table 4.13 describes ALU instructions that use three operands, along with the MIPS I SA within which an instruction

is defined.
Table 4.13 Three-Operand ALU Instructions
Mnemonic Instruction Defined in MIPS ISA
ADD Add Word MIPS32
ADDU! Add Unsigned Word MIPS32
AND And MIPS32

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

53

Overview of the CPU Instruction Set

Table 4.13 Three-Operand ALU Instructions (Continued)

Mnemonic Instruction Defined in MIPS ISA
NOR Nor MIPS32
OR Or MIPS32
SLT Set on Less Than MIPS32
SLTU Set on Less Than Unsigned MIPS32
SUB Subtract Word MIPS32
suBuU? Subtract Unsigned Word MIPS32
XOR Exclusive Or MIPS32

1. Theterm “unsigned” in the instruction nameis a misnomer; this operation is 32-bit modulo arithmetic that does not trap
on overflow.

4.16.2.2 ALU Two-Operand Instructions

Table 4.13 describes ALU instructions that use two operands, along with the MIPS I SA within which an instruction is

defined.
Table 4.14 Two-Operand ALU Instructions
Mnemonic Instruction Defined in MIPS ISA
CLO Count Leading Onesin Word MIPS32
CLz Count Leading Zeros in Word MIPS32

4.16.2.3 Shift Instructions

The I SA defines two types of shift instructions:

e Those that take afixed shift amount from a 5-bit field in the instruction word (for instance, SLL, SRL)

e Those that take a shift amount from the low-order bits of a general register (for instance, SRAV, SRLV)

Shift instructions are listed in Table 4.15, along with the MIPS ISA within which an instruction is defined.

Table 4.15 Shift Instructions

Mnemonic Instruction Defined in MIPS ISA

ROTR Rotate Word Right MIPS32 Release 2

ROTRV Rotate Word Right Variable MIPS32 Release 2
SLL Shift Word Left Logical MIPS32

SLLV Shift Word Left Logical Variable MIPS32
SRA Shift Word Right Arithmetic MIPS32

SRAV Shift Word Right Arithmetic Variable MIPS32

54 MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

4.16 CPU Instructions, Grouped By Function

Table 4.15 Shift Instructions (Continued)

Mnemonic Instruction Defined in MIPS ISA
SRL Shift Word Right Logical MIPS32
SRLV Shift Word Right Logical Variable MIPS32

4.16.2.4 Multiply and Divide Instructions

The multiply and divide instructions produce twice as many result bits asis typical with other processors. With one
exception, they deliver their resultsinto the HI and LO special registers. The MUL instruction delivers the lower half
of the result directly to a GPR.

e Multiply produces afull-width product twice the width of the input operands; the low half isloaded into LO and
the high half isloaded into HI.

e Multiply-Add and Multiply-Subtract produce a full-width product twice the width of the input operations and
adds or subtracts the product from the concatenated value of HI and LO. The low half of the addition is loaded
into LO and the high half isloaded into HI.

» Divide produces aquotient that isloaded into LO and aremainder that is loaded into HI.

The results are accessed by instructions that transfer data between HI/LO and the general registers.

Table 4.16 lists the multiply, divide, and HI/LO move instructions, along with the MIPS ISA within which an instruc-

tion is defined.
Table 4.16 Multiply/Divide Instructions
Mnemonic Instruction Defined in MIPS ISA

DIV Divide Word MIPS32
DIVU Divide Unsigned Word MIPS32
MADD Multiply and Add Word MIPS32
MADDU Multiply and Add Word Unsigned MIPS32
MFHI Move From HI MIPS32
MFLO Move From LO MIPS32
MSUB Multiply and Subtract Word MIPS32
MSUBU Multiply and Subtract Word Unsigned MIPS32
MTHI Move To HI MIPS32
MTLO Move To LO MIPS32
MUL Multiply Word to Register MIPS32
MULT Multiply Word MIPS32
MULTU Multiply Unsigned Word MIPS32

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

55

Overview of the CPU Instruction Set

4.16.3 Jump and Branch Instructions

This section describes the following:

e Typesof Jump and Branch Instructions Defined by the |SA

Branch Delays and the Branch Delay Slot
» Branch and Branch Likely
e List of Jump and Branch Instructions
4.16.3.1 Types of Jump and Branch Instructions Defined by the ISA
The architecture defines the following jump and branch instructions:
* PC-relative conditional branch

* PC-region unconditional jump

Absolute (register) unconditional jump

* A setof procedure callsthat record areturn link addressin ageneral register.

4.16.3.2 Branch Delays and the Branch Delay Slot

All branches have an architectural delay of one instruction. The instruction immediately following abranch is said to

bein the branch delay dot. If abranch or jump instruction is placed in the branch delay dot, the operation of both
instructions is undefined.

By convention, if an exception or interrupt prevents the completion of an instruction in the branch delay slot, the
instruction stream is continued by re-executing the branch instruction. To permit this, branches must be restartable;

procedure calls may not use the register in which the return link is stored (usually GPR 31) to determine the branch
target address.

4.16.3.3 Branch and Branch Likely

There are two versions of conditional branches; they differ in the manner in which they handle the instruction in the
delay slot when the branch is not taken and execution falls through.

» Branch instructions execute the instruction in the delay dot.

» Branch likely instructions do not execute the instruction in the delay slot if the branch is not taken (they are said
to nullify the instruction in the delay slot).

Although the Branch Likely instructionsareincluded in this specification, softwareis strongly encouraged
to avoid the use of the Branch Likely instructions, asthey will beremoved from a futurerevision of the
MIPS Architecture.

4.16.3.4 List of Jump and Branch Instructions

Table 4.17 lists instructions that jump to a procedure call within the current 256 MB-aligned region, or to an absolute
address held in aregister.

56 MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

4.16 CPU Instructions, Grouped By Function

Table 4.17 lists the unconditional jump instructions within a given 256 M Byte region. Table 4.18 lists branch instruc-
tions that compare two registers before conditionally executing a PC-relative branch. Table 4.19 lists branch instruc-
tions that test a register—compare with zero—before conditionally executing a PC-relative branch. Table 4.20 lists

the deprecated Branch Likely Instructions.

Each table dso lists the MIPS ISA within which an instruction is defined.

Table 4.17 Unconditional Jump Within a 256 Megabyte Region

Defined in MIPS
Mnemonic Instruction Location to Which Jump Is Made ISA
J Jump 256 Megabyte Region MIPS32
JAL Jump and Link 256 Megabyte Region MIPS32
JALR Jump and Link Register Absolute Address MIPS32
JALR.HB Jump and Link Register with Absolute Address MIPS32 Release 2
Hazard Barrier
JALX Jump and Link Exchange Absolute Address MIPS16e
JR Jump Register Absolute Address MIPS32
JR.HB Jump Register with Hazard Absolute Address MIPS32 Release 2
Barrier

Table 4.18 PC-Relative Conditional Branch Instructions Comparing Two Registers

Defined in MIPS

Mnemonic Instruction ISA
BEQ Branch on Equal MIPS32
BNE Branch on Not Equal MIPS32
Table 4.19 PC-Relative Conditional Branch Instructions Comparing With Zero

Defined in MIPS

Mnemonic Instruction ISA

BGEZ Branch on Greater Than or Equal to Zero MIPS32
BGEZAL Branch on Greater Than or Equal to Zero and Link MIPS32
BGTZ Branch on Greater Than Zero MIPS32
BLEZ Branch on Less Than or Equal to Zero MIPS32
BLTZ Branch on Less Than Zero MIPS32
BLTZAL Branch on Less Than Zero and Link MIPS32

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

57

Overview of the CPU Instruction Set

58

Table 4.20 Deprecated Branch Likely Instructions

Defined in MIPS

Mnemonic Instruction ISA
BEQL Branch on Equal Likely MIPS32
BGEZALL Branch on Greater Than or Equal to Zero and Link Likely MIPS32
BGEZL Branch on Greater Than or Equal to Zero Likely MIPS32
BGTZL Branch on Greater Than Zero Likely MIPS32
BLEZL Branch on Less Than or Equal to Zero Likely MIPS32
BLTZALL Branch on Less Than Zero and Link Likely MIPS32
BLTZL Branch on Less Than Zero Likely MIPS32
BNEL Branch on Not Equal Likely MIPS32

4.16.4 Miscellaneous Instructions

Miscellaneous instructions include:

* Instruction Serialization (SYNC and SYNCI)
» Exception Instructions

» Conditional Move Instructions

» Prefetch Instructions

e NOP Instructions

4.16.4.1 Instruction Serialization (SYNC and SYNCI)

In normal operation, the order in which load and store memory accesses appear to aviewer outside the executing pro-
cessor (for instance, in a multiprocessor system) is not specified by the architecture.

The SYNC instruction can be used to create a point in the executing instruction stream at which the relative order of
some loads and stores can be determined: loads and stores executed before the SYNC are completed before loads and
stores after the SYNC can start.

The SYNCI instruction synchronizes the processor caches with previous writes or other modifications to the instruc-
tion stream.

Table 4.21 lists the synchronization instructions, along with the MIPS I SA within which it is defined.

Table 4.21 Serialization Instruction

Mnemonic Instruction Defined in MIPS ISA
SYNC Synchronize Shared Memory MIPS32
SYNCI Synchronize Caches to Make I nstruction Writes Effective MIPS32 Release 2

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

4.16 CPU Instructions, Grouped By Function

4.16.4.2 Exception Instructions

Exception instructions transfer control to a software exception handler in the kernel. There are two types of excep-

tions, conditional and unconditional. These are caused by the following instructions:

Trap instructions, which cause conditional exceptions based upon the result of a comparison

System call and breakpoint instructions, which cause unconditional exceptions

Table 4.22 lists the system call and breakpoint instructions. Table 4.23 lists the trap instructions that compare two

registers. Table 4.24 lists trap instructions, which compare a register value with an immediate value.

Each table dso lists the MIPS ISA within which an instruction is defined.

Table 4.22 System Call and Breakpoint Instructions

Mnemonic Instruction Defined in MIPS ISA
BREAK Breakpoint MIPS32
SYSCALL System Call MIPS32

Table 4.23 Trap-on-Condition Instructions Comparing Two Registers

Mnemonic Instruction Defined in MIPS ISA
TEQ Trap if Equal MIPS32
TGE Trap if Greater Than or Equal MIPS32
TGEU Trap if Greater Than or Equal Unsigned MIPS32
TLT Trap if Less Than MIPS32
TLTU Trap if Less Than Unsigned MIPS32I1
TNE Trap if Not Equal MIPS32

Table 4.24 Trap-on-Condition Instructions Comparing an Im

mediate Value

Mnemonic Instruction Defined in MIPS ISA
TEQI Trap if Equal Immediate MIPS32
TGEI Trap if Greater Than or Equal Immediate MIPS32
TGEIU Trap if Greater Than or Equal Immediate Unsigned MIPS32
TLTI Trap if Less Than Immediate MIPS32
TLTIU Trap if Less Than Immediate Unsigned MIPS32
TNEI Trap if Not Equal Immediate MIPS32

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

59

Overview of the CPU Instruction Set

4.16.4.3 Conditional Move Instructions

MIPS32 includesinstructionsto conditionally move one CPU general register to another, based on the valuein athird
genera register. For floating point conditional moves, refer to Chapter 4.

Table 4.25 lists conditional move instructions, along with the MIPS ISA within which an instruction is defined.

Table 4.25 CPU Conditional Move Instructions

Mnemonic Instruction Defined in MIPS ISA
MOVF Move Conditional on Floating Point False MIPS32
MOVN Move Conditional on Not Zero MIPS32
MOVT Move Conditional on Floating Point True MIPS32
Movz Move Conditional on Zero MIPS32

4.16.4.4 Prefetch Instructions
There are two prefetch advisory instructions:
* Onewith register+offset addressing (PREF)
e Onewith register+register addressing (PREFX)
These instructions advise that memory is likely to be used in a particular way in the near future and should be
prefetched into the cache. The PREFX instruction is encoded in the FPU opcode space, along with the other opera-
tions using register+register addressing

Table 4.26 Prefetch Instructions

Mnemonic Instruction Addressing Mode Defined in MIPS ISA
PREF Prefetch Register+Offset MIPS32
PREFX Prefetch Indexed Register+Register MIPS64

4.16.4.5 NOP Instructions

The NOP instruction is actually encoded as an all-zero instruction. MIPS processors special-case this encoding as
performing no operation, and optimize execution of the instruction. In addition, SSNOP instruction, takes up one
issue cycle on any processor, including super-scalar implementations of the architecture.

Table 4.27 lists conditional move instructions, along with the MIPS ISA within which an instruction is defined.

Table 4.27 NOP Instructions

Mnemonic Instruction Defined in MIPS ISA
NOP No Operation MIPS32
SSNOP Superscalar Inhibit NOP MIPS32
60 MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

4.16 CPU Instructions, Grouped By Function

4.16.5 Coprocessor Instructions

This section contains information about the following:
* What Coprocessors Do

e System Control Coprocessor 0 (CPQ)

» Floating Point Coprocessor 1 (CP1)

» Coprocessor Load and Store Instructions

4.16.5.1 What Coprocessors Do

Coprocessors are aternate execution units, with register files separate from the CPU. In abstraction, the MIPS archi-
tecture provides for up to four coprocessor units, numbered 0 to 3. Each level of the ISA defines a number of these
coprocessors, aslisted in Table 4.28.

Table 4.28 Coprocessor Definition and Use in the MIPS Architecture

Coprocessor MIPS32 MIPS64
CPO Sys Control Sys Control
CP1 FPU FPU
CP2 implementation specific
CP3 See Footnote! FPU (COPIX)

1. In Release 1 of the MIPS32 Architecture, Coprocessor 3 was an implementa-
tion-specific coprocessor. In the MIPS64 Architecture, and in Release 2 of the
MIPS32 Architecture, it is used exclusively for the floating point unit and is not
available for implementation-specific use. Release 1 MIPS32 implementations
are encouraged not to use Coprocessor 3 as an implementation-specific copro-
CEssOr,

Coprocessor 0 is aways used for system control and coprocessor 1 and 3 are used for the floating point unit. Copro-
cessor 2 is reserved for implementation-specific use.

A coprocessor may have two different register sets:

» Coprocessor general registers

» Coprocessor control registers

Each set contains up to 32 registers. Coprocessor computational instructions may use the registersin either set.

4.16.5.2 System Control Coprocessor 0 (CPO0)

The system controller for all MIPS processors is implemented as coprocessor 0 (CP0?), the System Control Copro-
cessor. It provides the processor control, memory management, and exception handling functions.

2. CPOinstructions use the COPO opcode, and as such are differentiated from the CPO designation in this book.

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60 61

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

Overview of the CPU Instruction Set

4.16.5.3 Floating Point Coprocessor 1 (CP1)

If asystem includes a Floating Point Unit, it isimplemented as coprocessor 1 (CP13). In Release 1 of the MIPS64
ARchitecture, and in Release 2 of the MIPS32 and M1PS64 Architectures, the FPU also uses the computation opcode
space assigned to coprocessor unit 3, renamed COP1X. Details of the FPU instructions are documented in “ Overview
of the FPU Instruction Set” on page 65.

Coprocessor instructions are divided into two main groups:
* Load and store instructions (move to and from coprocessor), which are reserved in the main opcode space
» Coprocessor-specific operations, which are defined entirely by the coprocessor
4.16.5.4 Coprocessor Load and Store Instructions
Explicit load and store instructions are not defined for CPO; for CPO only, the move to and from coprocessor instruc-

tions must be used to write and read the CPO registers. The loads and stores for the remaining coprocessors are sum-
marized in “ Coprocessor Loads and Stores’ on page 51.

4.17 CPU Instruction Formats

62

A CPU instruction is asingle 32-bit aligned word. The CPU instruction formats are shown below:
* Immediate (see Figure 4-19)

e Jump (see Figure 4-20)

* Register (see Figure 4-21)

Table 4.29 describes the fields used in these instructions.

Table 4.29 CPU Instruction Format Fields

Field Description
opcode 6-bit primary operation code
rd 5-bit specifier for the destination register
rs 5-bit specifier for the source register
rt 5-bit specifier for the target (source/destination) register or used to specify functions within the
primary opcode REGIMM
immediate 16-bit signed immediate used for logical operands, arithmetic signed operands, |oad/store
address byte offsets, and PC-relative branch signed instruction displacement
instr_index 26-bit index shifted left two bits to supply the low-order 28 bits of the jump target address
sa 5-bit shift amount
function 6-bit function field used to specify functions within the primary opcode SPECIAL

3.

FPU instructions (such as LWC1, SDC1, etc.) that use the COP1 opcode are differentiated from the CP1 designation in this
book. See “Overview of the FPU Instruction Set” on page 65 for more information about the FPU instructions.

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

4.17 CPU Instruction Formats

Figure 4-19 Immediate (I-Type) CPU Instruction Format

31 26 25 21 20 16 15
opcode rs rt immediate
6 5 5 16
Figure 4-20 Jump (J-Type) CPU Instruction Format
31 26 25 21 20 16 15 11 10
opcode instr_index
6 26
Figure 4-21 Register (R-Type) CPU Instruction Format
31 26 25 21 20 16 15 11 10
opcode rs rt rd sa function

5

6

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

63

Overview of the CPU Instruction Set

64

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

Chapter 5

Overview of the FPU Instruction Set

This chapter describes the instruction set architecture (1SA) for the floating point unit (FPU) in the M1PS32 architec-
ture. In the MIPS architecture, the FPU isimplemented via Coprocessor 1 and Coprocessor 3, an optional processor

implementing | EEE Standard 7541 floati ng point operations. The FPU also provides afew additional operations not
defined by the |EEE standard.

This chapter provides an overview of the following FPU architectural details:

“Binary Compatibility” on page 65

“Enabling the Floating Point Coprocessor” on page 66
“|EEE Standard 754" on page 66

“FPU Data Types’ on page 66

“Floating Point Register Types’ on page 71

“Floating Point Control Registers (FCRs)” on page 73
“Formats of Values Used in FP Registers’ on page 80
“FPU Exceptions’” on page 81

“FPU Instructions’ on page 85

“Valid Operands for FPU Instructions’ on page 92

“FPU Instruction Formats’ on page 94

The FPU instruction set is summarized by functional group. Each instruction is also described individually in a pha-
betical order in Volumell.

5.18 Binary Compatibility

In addition to an Instruction Set Architecture, the MIPS architecture definition includes processing resources such as
the set of coprocessor general registers. In Release 1 of the Architecture, the 32-bit registersin MIPS32 were enlarged
to 64-bitsin M1PS64; however, these 64-bit FPU registers are not backwards compatible. Instead, processors imple-

menting the MIPS64 Architecture provide amode bit to select either the 32-bit or 64-bit register model. In Release 2

1. Inthischapter, referencesto “|EEE standard” and “|EEE Standard 754" refer to |EEE Standard 754-1985, “|EEE Standard
for Binary Floating Point Arithmetic.” For more information about this standard, see the | EEE web page at http://
grouper.ieee.org/groups/754/.

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60 65

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

http://grouper.ieee.org/groups/754/
http://grouper.ieee.org/groups/754/

Overview of the FPU Instruction Set
of the Architecture, a 32-bit CPU may include a full 64-bit coprocessor, including a floating point unit which imple-
ments the same mode hit to select 32-bit or 64-bit FPU register model.

Any processor implementing MIPS64 can also run MIPS32 binary programs, built for the same, or alower release of
the Architecture, without change.

5.19 Enabling the Floating Point Coprocessor

Enabling the Floating Point Coprocessor is done by enabling Coprocessor 1, and is a privileged operation provided
by the System Control Coprocessor. If Coprocessor 1 is not enabled, an attempt to execute afloating point instruction
causes a Coprocessor Unusable exception. Every system environment either enables the FPU automatically or pro-
vides ameans for an application to request that it is enabled.

5.20 IEEE Standard 754

|EEE Standard 754 defines the following:

* Floating point data types

» Thebasic arithmetic, comparison, and conversion operations

* A computational model

The | EEE standard does not define specific processing resources nor does it define an instruction set.

The MIPS architecture includes non-IEEE FPU control and arithmetic operations (multiply-add, reciprocal, and
reciprocal square root) which may not supply results that match the IEEE precision rules.

5.21 FPU Data Types

The FPU provides both floating point and fixed point data types, which are described in the next two sections.
» Thesingle and double precision floating point data types are those specified by the |EEE standard.
» Thefixed point types are signed integers provided by the CPU architecture.

5.21.1 Floating Point Formats

The following two floating point formats are provided by the FPU:

e 32-bit single precision floating point (type S, shown in Figure 5-22)

» 64-bit double precision floating point (type D, shown in Figure 5-23)

» 64-bit paired single floating point, combining two single precision data types (Type PS, shown in Figure 5-24)
The floating point data types represent numeric values as well as other special entities, such as the following:

e Twoinfinities, +o and -oo

66 MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

e Signaling non-numbers (SNaNs)

e Quiet non-numbers (QNaNs)s

* Numbers of the form: (-1)° 25 bg.by 0y..05 1 where:

e s0orl

e E=any integer between E_min and E_max, inclusive

* b=0o0r 1 (the high bit, by, isto the left of the binary point)

» pisthe signed-magnitude precision

5.21 FPU Data Types

Table 5.30 Parameters of Floating Point Data Types

Single (or each half

Parameter of Paired Single) Double
Bits of mantissa precision, p 24 53
Maximum exponent, E_max +127 +1023
Minimum exponent, E_min -126 -1022
Exponent bias +127 +1023
Bitsin exponent field, e 8 11
Representation of by integer bit hidden hidden
Bitsin fraction field, f 23 52
Total format width in bits 32 64

The single and double floating point data types are composed of three fields—sign, exponent, fraction—whose sizes

arelisted in Table 5.30.

Layouts of these fields are shown in Figures 5-22, 5-23, and 5-24 below. Thefields are

e 1-hitsign,s

e Biased exponent, e=E + bias

 Binary fraction, f=.b; by..b, 1 (thebg bit is not recorded)

Figure 5-22 Single-Precisions Floating Point Format (S)

22
32

0

Fraction

33

10

S Exponent
1 8

23

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

67

Overview of the FPU Instruction Set

Figure 5-23 Double-Precisions Floating Point Format (D)

6 6 55
32 21 0
S Exponent Fraction
1 11 52
Figure 5-24 Paired Single Floating Point Format (PS)
66 55 333 22
32 54 210 32
S Exponent fraction S Exponent Fraction
1 8 23 1 8 23
Values are encoded in the specified format by using unbiased exponent, fraction, and sign values listed in Table 5.31.
The high-order bit of the Fraction field, identified as by, is also important for NaNs.
Table 5.31 Value of Single or Double Floating Point DataType Encoding
Typical Single Typical Double Bit
Unbiased E | f | s | b1 Value V Type of Value Bit Pattern® Pattern’
E max+1 | #20 1 SNaN Signaling NaN Ox7fEfffEf Ox7fEfffff fEFFFEEF
0 QNaN Quiet NaN Ox7fbfffff Ox7fE7ffff fEFFFEEF
E_max +1 0 |1 - o0 minus infinity 0x££800000 0xf££00000 00000000
0 + oo plusinfinity 0x7£800000 0x7££00000 00000000
E_max 1 - (25 negative normalized num- 0x80800000 0x80100000 00000000
to ber through through
E_min Oxff7££f£EE Oxffefffff fEFFFEEf
0 + (25)(Lf) positive normalized number | 0x00800000 0x00100000 00000000
through through
Ox7E7£fEEE Ox7fefffff fEFFFfEff
E_min-1 20 |1 - (2B-Mm.f) | negative denormalized Ox807f£ffff Ox800fffff fffFEFFff
number
0 + (2E-Mnyof) | positive denormalized num- | 0x007£££££ Ox000fffff fEFFFEFF
ber
E_min-1 0 |1 -0 negative zero 0x80000000 0x80000000 00000000
0 +0 positive zero 0x00000000 0x00000000 00000000

1. The"Typical" nature of the bit patterns for the NaN and denormalized val ues refl ects the fact that the sign may have either value
(NaN) and the fact that the fraction field may have any non-zero value (both). As such, the bit patterns shown are one value in aclass
of potential values that represent these special values.

5.21.1.1 Normalized and Denormalized Numbers

For single and double data types, each representable nonzero numerical value hasjust one encoding; humbers are
kept in normalized form. The high-order bit of the p-bit mantissa, which liesto the left of the binary point, is“hid-
den,” and not recorded in the Fraction field. The encoding rules permit the value of this bit to be determined by look-
ing at the value of the exponent. When the unbiased exponent isin the range E_min to E_max, inclusive, the number
isnormalized and the hidden bit must be 1. If the numeric value cannot be normalized because the exponent would be

68 MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

5.21 FPU Data Types

lessthan E_min, then the representation is denormalized and the encoded number has an exponent of E_min-1 and the
hidden bit has the value 0. Plus and minus zero are special cases that are not regarded as denormalized values.

5.21.1.2 Reserved Operand Values—Infinity and NaN

A floating point operation can signal |EEE exception conditions, such as those caused by uninitialized variables, vio-
lations of mathematical rules, or results that cannot be represented. If a program does not choose to trap | EEE excep-
tion conditions, a computation that encounters these conditions proceeds without trapping but generates a result
indicating that an exceptional condition arose during the computation. To permit this, each floating point format
defines representations, listed in Table 5.31, for plusinfinity (+e0), minusinfinity (-=), quiet non-numbers (QNaN),
and signaling non-numbers (SNaN).

5.21.1.3 Infinity and Beyond

Infinity represents a number with magnitude too large to be represented in the format; in essence it exists to represent
amagnitude overflow during a computation. A correctly signed « is generated as the default result in division by zero
and some cases of overflow; details are given in the | EEE exception condition described in 5.25.1 “Exception
Conditions” on page 82.

Once created as a default result, -~ can become an operand in a subsequent operation. The infinities are interpreted
such that -e- < (every finite number) < +oo. Arithmetic with = is the limiting case of real arithmetic with operands of
arbitrarily large magnitude, when such limits exist. In these cases, arithmetic on « is regarded as exact and exception
conditions do not arise. The out-of-range indication represented by o is propagated through subsequent computa-
tions. For some cases there is no meaningful limiting case in rea arithmetic for operands of <, and these cases raise
the Invalid Operation exception condition (see“Invalid Operation Exception” on page 83).

5.21.1.4 Signalling Non-Number (SNaN)

SNaN operands cause the Invalid Operation exception for arithmetic operations. SNaNs are useful valuesto put in
uninitialized variables. An SNaN is never produced as aresult value.

|EEE Standard 754 states that “Whether copying a signaling NaN without a change of format signals the Invalid
Operation exception is the implementor’s option.” The MIPS architecture has chosen to make the formatted operand
move instructions (MOV.fmt MOV T.fmt MOV FE.fmt MOV N.fmt MOV Z.fmt) non-arithmetic and they do not signal
|EEE 754 exceptions.

5.21.1.5 Quiet Non-Number (QNaN)

QNaNs are intended to afford retrospective diagnostic information inherited from invalid or unavailable data and
results. Propagation of the diagnostic information requires information contained in a QNaN to be preserved through
arithmetic operations and floating point format conversions.

QNaN operands do not cause arithmetic operations to signal an exception. When afloating point result isto be deliv-
ered, a QNaN operand causes an arithmetic operation to supply a QNaN result. When possible, this QNaN result is
one of the operand QNaN values. QNaNs do have effects similar to SNaNs on operations that do not deliver afloating
point result—specifically, comparisons. (For more information, see the detailed description of the floating point com-
pare instruction, C.cond.fmt.)

When certain invalid operations not involving QNaN operands are performed but do not trap (because the trap is not
enabled), anew QNaN valueis created. Table 5.32 shows the QNaN value generated when no input operand QNaN
value can be copied. The values listed for the fixed point formats are the values supplied to satisfy the |EEE standard

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60 69

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

Overview of the FPU Instruction Set

when a QNaN or infinite floating point value is converted to fixed point. Thereis no other feature of the architecture
that detects or makes use of these “integer QNaN” values.

Table 5.32 Value Supplied When a New Quiet NaN Is Created

Format New QNaN value

Single floating point Ox7fbf ffff

Doublefloating point | 0x7f£7 ffff £fff ffff

Word fixed point Ox7fff ffff

Longword fixed point | Ox7fff ffff ffff ffff

5.21.1.6 Paired Single Exceptions
Exception conditions that arise while executing the two halves of afloating point vector operation are ORed together,

and the instruction is treated as having caused all the exceptional conditions arising from both operations. The hard-
ware makes no effort to determine which of the two operations encountered the exceptional condition.

5.21.1.7 Paired Single Condition Codes
The c.cond.PS instruction compares the upper and lower halves of FPR fs and FPR ft independently and writes the
results into condition codes CC +1 and CC respectively. The CC number must be even. If the number is not even the
operation of the instruction is UNPREDICTABLE.

5.21.2 Fixed Point Formats

The FPU provides two fixed point data types:

* 32-bit Word fixed point (type W), shown in Figure 5-25

* 64-bit Longword fixed point (type L), shown in Figure 5-26

The fixed point values are held in the 2's complement format used for signed integers in the CPU. Unsigned fixed
point data types are not provided by the architecture; application software may synthesize computations for unsigned

integers from the existing instructions and data types.

Figure 5-25 Word Fixed Point Format (W)

33
10 0
S Integer
1 31
Figure 5-26 Longword Fixed Point Format (L)
66
32 0
S Integer
1 63
70 MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

5.22 Floating Point Register Types

5.22 Floating Point Register Types

This section describes the organization and use of the two types of FPU register sets:

In Release 1 of the Architecture, 64-bit floating point units were supported only by implementations of the M1PS64
Architecture. Similarly, implementations of M1PS32 of the Architecture only supported 32-bit floating point units. In
Release 2 of the Architecture, a 64-bit floating point unit is supported on implementations of both the MIPS32 and
MI1PS64 Architectures.

Floating Point registers (FPRs) are 32 or 64 bitswide. A 32-bit floating point unit contains 32 32-bit FPRs, each of
which is capable of storing a 32-bit data type. Double-precision (type D) datatypes are stored in even-odd pairs of
FPRs, and the long-integer (type L) and paired single (type PS) data types are not supported. A 64-bit floating point
unit contains 32 64-bit FPRs, each of which is capable of storing any data type. For compatibility with 32-bit FPUS,
the FR bit in the CPO Status register is used by a MIPS64 Release 1, or any Release 2 processor that supports a 64-
bit FPU to configure the FPU in amode in which the FPRs are treated as 32 32-hit registers, each of which is capable
of storing only 32-bit datatypes. In this mode, the double-precision floating point (type D) datatype is stored in even-
odd pairs of FPRs, and the long-integer (type L) and paired single (type PS) data types are not supported.

* Theseregisterstransfer binary data between the FPU and the system, and are also used to hold formatted FPU
operand values. Refer to Volume 111, The MIPS Privileged Architecture Manual, for more information on the CPO
Registers.

* Floating Point Control registers (FCRs), which are 32 bits wide. There are five FPU control registers, used to
identify and control the FPU. These registers are indicated by the fsfield of the instruction word. Three of these
registers, FCCR, FEXR, and FENR, select subsets of the floating point Control/Status register, the FCSR.

5.22.1 FPU Register Models

There are separate FPU register modelsin Release 1 of the Architecture:
* MIPS32 defines 32 32-bit registers, with D-format values stored in even-odd pairs of registers.
* MIPS64 defines 32 64-bit registers, with all formats supported in aregister.

To support MIPS32 programs, MIPS64 processors also provide the MIPS32 register model, which is available as a
mode selection through the FR Bit of the CPO Status Register.

In Release 2 of the Architecture, both FPU register models are supported in MIPS32 (as well as MIPS64) implemen-
tations, and the FR bit of the CPO Status Register.

5.22.2 Binary Data Transfers (32-Bit and 64-Bit)

The datatransfer instructions move words and doublewords between the FPU FPRs and the remainder of the system.
The operations of the word and doubleword load and move-to instructions are shown in Figure 5-27 and Figure 5-28.

The store and move-from instructions operate in reverse, reading data from the location which the corresponding load
or move-to instruction wrote.

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60 71

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

Overview of the FPU Instruction Set

Figure 5-27 FPU Word Load and Move-to Operations

FRBIT=1 FRBIT=0
63 0 63 0
Reg 0 Initial value 1 ' Reg 0 Initial value 1 I
Reg 1 Initial value 2 I Reg 2 Initial value 2 I
l LwCcl £0, 0(x0) / MTCl £0,r0 j
63 0 63 0
Reg 0 | Undefined/Unused | Data word (0) . Reg 0 | Undefined/Unused | Data word (0) '
Reg 1 Initial value 2 I Reg 2 Initial value 2 I
LwCcl f1, 4(x0) / MTC1l f1,r4 l
63 0 63 0
Reg 0 | Undefined/Unused Data word (0) I Reg 0 Data word (4) | Data word (0) '
Reg 1 | Undefined/Unused Data word (4) I Reg 2 Initial value 2 I

Figure 5-28 FPU Doubleword Load and Move-to Operations

FRBIT=1 FRBIT=0
63 0 63 0
Reg 0 Initial value 1 Reg 0 Initial value 1
Reg 1 Initial value 2 Reg 2 Initial value 2
T s ___|
1 LDCl1 £0, O(x0) / DMTCl £0,rO0 l
63 0 63 0
Reg O Data doubleword (0) Reg 0 Data doubleword (0)
Reg 1 Initial value 2 Reg 2 Initial value 2
s __| e
1 LDC1 f1, 8(r0) / DMTC1l f1,rS8
63 0
Reg 0 Data doubleword (0)

(Illegal when FP32RegistersMode = 0)

Reg 1 Data doubleword (8)
. ___|

5.22.3 FPRs and Formatted Operand Layout

FPU instructions that operate on formatted operand val ues specify the floating point register (FPR) that holds the
value. Operands that are only 32 bits wide (W and Sformats), use only half the space in a 64-bit FPR.

The FPR organization and the way that operand datais stored in them is shown in Figures 5-29, 5-30 and 5-31.

Figure 5-29 Single Floating Point or Word Fixed Point Operand in an FPR
63 32 31 0

Reg O Undefined/Unused | Data word I

72 MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

5.23 Floating Point Control Registers (FCRs)

Figure 5-30 Double Floating Point or Longword Fixed Point Operand in an FPR
63 0

Reg 0 Data doubleword/Longword I

Figure 5-31 Paired-Single Floating Point Operand in an FPR
63 32 31 0

Reg 0 Paired-Single | Paired-Single I

5.23 Floating Point Control Registers (FCRS)

The MI1PS32 Architecture supports the following five floating point Control registers (FCRs):
* FIR, FP Implementation and Revision register

» FCCR, FP Condition Codes register

» FEXR, FP Exceptions register

 FENR, FP Enables register

» FCSR, FP Control/Status register (used to be known as FCR31).

FCCR, FEXR, and FENR access portions of the FCSR through CTC1 and CFC1 instructions.

Access to the Floating Point Control Registersis not privileged; they can be accessed by any program that can exe-

cute floating point instructions. The FCRs can be accessed viathe CTC1 and CFCL1 instructions.

5.23.1 Floating Point Implementation Register (FIR, CP1 Control Register 0)

Compliance L evel: Required if floating point isimplemented

The Floating Point Implementation Register (FIR) isa32-bit read-only register that contains information identifying
the capabilities of the floating point unit, the floating point processor identification, and the revision level of the float-

ing point unit. Figure 5-32 shows the format of the FIR register; Table 5.33 describes the FIR register fields.

Figure 5-32 FIR Register Format

31 28 27 24 23 22 21 20 19 18 17 16 15 8 7 0
0(?00 Impl O|F64/ L |W|3D|PS|D|S ProcessorID Revision
Table 5.33 FIR Register Field Descriptions
Fields
Read/
Name Bits Description Write Reset State | Compliance
0 31:28 Reserved for future use; reads as zero 0 0 Reserved

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

73

Overview of the FPU Instruction Set

Table 5.33 FIR Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read/
Write

Reset State

Compliance

Impl

27.24

These bits are implementation dependent and are not
defined by the architecture, other than the fact that they
are read-only. This bits are explicitly not intended to be
used for mode control functions.

R

Preset

Optional

23

Reserved for future use; reads as zero

Reserved

F64

22

Indicates that the floating point unit has registers and
data paths that are 64-bits wide. This bit was added in
Release 2 of the Architecture, and is aone on either
MIPS32 or MIPS64 processors with a 64-bit floating
point unit, and a zero on MIPS32 or MIPS64 processors
with a 32-bit floating point unit. A value of onein this
bit indicates that Statuseg isimplemented.

Encoding Meaning

0 FPU is 32 hits
1 FPU is 64 bits

Preset

Required
(Release 2)

21

Indicates that the longword fixed point (L) data type and
instructions are implemented:

Encoding Meaning

0 L fixed point not implemented

1 L fixed point implemented

Preset

Required
(Release 2)

20

Indicates that the word fixed point (W) data type and
instructions are implemented:

Encoding Meaning

0 W fixed point not implemented

1 W fixed point implemented

Preset or
Externally Set

Required
(Release 2)

74

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

5.23 Floating Point Control Registers (FCRs)

Table 5.33 FIR Register Field Descriptions (Continued)

Fields

Name Bits

Description

Read/
Write

Reset State

Compliance

3D 19

In Release 1 of the Architecture, this bit is used by
MIPS64 processors to indicate that the MIPS-3D ASE is
implemented. It is not used by MIPS32 processors and
reads as zero.

In Release 2 of the Architecture, the MIPS-3D ASE is
supported on both MIPS32 and M1PS64 processors with
a 64-hit floating point unit, and this bit indicates that the
MIPS-3D ASE isimplemented:

Encoding Meaning

0 MIPS-3D ASE not implemented
1 MIPS-3D ASE implemented

R

Preset

Required

PS 18

In Release 1 of the Architecture, this bit is used by
MIPS64 processors to indicate that the paired single
floating point data type isimplemented. It is not used by
MIPS32 processors and reads as zero.

In Release 2 of the Architecture, the paired single float-
ing point data type is supported on both MIPS32 and
MIPS64 processors with a 64-bit floating point unit, and
thisbit indicates that the paired single floating point data
type isimplemented:

Encoding Meaning

0 PS floating point not implemented

1 PS floating point implemented

Preset

Required

Indicates that the double-precision (D) floating point
data type and instructions are implemented:

Encoding Meaning

0 D floating point not implemented

1 D floating point implemented

Preset

Required

Indicates that the single-precision (S) floating point data
type and instructions are implemented:

Encoding Meaning

0 Sfloating point not implemented

1 Sfloating point implemented

Preset

Required

Proces- 15.8

sorlD

Identifies the floating point processor.

Preset

Required

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

75

Overview of the FPU Instruction Set

Table 5.33 FIR Register Field Descriptions (Continued)

Fields
Read/
Name Bits Description Write Reset State | Compliance
Revision 7:0 Specifies the revision number of the floating point unit. R Preset Optional

Thisfield allows software to distinguish between one
revision and another of the same floating point processor
type. If thisfield is not implemented, it must read as
Zero.

5.23.2 Floating Point Control and Status Register (FCSR, CP1 Control Register 31)

Compliance Level: Required if floating point isimplemented.

The Floating Point Control and Status Register (FCSR) is a 32-hit register that controls the operation of the floating
point unit, and shows the following status information:

» selectsthe default rounding mode for FPU arithmetic operations

» selectively enables traps of FPU exception conditions

» controls some denormalized number handling options

* reports any |EEE exceptions that arose during the most recently executed instruction

» reports |EEE exceptions that arose, cumulatively, in completed instructions

» indicates the condition code result of FP compare instructions

Accessto FCSR is not privileged; it can be read or written by any program that has access to the floating point unit
(viathe coprocessor enablesin the Status register). Figure 5-33 shows the format of the FCSR register; Table 5.34

describes the FCSR register fields.

Figure 5-33 FCSR Register Format

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
FCC FS|FCC| Impl 080 Cause Enables Flags RM
7‘6‘5‘4‘3‘2‘1 0 E‘V‘Z‘O‘U‘I v‘z‘o‘u‘| v‘z‘o‘u‘|

Table 5.34 FCSR Register Field Descriptions

Fields
Read/
Name Bits Description Write Reset State | Compliance
FCC 31:25, Floating point condition codes. These bits record the R/W Undefined Required

23 result of floating point compares and are tested for float-
ing point conditional branches and conditional moves.
The FCC bit to use is specified in the compare, branch,
or conditional move instruction. For backward compati-
bility with previous MIPS | SAs, the FCC hits are sepa-
rated into two, non-contiguous fields.

76

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

5.23 Floating Point Control Registers (FCRs)

Table 5.34 FCSR Register Field Descriptions (Continued)

Fields

Read/
Name Bits Description Write Reset State | Compliance

FS 24 Flush to Zero. When FSis one, denormalized results are R/IW Undefined Required
flushed to zero instead of causing an Unimplemented
Operation exception. It isimplementation dependent
whether denormalized operand values are flushed to zero
before the operation is carried out.

Impl 22:21 | Availableto control implementation dependent features R/W Undefined Optional
of the floating point unit. If these bits are not imple-
mented, they must be ignored on write and read as zero.

0 20:18 Reserved for future use; Must be written as zero; returns 0 0 Reserved
zero on read.

Cause 17:12 Cause hits. These hits indicate the exception conditions R/W Undefined Required
that arise during execution of an FPU arithmetic instruc-
tion. A hitisset to 1 if the corresponding exception con-
dition arises during the execution of aninstructionandis
set to O otherwise. By reading the registers, the exception
condition caused by the preceding FPU arithmetic
instruction can be determined.

Refer to Table 5.35 for the meaning of each bit.

Enables 11:7 Enable bits. These bits control whether or not a excep- R/W Undefined Required
tion is taken when an |EEE exception condition occurs
for any of the five conditions. The exception occurs
when both an Enable bit and the corresponding Cause bit
are set either during an FPU arithmetic operation or by
moving avalue to FCSR or one of its aternative repre-
sentations. Note that Cause bit E has no corresponding
Enable bit; the non-IEEE Unimplemented Operation
exception is defined by MIPS as always enabled.

Refer to Table 5.35 for the meaning of each bit.

Flags 6:2 Flag bits. Thisfield shows any exception conditions that R/W Undefined Required
have occurred for completed instructions since the flag
was last reset by software.

When a FPU arithmetic operation raises an |EEE excep-
tion condition that does not result in a Floating Point
Exception (i.e., the Enable bit was off), the correspond-
ing bit(s) in the Flag field are set, while the others
remain unchanged. Arithmetic operationsthat resultina
Floating Point Exception (i.e., the Enable bit was on) do
not update the Flag bits.

Thisfield is never reset by hardware and must be explic-
itly reset by software.

Refer to Table 5.35 for the meaning of each bit.

RM 1.0 Rounding mode. Thisfield indicates the rounding mode R/W Undefined Required.
used for most floating point operations (some operations
use a specific rounding mode).

Refer to Table 5.36 for the meaning of the encodings of
thisfield.

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60 77

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

Overview of the FPU Instruction Set

The FCC, FS, Cause, Enables, Flagsand RM fieldsinthe FCSR, FCCR, FEXR, and FENR registers always display
the correct state. That is, if afield iswritten viaFCCR, the new value may be read via one of the alternate registers.
Similarly, if avalue iswritten via one of the alternate registers, the new value may be read viaFCSR.

Table 5.35 Cause, Enable, and Flag Bit Definitions

Bit Name Bit Meaning
E Unimplemented Operation (this bit exists only in the
Causefield)
\% Invalid Operation
Z Divide by Zero
o Overflow
U Underflow
I Inexact

Table 5.36 Rounding Mode Definitions

RM Field
Encoding Meaning
0 RN - Round to Nearest
Rounds the result to the nearest representable value. When two representable values are equally
near, the result is rounded to the value whose least significant bit is zero (that is, even)
1 RZ - Round Toward Zero
Rounds the result to the value closest to but not greater than in magnitude than the result.
2 RP - Round Towards Plus Infinity
Rounds the result to the value closest to but not less than the result.
3 RM - Round Towards Minus Infinity
Rounds the result to the value closest to but not greater than the result.

5.23.3 Floating Point Condition Codes Register (FCCR, CP1 Control Register 25)

Compliance L evel: Required if floating point isimplemented.

The Floating Point Condition Codes Register (FCCR) is an alternative way to read and write the floating point con-
dition code values that also appear in FCSR. Unlike FCSR, all eight FCC bits are contiguousin FCCR. Figure 5-34
shows the format of the FCCR register; Table 5.37 describes the FCCR register fields.

Figure 5-34 FCCR Register Format
31 8 7 0

0
0000 0000 0000 0000 0000 0000

FCC

7‘6‘5‘4‘3‘2‘1‘0

78 MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

5.23 Floating Point Control Registers (FCRs)

Table 5.37 FCCR Register Field Descriptions

Fields
Read/
Name Bits Description Write Reset State | Compliance
0 31:8 Must be written as zero; returns zero on read 0 0 Reserved
FCC 7:0 Floating point condition code. Refer to the description of R/W Undefined Required
thisfield in the FCSR register.

5.23.4 Floating Point Exceptions Register (FEXR, CP1 Control Register 26)

Compliance L evel: Required if floating point isimplemented.

The Floating Point Exceptions Register (FEXR) is an aternative way to read and write the Cause and Flags fields
that also appear in FCSR. Figure 5-35 shows the format of the FEXR register; Table 5.38 describesthe FEXR regis-

ter fields.
Figure 5-35 FEXR Register Format
31 18 17 16 15 14 13 12 11 7 6 5 4 3 2 1 0
0 Cause 0 Flags 0
0000 0000 0000 00 00 000 & 00
E|V|Z|O|U|I V‘Z‘O‘U‘I
Table 5.38 FEXR Register Field Descriptions
Fields
Read/
Name Bits Description Write Reset State | Compliance
0 31:18, Must be written as zero; returns zero on read 0 0 Reserved
11:7,
1.0
Cause 17:12 Cause hits. Refer to the description of thisfield in the R/W Undefined Required
FCSR register.
Flags 6:2 Flags bits. Refer to the description of thisfield in the R/W Undefined Optional
FCSR register.

5.23.5 Floating Point Enables Register (FENR, CP1 Control Register 28)

Compliance L evel: Required if floating point isimplemented.

The Floating Point Enables Register (FENR) is an aternative way to read and write the Enables, FS, and RM fields
that also appear in FCSR. Figure 5-36 shows the format of the FENR register; Table 5.39 describes the FENR regis-

ter fields.
Figure 5-36 FENR Register For mat
31 12 11 10 9 8 7 6 3 2 1 0
0 Enables 0 FS| RM
0000 0000 0000 0000 0000 0000
MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60 79

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

Overview of the FPU Instruction Set

31

12 11 10 9 8 7 6 3 2 1 0

MEEON

Table 5.39 FENR Register Field Descriptions

Fields
Read/
Name Bits Description Write Reset State | Compliance
0 31:12, Must be written as zero; returns zero on read 0 0 Reserved
6:3
Enables 11:7 Enable bits. Refer to the description of thisfield in the R/W Undefined Required
FCSR register.
FS 2 Flush to Zero hit. Refer to the description of thisfield R/W Undefined Required
inthe FCSR register.
RM 1.0 Rounding mode. Refer to the description of thisfield R/W Undefined Required
inthe FCSR register.

5.24

80

Formats of Values Used in FP Registers

Unlike the CPU, the FPU does not interpret the binary encoding of source operands nor produce a binary encoding of
results for every operation. The value held in afloating point operand register (FPR) has aformat, or type, and it may
be used only by instructions that operate on that format. The format of avalue is either uninterpreted, unknown, or
one of the valid numeric formats: single and double floating point, and word and long fixed point.

Thevauein an FPR is always set when avalue is written to the register:

e When adatatransfer instruction writes binary datainto an FPR (aload), the FPR receives abinary value that is
uninterpreted.

e A computational or FP register move instruction that produces a result of type fmt puts a value of type fmt into
the result register.

When an FPR with an uninterpreted value is used as a source operand by an instruction that requires a value of for-
mat fmt, the binary contents are interpreted as an encoded value in format fmt and the value in the FPR changesto a
value of format fmt. The binary contents cannot be reinterpreted in a different format.

If an FPR contains a value of format fmt, a computational instruction must not use the FPR as a source operand of a
different format. If this occurs, the value in the register becomes unknown and the result of the instruction isalso a
value that is unknown. Using an FPR containing an unknown value as a source operand produces aresult that has an
unknown value.

Theformat of the valuein the FPR is unchanged when it isread by a datatransfer instruction (astore). A datatransfer
instruction produces a binary encoding of the value contained in the FPR. If the value in the FPR is unknown, the
encoded binary value produced by the operation is not defined.

The state diagram in Figure 5-37 illustrates the manner in which the formatted value in an FPR is set and changed.

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

5.25 FPU Exceptions

Figure 5-37 Effect of FPU Operations on the Format of Values Held in FPRs

Rslt
unknown

Src A
(interpret)

Src B
(interpret)

Valuein
format

Valuein
format

unknown unknown

A, B:Example formats

Load:Destination of LWC1, LDC1, or MTC1 instructions.

Store:Source operand of SWC1, SDC1, or MFCL1 instructions.

Src fmt:Source operand of computational instruction expecting format “fmt.”
Rslt fmt:Result of computational instruction producing value of format “fmt.”

5.25 FPU Exceptions

This section provides the following information FPU exceptions.

* Precise exception mode

» Descriptions of the exceptions

FPU exceptions are implemented in the MIPS FPU architecture with the Cause, Enable, and Flag fields of the Con-
trol/Satus register. The Flag bits implement |EEE exception status flags, and the Cause and Enable bits control

exception trapping. Each field has a bit for each of the five |EEE exception conditions and the Cause field has an
additional exception bit, Unimplemented Operation, used to trap for software emulation assistance.

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60 81

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

Overview of the FPU Instruction Set

82

5.25.0.1 Precise Exception Mode

In precise exception mode, atrap occurs before the instruction that causes the trap, or any following instruction, can
complete and writeitsresults. If desired, the software trap handler can resume execution of the interrupted instruction
stream after handling the exception.

The Cause field reports per-bit instruction exception conditions. The Cause bits are written during each floating point
arithmetic operation to show any exception conditions that arise during the operation. The bit is set to 1 if the corre-
sponding exception condition arises; otherwiseit isset to 0.

A floating point trap is generated any time both a Cause bit and its corresponding Enable bit are set. This occurs
either during the execution of afloating point operation or by moving avalue into the FCSR. There is no Enable for
Unimplemented Operation; this exception always generates a trap.

In atrap handler, exception conditions that arise during any trapped floating point operations are reported in the
Cause field. Before returning from afloating point interrupt or exception, or before setting Cause bits with a move to
the FCSR, software must first clear the enabled Cause bits by executing a move to FCSR to prevent the trap from
being erroneoudly retaken.

User-mode programs cannot observe enabled Cause bits being set. If thisinformation is required in a User-mode han-
dler, it must be available someplace other than through the Satus register.

If afloating point operation sets only non-enabled Cause bits, no trap occurs and the default result defined by the
|EEE standard is stored (see Table 5.40). When afloating point operation does not trap, the program can monitor the
exception conditions by reading the Cause field.

The Flag field is a cumulative report of |EEE exception conditions that arise as instructions complete; instructions

that trap do not update the Flag bits. The Flag bits are set to 1 if the corresponding IEEE exception is raised, other-
wise the bits are unchanged. There is no Flag bit for the MIPS Unimplemented Operation exception. The Flag bits
are never cleared as a side effect of floating point operations, but may be set or cleared by moving anew value into
the FCSR.

Addressing exceptions are precise.

5.25.1 Exception Conditions

The following five exception conditions defined by the |EEE standard are described in this section:

* Invalid Operation Exception

» Division By Zero Exception

* Underflow Exception

* Overflow Exception

* |Inexact Exception

This section a so describes a M I PS-specific exception condition, Unimplemented Oper ation, that isused to signal a
need for software emulation of an instruction. Normally an |EEE arithmetic operation can cause only one exception

condition; the only case in which two exceptions can occur at the same time are Inexact With Overflow and Inexact
With Underflow.

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

5.25 FPU Exceptions

At the program’s direction, an |EEE exception condition can either cause atrap or not cause atrap. The |EEE stan-
dard specifies the result to be delivered in case the exception is not enabled and no trap istaken. The MIPS architec-

ture supplies these results whenever the exception condition does not result in aprecise trap (that is, no trap or an

imprecise trap). The default action taken depends on the type of exception condition, and in the case of the Overflow,
the current rounding mode. The default results are summarized in Table 5.40.

Table 5.40 Default Result for IEEE Exceptions Not Trapped Precisely

Bit Description

Default Action

Invalid Operation

Suppliesaquiet NaN.

Supplies a properly signed infinity.

\
Z Divide by zero
U

Underflow

Supplies arounded resuilt.

I Inexact Supplies arounded result. If caused by an overflow without the overflow trap enabled, sup-
plies the overflowed result.
(0] Overflow Depends on the rounding mode, as shown below.
0 (RN) Supplies an infinity with the sign of the intermediate resullt.
1(R2) Supplies the format’s largest finite number with the sign of the intermediate result.
2 (RP) For positive overflow values, supplies positive infinity. For negative overflow values, sup-
plies the format’s most negative finite number.
3 (RM) For positive overflow values, supplies the format’s largest finite number. For negative over-

flow values, supplies minusinfinity.

5.25.1.1 Invalid Operation Exception

The Invalid Operation exception is signaled if one or both of the operands are invalid for the operation to be per-

formed. The result, when the exception condition occurs without a precise trap, isa quiet NaN.

These are invalid operations:

» Oneor both operands are asignaling NaN (except for the non-arithmetic MOV.fmt, MOV T.fmt, MOV F.fmt,

MOVN.fmt, and MOV Z.fmt instructions).

* Addition or subtraction: magnitude subtraction of infinities, such as (+eo) + (-c0) Or (-e0) - (-o0).

* Multiplication: 0 x oo, with any signs.

» Division: 0/0 or /e, with any signs.

* Squareroot: An operand of lessthan O (-0 isavalid operand value).

e Conversion of afloating point number to afixed point format when either an overflow or an operand value of

infinity or NaN precludes a faithful representation in that format.

* Some comparison operations in which one or both of the operandsis a QNaN value. (The detailed definition of
the compare instruction, C.cond.fmt, in Volume Il has tables showing the comparisons that do and do not signal

the exception.)

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

83

Overview of the FPU Instruction Set

5.25.1.2 Division By Zero Exception
An implemented divide operation signals a Division By Zero exception if the divisor is zero and the dividend isa
finite nonzero number. The result, when no precise trap occurs, isacorrectly signed infinity. Divisions (0/0) and (e</0)
do not cause the Division By Zero exception. Theresult of (0/0) isan Invalid Operation exception. The result of (e</0)
isacorrectly signed infinity.

5.25.1.3 Underflow Exception

Two related events contribute to underflow:

e Tininess: the creation of atiny nonzero result between +2E_MN \which, becauseit isti ny, may cause some other
exception later such as overflow on division

e Lossof accuracy: the extraordinary loss of accuracy during the approximation of such tiny numbers by denor-
malized numbers

Tininess. The |[EEE standard allows choices in detecting these events, but requires that they be detected in the same
manner for all operations. The | EEE standard specifies that “tininess’ may be detected at either of these times:

» After rounding, when anonzero result computed as though the exponent range were unbounded would lie strictly
between +25-Mn

» Before rounding, when anonzero result computed as though both the exponent range and the precision were
unbounded would lie strictly between +25-mn

The MIPS architecture specifies that tininess be detected after rounding.

Loss of Accuracy: The |EEE standard specifies that 10ss of accuracy may be detected as aresult of either of these
conditions:

» Denormalization loss, when the delivered result differs from what would have been computed if the exponent
range were unbounded

* Inexact result, when the delivered result differs from what would have been computed if both the exponent range
and precision were unbounded

The MIPS architecture specifies that loss of accuracy is detected as inexact result.

Signalling an Under flow: When an underflow trap is not enabled, underflow is signaled only when both tininess and
loss of accuracy have been detected. The delivered result might be zero, denormalized, or +E_min

When an underflow trap is enabled (through the FCSR Enable field bit), underflow is signaled when tininess is
detected regardless of loss of accuracy.

5.25.1.4 Overflow Exception

An Overflow exception is signaled when the magnitude of a rounded floating point result, were the exponent range
unbounded, is larger than the destination format’s largest finite number.

When no precise trap occurs, the result is determined by the rounding mode and the sign of the intermediate result.

84 MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

5.26 FPU Instructions

5.25.1.5 Inexact Exception
An Inexact exception issignaled if one of the following occurs:
» Therounded result of an operation is not exact

» Therounded result of an operation overflows without an overflow trap

5.25.1.6 Unimplemented Operation Exception

The Unimplemented Operation exception isaMIPS defined exception that provides software emulation support. This
exception is not IEEE-compliant.

The MIPS architecture is designed so that a combination of hardware and software may be used to implement the
architecture. Operations that are not fully supported in hardware cause an Unimplemented Operation exception so
that software may perform the operation.

Thereisno Enable bit for this condition; it always causes atrap. After the appropriate emulation or other operationis
donein a software exception handler, the original instruction stream can be continued.

5.26 FPU Instructions

The FPU instructions comprise the following functional groups:
o DataTransfer Instructions

» Arithmetic Instructions

e Conversion Instructions

» Formatted Operand-Vaue Move I nstructions

e Conditiona Branch Instructions

e Miscellaneous I nstructions

5.26.1 Data Transfer Instructions

The FPU has two separate register sets: coprocessor general registers and coprocessor control registers. The FPU has
aload/store architecture; all computations are done on data held in coprocessor general registers. The control regis-
ters are used to control FPU operation. Datais transferred between registers and the rest of the system with dedicated
load, store, and move instructions. The transferred data is treated as unformatted binary data; no format conversions
are performed, and therefore no | EEE floating point exceptions can occur.

The supported transfer operations are listed in Table 5.41.

Table 5.41 FPU Data Transfer Instructions

Transfer Direction Data Transferred
FPU genera reg “ Memory Word/doubleword load/store
FPU general reg “ CPU generd reg Word move

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

85

Overview of the FPU Instruction Set

Table 5.41 FPU Data Transfer Instructions

Transfer Direction Data Transferred

FPU control reg < CPU general reg Word move

5.26.1.1 Data Alignment in Loads, Stores, and Moves

All coprocessor |oads and stores operate on naturally-aligned dataitems. An attempt to load or store to an address that
isnot naturally aligned for the dataitem causes an Address Error exception. Regardless of byte-ordering (the endian-
ness), the address of aword or doubleword isthe smallest byte address in the object. For abig-endian machine, thisis
the most-significant byte; for alittle-endian machine, thisis the least-significant byte (endiannessis described in
“Byte Ordering and Endianness’ on page 35).

5.26.1.2 Addressing Used in Data Transfer Instructions

The FPU has loads and stores using the same register + offset addressing as that used by the CPU. Moreover, for the
FPU only, there are load and store instructions using register+register addressing.

Tables 5.42 through 5.44 list the FPU data transfer instructions.

Table 5.42 FPU Loads and Stores Using Register+Offset Address Mode

Instruction
Mnemonic Defined in MIPS ISA
LDC1 Load Doubleword to Floating Point MIPS32
LwC1 Load Word to Floating Point MIPS32
SDC1 Store Doubleword to Floating Point MIPS32
SWC1 Store Word to Floating Point MIPS32

Table 5.43 FPU Loads and Using Register+Register Address Mode

Mnemonic Instruction Defined in MIPS ISA

LDXC1 Load Doubleword Indexed to Floating Point MIPS64
MIPS32 Release 2

LUXC1 Load Doubleword Indexed Unaligned to Floating Point MIPS64
MIPS32 Release 2

LWXC1 Load Word Indexed to Floating Point MIPS64
MIPS32 Release 2

SDXC1 Store Doubleword Indexed to Floating Point MIPS64
MIPS32 Release 2

SUXC1 Store Doubleword Indexed Unaligned to Floating Point MIPS64
MIPS32 Release 2

SWXC1 Store Word Indexed to Floating Point MIPS64
MIPS32 Release 2

86 MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

5.26 FPU Instructions

Table 5.44 FPU Move To and From Instructions

Mnemonic Instruction Defined in MIPS ISA
CFC1 Move Control Word From Floating Point MIPS32
CTC1 Move Control Word To Floating Point MIPS32
MFC1 Move Word From Floating Point MIPS32
MFHC1 Move Word from High Half of Floating Point Register MIPS32 Release 2
MTC1 Move Word To Floating Point MIPS32
MTHC1 Move Word to High Half of Floating Point Register MIPS32 Release 2

5.26.2 Arithmetic Instructions

Arithmetic instructions operate on formatted data values. The results of most floating point arithmetic operations

meet the IEEE standard specification for accuracy—aresult isidentical to an infinite-precision result that has been
rounded to the specified format, using the current rounding mode. The rounded result differs from the exact result by
less than one unit in the least-significant place (ULP).

FPU |EEE-approximate arithmetic operations are listed in Table 5.45.

Table 5.45 FPU IEEE Arithmetic Operations

Mnemonic Instruction Defined in MIPS ISA
ABS.fmt Floating Point Absolute Value MIPS32
ABS.fmt (PS) Floating Point Absolute Value (Paired Single) MIPS64
MIPS32 Release 2
ADD.fmt Floating Point Add MIPS32
ADD.fmt (PS) Floating Point Add (Paired Single) MIPS64
MIPS32 Release 2
C.cond.fmt Floating Point Compare MIPS32
C.cond.fmt (PS) Floating Point Compare (Paired Single) MIPS64
MIPS32 Release 2
DIV.fmt Floating Point Divide MIPS32
MUL.fmt Floating Point Multiply MIPS32
MUL.fmt (PS) Floating Point Multiply (Paired Single) MIPS64
MIPS32 Release 2
NEG.fmt Floating Point Negate MIPS32
NEG.fmt (PS) Floating Point Negate (Paired Single) MIPS64
MIPS32 Release 2
SQRT.fmt Floating Point Square Root MIPS32
SUB.fmt Floating Point Subtract MIPS32

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

87

Overview of the FPU Instruction Set

Table 5.45 FPU IEEE Arithmetic Operations (Continued)

Mnemonic Instruction Defined in MIPS ISA

MIPS64
MIPS32 Release 2

SUB.fmt (P9 Floating Point Subtract (Paired Single)

Two operations, Reciprocal Approximation (RECIP) and Reciprocal Square Root Approximation (RSQRT), may be
less accurate than the | EEE specification:

* Theresult of RECIP differs from the exact reciprocal by no more than one ULP.

» Theresult of RSQRT differs from the exact reciprocal square root by no more than two ULPs.
Within these error limits, the results of these instructions are implementation specific.

A list of FPU-approximate arithmetic operationsis given in Table 5.46..

Table 5.46 FPU-Approximate Arithmetic Operations

Mnemonic Instruction Defined in MIPS ISA

RECIPfmt Floating Point Reciprocal Approximation MIPS64
MIPS32 Release 2

RSQRT.fmt Floating Point Reciprocal Square Root Approximation MIPS64
MIPS32 Release 2

Four compound-operation instructions perform variations of multiply-accumulate—that is, multiply two operands,
accumulate the result to athird operand, and produce aresult. Theseinstructions arelisted in Table 5.47. The product
isrounded according to the current rounding mode prior to the accumulation. This model meets the |EEE accuracy
specification; the result is numerically identical to an equivalent computation using multiply, add, subtract, or negate

instructions.

Table 5.47 lists the FPU Multiply-Accumul ate arithmetic operations.

Table 5.47 FPU Multiply-Accumulate Arithmetic Operations

Mnemonic Instruction Defined in MIPS ISA

MADD.fmt Floating Point Multiply Add MIPS64
MIPS32 Release 2

MADD.fmt (PS Floating Point Multiply Add (Paired Single) MIPS64
MIPS32 Release 2

MSUB.fmt Floating Point Multiply Subtract MIPS64
MIPS32 Release 2

MSUB.fmt (PS Floating Point Multiply Subtract (Paired Single) MIPS64
MIPS32 Release 2

NMADD.fmt Floating Point Negative Multiply Add MIPS64
MIPS32 Release 2

NMADD.fmt (PS) Floating Point Negative Multiply Add (Paired Single) MIPS64
MIPS32 Release 2

88 MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

5.26 FPU Instructions

Table 5.47 FPU Multiply-Accumulate Arithmetic Operations

Mnemonic Instruction Defined in MIPS ISA

NMSUB.fmt Floating Point Negative Multiply Subtract MIPS64
MIPS32 Release 2

NMSUB.fmt (PS) Floating Point Negative Multiply Subtract (Paired Single) MIPS64
MIPS32 Release 2

5.26.3 Conversion Instructions

These instructions perform conversions between floating point and fixed point data types. Each instruction converts
values from anumber of operand formatsto a particular result format. Some conversion instructions use the rounding
mode specified in the Floating Control/Status register (FCSR), while others specify the rounding mode directly.
Tables 5.48 and 5.49 list the FPU conversion instructions according to their rounding mode.

Table 5.48 FPU Conversion Operations Using the FCSR Rounding Mode

Instruction
Mnemonic Defined in MIPS ISA

CVT.D.fmt Floating Point Convert to Double Floating Point MIPS32

CVT.L.fmt Floating Point Convert to Long Fixed Point MIPS64
MIPS32 Release 2

CVT.PS.S Floating Point Convert Pair to Paired Single MIPS64
MIPS32 Release 2

CVT.S.fmt Floating Point Convert to Single Floating Point MIPS32

CVT.S.fmt (PL, PU) | Floating Point Convert to Single Floating Point MIPS64
(Paired Lower, Paired Upper) MIPS32 Release 2

CVT.W.fmt Floating Point Convert to Word Fixed Point MIPS32

Table 5.49 FPU Conversion Operations Using a Directed Rounding Mode

Mnemonic Instruction Defined in MIPS ISA
CEIL.L.fmt Floating Point Ceiling to Long Fixed Point MIPS64
MIPS32 Release 2
CEIL.W.fmt Floating Point Ceiling to Word Fixed Point MIPS32
FLOOR.L.fmt Floating Point Floor to Long Fixed Point MIPS64
MIPS32 Release 2
FLOOR.W.fmt Floating Point Floor to Word Fixed Point MIPS32
ROUND.L.fmt Floating Point Round to Long Fixed Point MIPS64
MIPS32 Release 2
ROUND.W.fmt Floating Point Round to Word Fixed Point MIPS32
TRUNC.L.fmt Floating Point Truncate to Long Fixed Point MIPS64
MIPS32 Release 2
TRUNC.W.fmt Floating Point Truncate to Word Fixed Point MIPS32
MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60 89

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

Overview of the FPU Instruction Set

90

5.26.4 Formatted Operand-Value Move Instructions

These instructions all move formatted operand values among FPU general registers. A particular operand type must
be moved by the instruction that handles that type. There are three kinds of move instructions:

* Unconditional move

» Conditional move that tests an FPU true/false condition code

e Conditional move that tests a CPU general-purpose register against zero

Conditional move instructions operate in away that may be unexpected. They always force the value in the destina
tion register to become avalue of the format specified in theinstruction. If the destination register does not contain an
operand of the specified format before the conditional move is executed, the contents become undefined. (For more

information, see the individual descriptions of the conditional move instructionsin Volume 1.)

Theseinstructions are listed in Tables 5.50 through 5.52.

Table 5.50 FPU Formatted Operand Move Instructions

Mnemonic Instruction Defined in MIPS ISA
MOV.fmt Floating Point Move MIPS32
MOV.fmt (PS) Floating Point Move (Paired Single) MIPS64

MIPS32 Release 2

Table 5.51 FPU Conditional Move on True/False Instructions

Mnemonic Instruction Defined in MIPS ISA
MOV Efmt Floating Point Move Conditional on FP False MIPS32
MOVEfmt (PS) Floating Point Move Conditional on FP False MIPS64
(Paired Single) MIPS32 Release 2
MOV T.fmt Floating Point Move Conditional on FP True MIPS32
MOVT.fmt (PS) Floating Point Move Conditional on FP True MIPS64
(Paired Single) MIPS32 Release 2

Table 5.52 FPU Conditional Move on Zero/Nonzero Instructions

Mnemonic Instruction Defined in MIPS ISA
MOVN.fmt Floating Point Move Conditional on Nonzero MIPS32
MOVN.fmt (PS) Floating Point Move Conditional on Nonzero MIPS64
(Paired Single) MIPS32 Release 2
MOVZ.fmt Floating Point Move Conditional on Zero MIPS32
MOVZ.fmt (PS Floating Point Move Conditional on Zero MIPS64
(Paired Single) MIPS32 Release 2

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

5.26 FPU Instructions

5.26.5 Conditional Branch Instructions

The FPU has PC-relative conditional branch instructions that test condition codes set by FPU compare instructions
(C.cond.fmt).

All branches have an architectural delay of oneinstruction. When a branch is taken, the instruction immediately fol-
lowing the branch instruction is said to be in the branch delay slot, and it is executed before the branch to the target
instruction takes place. Conditional branches come in two versions, depending upon how they handle aninstructionin
the delay dot when the branch is not taken and execution falls through:

» Branch instructions execute the instruction in the delay dlot.

» Branch likely instructions do not execute the instruction in the delay slot if the branch is not taken (they are said
to nullify the instruction in the delay slot).

Although the Branch Likely instructionsareincluded in this specification, softwareis strongly encouraged
to avoid the use of the Branch Likely instructions, asthey will be removed from a futurerevision of the
MIPS Architecture.

The MIPS32 Architecture defines eight condition codes for use in compare and branch instructions. For backward
compatibility with previous revision of the ISA, condition code bit 0 and condition code bits 1 thru 7 are in discontig-
uousfieldsin FCSR.

Table 5.53 lists the conditional branch (branch and branch likely) FPU instructions; Table 5.54 lists the deprecated
conditional branch likely instructions.

Table 5.53 FPU Conditional Branch Instructions

Mnemonic Instruction Defined in MIPS ISA
BC1F Branch on FP False MIPS32
BC1T Branch on FP True MIPS32

Table 5.54 Deprecated FPU Conditional Branch Likely Instructions

Mnemonic Instruction Defined in MIPS ISA
BC1FL Branch on FP False Likely MIPS32
BC1TL Branch on FP True Likely MIPS32

5.26.6 Miscellaneous Instructions

The MIPS ISA defines various miscellaneous instructions that conditionally move one CPU general register to
another, based on an FPU condition code. It aso defines an instruction to align amisaligned pair of paired-single val-
ues (ALNV.PS) and a quartet of instructions that merge a pair of paired-single values (PLL.PS, PLU.PS, PUL.PS,
PUU.PS).

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60 91

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

Overview of the FPU Instruction Set

Table 5.55 lists these conditional move instructions.

Table 5.55 CPU Conditional Move on FPU True/False Instructions

Mnemonic Instruction Defined in MIPS ISA
ALNV.PS FP Align Variable MIPS64
MIPS32 Release 2
MOVN Move Conditional on FP False MIPS32
MOVZ Move Conditional on FP True MIPS32
PLL.PS Pair Lower Lower MIPS64
MIPS32 Release 2
PLU.PS Pair Lower Upper MIPS64
MIPS32 Release 2
PUL.PS Pair Upper Lower MIPS64
MIPS32 Release 2
PUU.PS Pair Upper Upper

MIPS64
MIPS32 Release 2

5.27 Valid Operands for FPU Instructions

92

The floating point unit arithmetic, conversion, and operand move instructions operate on formatted values with dif-
ferent precision and range limits and produce formatted values for results. Each representable value in each format
has a binary encoding that is read from or stored to memory. The fmt or fmt3 field of the instruction encodes the oper-
and format required for the instruction. A conversion instruction specifies the result type in the function field; the
result of other operationsis given in the same format as the operands. The encodings of the fmt and fmt3 field are

shown in Table 5.56.

Table 5.56 FPU Operand Format Field (fmt, fmt3) Encoding

Instruction Size
Mnemonic
fmt fmt3 Name Bits Data Type
0-15 - Reserved
16 0 S single 32 Floating point
17 1 D double 64 Floating point
18-19 2-3 Reserved
20 4 W word 32 Fixed point
21 5 L long 64 Fixed point
22 6 PS paired single 64 Floating point
23-31 7 Reserved

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

5.27 Valid Operands for FPU Instructions

Theresult of an instruction using operand formats marked U in Table 5.57 is not currently specified by this architec-
ture and causes a Reserved Instruction exception.

Table 5.57 Valid Formats for FPU Operations

Operand Fmt
Float Fixed COF’Il COP1X
Function op4
Mnemonic Operation D PS W L Value Value
ABS Absolute value o . U U 5
ADD Add . . u u 0
C.cond Floating Point compare o . U U 4863
CEIL.L, Convert to longword (word) fixed point, round . U U U 10 (14)
(CEIL.W) toward +eo
CVTD Convert to double floating point U U ° . 33
CVT.L Convert to longword fixed point o U U U 37
CVTS Convert to single floating point . U . . 32
CVT. PU, PL Convert to single floating point (paired upper, U . U U 32,40
paired lower)
CVT.W Convert to 32-hit fixed point . U U U 36
DIV Divide . u u 3
FLOOR.L, Convert to longword (word) fixed point, round . U U 11 (15)
(FLOOR.W) toward —oo
MADD Multiply-Add . . u u 4
MOV Move Register . . U U 6
MOvC FP Move conditiona on condition o . u U 17
MOVN FP Move conditional on GPR#zero . . U U 19
MOVZ FP Move conditional on GPR=zero o . U U 18
MSUB Multiply-Subtract . . U U 5
MUL Multiply . . U U 2
NEG Negate . . U U 7
NMADD Negative Multiply-Add . . U U 6
NMSUB Negative Multiply-Subtract . . U U 7
PLL, PLU, Pair (Lower Lower, Lower Upper, Upper U . U U 44-47
PUL, PUU Lower, Upper Upper)
RECIP Reciprocal Approximation . U U 21
ROUND.L, Convert to longword (word) fixed point, round . U U 8(12)
(ROUND.W) to nearest/even

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

93

Overview of the FPU Instruction Set

Table 5.57 Valid Formats for FPU Operations (Continued)

Operand Fmt
Float Fixed COP1 COP1X
Function op4
Mnemonic Operation S D PS W L Value Value
RSQRT Reciprocal square root approximation . o U U U 22
SQRT Square Root . . U U U 4
SUB Subtract . o . u U 1
TRUNC.L, Convert to longword (word) fixed point, round . . U U U 9(13)
(TRUNC.W) toward zero
Key: e — Valid. U — Unimplemented and causes Reserved Instruction Exception.

5.28 FPU Instruction Formats

An FPU instruction is asingle 32-bit aligned word. FP instruction formats are shown in Figures 5-38 through 5-47.
In these figures, variables are labelled in lowercase, such as offset. Constants are labelled in uppercase, as are numer-
als. Following these figures, Table 5.58 explains the fields used in the instruction layouts. Note that the same field
may have different namesin different instruction layouts.

The field name is mnemonic to the function of that field in the instruction layout. The opcode tables and the instruc-
tion encode discussion use the canonical field names: opcode, fit, nd, tf, and function. The remaining fields are not
used for instruction encode.

5.28.1 Implementation Note

When present, the destination FPR specifier may bein the fs, ft, or fd field.

Figure 5-38 I-Type (Immediate) FPU Instruction Format

31 26 25 21 20 16 15 0
opcode base ft offset
6 5 5 16
Immediate: Load/Store using register + offset addressing
Figure 5-39 R-Type (Register) FPU Instruction Format
31 26 25 21 20 16 15 1 10 5 0
COP1 fmt ft fs fd function
6 5 5 5 5 6
Register: Two-register and Three-register formatted arithmetic operations
Figure 5-40 Register-Immediate FPU Instruction Format
31 26 25 21 20 16 15 11 0
COP1 sub rt fs 0

94

5

5

11

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

5.28 FPU Instruction Formats

31 26 25 21 20

Register Immediate: Data transfer, CPU «» FPU register

16 15 11

Figure 5-41 Condition Code, Immediate FPU Instruction Format

31 26 25 21 20 18 17 16 15 0
COP1 BCC1 cc nd| tf offset
6 5 3 11 16
Condition Code, Immediate: Conditional branches on FPU cc using PC + offset
Figure 5-42 Formatted FPU Compare Instruction Format
31 26 25 21 20 16 15 11 10 8 7 6 5 0
COP1 fmt ft fs cc function
6 5 5 5 3 6
Register to Condition Code: Formatted FP compare
Figure 5-43 FP RegisterMove, Conditional Instruction Format
31 26 25 21 20 18 17 16 15 11 10 6 5 0
COP1 fmt cc 0| tf fs fd MOVCF
6 5 3 1 1 5 5 6
Condition Code, Register FP: FPU register move-conditional on FP, cc
Figure 5-44 Four-Register Formatted Arithmetic FPU Instruction Format
31 26 25 21 20 16 15 11 10 6 5
COP1X fr ft fs fd op4 fmt3
6 5 5 5 5 3
Register-4: Four-register formatted arithmetic operations
Figure 5-45 Register Index FPU Instruction Format
31 26 25 21 20 16 15 11 10 6 5 0
COP1X base index 0 fd function
6 5 5 5 5 6
Register Index: Load and Store using register + register addressing
Figure 5-46 Register Index Hint FPU Instruction Format
31 26 25 21 20 16 15 11 10 6 5 0
COP1X base index hint 0 PREFX
6 5 5 5 5 6
Register Index Hint: Prefetch using register + register addressing
Figure 5-47 Condition Code, Register Integer FPU Instruction Format
31 26 25 21 20 18 17 16 15 11 10 6 5 0
SPECIAL rs cc 0| tf rd 0 MOVCI

6

5

3

1

1

5

5

Condition Code, Register Integer: CPU register move-conditional on FP, cc

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

95

Overview of the FPU Instruction Set

96

Table 5.58 FPU Instruction Format Fields

Field Description
BC1 Branch Conditional instruction subcode (op=COP1).
base CPU register: base address for address calculations.
COP1 Coprocessor 1 primary opcode valuein op field.
COP1X Coprocessor 1 eXtended primary opcode value in op field.
cc Condition Code specifier; for architectural levels prior to MIPS 1V, this must be set to zero.
fd FPU register: destination (arithmetic, loads, move-to) or source (stores, move-from).
fmt Destination and/or operand type (format) specifier.
fr FPU register: source.
fs FPU register: source.
ft FPU register: source (for stores, arithmetic) or destination (for loads).
function Field specifying a function within a particular op operation code.
function: op4 isa3-bit function field specifying a 4-register arithmetic operation for COP1X. fmt3isa3-
op4 + fmt3 bit field specifying the format of the operands and destination. The combinations are shown as
distinct instructions in the opcode tables.
hint Hint field made available to cache controller for prefetch operation.
index CPU register that holds the index address component for address calculations.
MOvC Valuein function field for a conditional move. There is one value for the instruction when
op=COP1, another value for the instruction when op=SPECIAL.
nd Nullify delay. If set, the branch is Likely, and the delay slot instruction is not executed.
offset Signed offset field used in address cal cul ations.
op Primary operation code (see COP1, COP1X, LWC1, SWC1, LDC1, SDC1, SPECIAL).
PREFX Value in function field for prefetch instruction when op=COP1X.
rd CPU register: destination.
rs CPU register: source.
rt CPU register: can be either source or destination.
SPECIAL SPECIAL primary opcode value in op field.
sub Operation subcode field for COP1 register immediate-mode instructions.

tf

True/Fase. The condition from an FP compare that is tested for equality with the tf bit.

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

Appendix A

Instruction Bit Encodings

A.29

A.30

Instruction Encodings and Instruction Classes

Instruction encodings are presented in this section; field names are printed here and throughout the book in italics.

When encoding an instruction, the primary opcode field is encoded first. Most opcode values completely specify an
instruction that has an immediate value or offset.

Opcode values that do not specify an instruction instead specify an instruction class. Instructions within a class are
further specified by valuesin other fields. For instance, opcode REGIMM specifies the immediate instruction class,
which includes conditional branch and trap immediate instructions.

Instruction Bit Encoding Tables

This section provides various bit encoding tables for the instructions of the MIPS32® |SA.

Figure A.48 shows a sample encoding table and the instruction opcode field this table encodes. Bits 31..29 of the
opcodefield arelisted in the leftmost columns of the table. Bits 28..26 of the opcode field are listed along the topmost
rows of the table. Both decimal and binary values are given, with the first three bits designating the row, and the last
three bits designating the column.

Aninstruction’s encoding is found at the intersection of arow (bits 31..29) and column (bits 28..26) value. For
instance, the opcode value for the instruction labelled EX1 is 33 (decimal, row and column), or 011011 (binary). Sim-
ilarly, the opcode value for EX2 is 64 (decimal), or 110100 (binary).

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60 97

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

Instruction Bit Encodings

Figure A.48 Sample Bit Encoding Table

31 26 25 21 20 16 15 0

opcode rs rt immediate
5 5 16

Binary encoding of
opcode (28..26)

Decimal encoding of

* opcode (28..26)
opcode bits 28..26 \
0 1 2 3 4 5 6 ~ 7 *
bits 31..29 000 001 010 011 100 101 110 11
0 | 000
1 | ool
2 | o10
3 | o11 EX1
_% 4 | 100
5 | 101
6 | 110 EX2
7 | 111

Binary encoding of

)) opcode (31..29)
Decimal encoding of

opcode (31..29)

Tables A.60 through A.78 describe the encoding used for the MIPS32 ISA. Table A.59 describes the meaning of the
symbols used in the tables.

Table A.59 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

* Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction must cause a Reserved Instruction Exception.

o (Alsoitalic field name.) Operation or field codes marked with this symbol denotes afield class.
The instruction word must be further decoded by examining additional tables that show values
for another instruction field.

B Operation or field codes marked with this symbol represent a valid encoding for a higher-order
MIPSISA level or anew revision of the Architecture. Executing such an instruction must cause a
Reserved Instruction Exception.

\Y% Operation or field codes marked with this symbol represent instructions which were only legal if
64-bit operations were enabled on implementations of Release 1 of the Architecture. In Release 2
of the architecture, operation or field codes marked with this symbol represent instructions which
are legal if 64-bit floating point operations are enabled. In other cases, executing such an instruc-
tion must cause a Reserved Instruction Exception (non-coprocessor encodings or coprocessor
instruction encodings for a coprocessor to which accessis allowed) or a Coprocessor Unusable
Exception (coprocessor instruction encodings for a coprocessor to which accessis not allowed).

98 MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

A.30 Instruction Bit Encoding Tables

Table A.59 Symbols Used in the Instruction Encoding Tables (Continued)

Symbol Meaning

0 Operation or field codes marked with this symbol are available to licensed MIPS partners. To
avoid multiple conflicting instruction definitions, MIPS Technologies will assist the partner in
selecting appropriate encodings if requested by the partner. The partner is not required to consult
with M1PS Technol ogies when one of these encodingsis used. If no instruction is encoded with
this value, executing such an instruction must cause a Reserved Instruction Exception
(SPECIAL2 encodings or coprocessor instruction encodings for a coprocessor to which accessis
allowed) or a Coprocessor Unusable Exception (coprocessor instruction encodings for a copro-
cessor to which accessis not allowed).

c Field codes marked with this symbol represent an EJTAG support instruction and implementa-
tion of this encoding is optional for each implementation. If the encoding is not implemented,
executing such an instruction must cause a Reserved Instruction Exception. If the encoding is
implemented, it must match the instruction encoding as shown in the table.

€ Operation or field codes marked with this symbol are reserved for MIPS Application Specific
Extensions. If the ASE is not implemented, executing such an instruction must cause a Reserved
Instruction Exception.

(] Operation or field codes marked with this symbol are obsolete and will be removed from afuture
revision of the MIPS32 | SA. Software should avoid using these operation or field codes.

&) Operation or field codes marked with this symbol are valid for Release 2 implementations of the
architecture. Executing such an instruction in a Release 1 implementation must cause a Reserved
Instruction Exception.

Table A.60 MIPS32 Encoding of the Opcode Field

’W bits 28..26

0 1 2 3 4 5 6 7
bits 31..29 000 001 010 011 100 101 110 111
0] 000 | SPECIALS | REGIMM & J JAL BEQ BNE BLEZ BGTZ
1 | oo1 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUl
2| 010 | copos COP1 & COP2 85 copixts BEQL ¢ BNEL ¢ BLEZL ¢ BGTZL ¢
3| on1 B B B B SPECIAL2 & JALX ¢ e SPECIAL3? 5@
4 | 100 LB LH LWL LW LBU LHU LWR B
5 | 101 SB SH SWL SwW B B SWR CACHE
6 | 110 LL LWC1 LWC2 6 PREF B LDC1 LDC2 6 B
7 | 1 sC SwcC1 SWC2 6 P B sbcl SDC2 6 B

1. In Release 1 of the Architecture, the COP1X opcode was called COP3, and was available as another user-available
coprocessor. In Release 2 of the Architecture, afull 64-bit floating point unit is available with 32-bit CPUs, and the
COP1X opcode is reserved for that purpose on al Release 2 CPUs. 32-hit implementations of Release 1 of the
architecture are strongly discouraged from using this opcode for a user-available coprocessor as doing so will limit
the potential for an upgrade path to a 64-hit floating point unit.

2. Release 2 of the Architecture added the SPECIAL 3 opcode. Implementations of Release 1 of the Architecture sig-
naled a Reserved Instruction Exception for this opcode.

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60 99

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

Instruction Bit Encodings

100

Table A.61 MIPS32 SPECIAL Opcode Encoding of Function Field

’W bits 2..0

0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 sLLt MOVCI & SRL & SRA SLLV * SRLV & SRAV
1| o001 JR? JALR? MOovVZ MOVN SYSCALL BREAK * SYNC
2 | o10 MFHI MTHI MFLO MTLO B B
3 | o11 MULT MULTU DIV DIVU B B B
4 | 100 ADD ADDU SUB SUBU AND OR XOR NOR
5 | 101 * * SLT SLTU B B B B
6 | 110 TGE TGEU TLT TLTU TEQ # TNE #
71111 B * B B B * B B

1. Specific encodings of thert, rd, and sa fields are used to distinguish among the SLL, NOP, SSNOP, EHB and
PAUSE functions.

2. Specific encodings of the hint field are used to distinguish JR from JR.HB and JALR from JALR.HB

Table A.62 MIPS32 REGIMM Encoding of rt Field

’f bits 18..16
0 1 2 3 4 5 6 7
bits 20..19 000 001 010 011 100 101 110 111
0 00 BLTZ BGEZ BLTZL ¢ BGEZL ¢ * * * *
1 01 TGEI TGEIU TLTI TLTIU TEQI * TNEI *
2 10 BLTZAL BGEZAL BLTZALL ¢ BGEZALL ¢ * * * *
3 11 ® ® * * * * * SYNCI &
Table A.63 MIPS32 SPECIALZ2 Encoding of Function Field
’W bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 000 MADD MADDU MUL 0 MSUB MSUBU 0 0
1 001 0 0 0 0 0 0 0 0
2 010 0 0 0 0 0 0 0 0
3 011 0 0 0 0 0 0 0 0
4 | 100 CcLZ CcLO 0 0 B B] 0
5 101 [} 0 0 [} 0 0 0 0
6 110 0 0 0 0 0 0 0 0
7 111 0 0 0 [} 0 0 0 SDBBP ¢

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

Table A.64 MIPS32 SPECIAL3! Encoding of Function Field for Release 2 of the Architecture

A.30 Instruction Bit Encoding Tables

function | bits2..0

0 1 2 3 4 5 6 7
bits5..3 000 001 010 011 100 101 110 111
0|oo0| ExTe B B B INS® B B B
1| 001 % % * * % * * %
21 010 % % * * * * * *
3| 011 * % * * * * *
4 | 100 | BSHFL @5 * * x " " :
51 101 * * % % % % % #
6 | 110 * * * * * * * *
7 (111 * * * RDHWR @ * * * *

1. Release 2 of the Architecture added the SPECIAL 3 opcode. Implementations of Release 1 of the Architecture sig-

naled a Reserved I nstruction Exception for this opcode and all function field values shown above.

Table A.65 MIPS32 MOVCI Encoding of tf Bit

tf bit 16

0 1
MOVF MOVT

Table A.66 MIPS321 SRL Encoding of Shift/Rotate

R bit 21

0 1
SRL ROTR

1. Release 2 of the Architecture
added the ROTR instruction.
Implementations of Release 1 of
the Architecture ignored bit 21
and treated the instruction as an
SRL

Table A.67 MIPS32! SRLV Encoding of Shift/Rotate

R bit 6

0 1
SRLV ROTRV

1. Release 2 of the Architecture
added the ROTRV instruction.
Implementations of Release 1 of
the Architecture ignored bit 6
and treated the instruction as an
SRLV

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

101

Instruction Bit Encodings

102

Table A.68 MIPS32 BSHFL Encoding of sa Field?!

’T bits 8..6
0 1 2 3 4 5 6 7
bits 10..9 000 001 010 011 100 101 110 111
0| 00 WSBH
1| o1
2| 10 SEB
3| 1 SEH
1. The safield is sparsely decoded to identify the final instructions. Entries in this table with no mnemonic are
reserved for future use by MIPS Technologies and may or may not cause a Reserved Instruction exception.
Table A.69 MIPS32 COPO Encoding of rs Field
rs bits 23..21
0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111
0 00 MFCO B * * MTCO B * *
1| 01 * * RDPGPR ® | MFMCO! 8@ * * WRPGPR @ *
2| 10
3| 1 cod

1. Release 2 of the Architecture added the MFM CO function, which is further decoded asthe DI (bit 5=0) and EI (bit
5=1) instructions.

Table A.70 MIPS32 COPO Encoding of Function Field When rs=CO

’W bits 2..0

0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 * TLBR TLBWI * * ® TLBWR *
1 001 TLBP * * % ® * * *
2 | o10 * * * * * * * *
3 | 011 ERET * # * * #* #* DERET o
4 | 100 WAIT * x ¥ N . - .
5 | 101 % * # % . - - .
6 | 110 * ® ® ® * * ® *
7 | 111 # s # # s # # *

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

A.30 Instruction Bit Encoding Tables

Table A.71 MIPS32 COP1 Encoding of rs Field

rs bits 23..21
0 1 2 3 4 5 6 7
bits25..24{ 000 001 010 011 100 101 110 111
0| 00 MFC1 B CFC1 MFHC1® | MTC1 B CTC1 | MTHC1®
1] 01 BC13d BC1ANY2 | BC1ANY4 * # * * *
eV eV
2| 10 Sé Do * * W LS PS *
3 11 % % * % * * * *
Table A.72 MIPS32 COP1 Encoding of Function Field When rs=S
W bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 [000 ADD SuUB MUL DIV SQRT ABS MOV NEG
1 | 001 ROUND.L V TRUNC.LV CEILLV FLOOR.L V ROUND.W TRUNC.W CEIL.W FLOOR.W
2 | 010 * MOVCF & MOvz MOVN * RECIP V RSQRT V ®
3] 011 * * * #* RECIP2 eV RECIP1 eV RSQRT1 eV RSQRT2 eV
4 | 100 #* CVT.D #* #* CVT.W CVTLV CVTPSV *
5 101 * E * * * * ES #
C.F C.UN C.EQ C.UEQ C.oLT C.uLtT C.OLE C.ULE
6 | 110 CABS.F eV CABS.UN &V CABS.EQeV | CABS.UEQ¢eV | CABS.OLT eV | CABS.ULT ¢V | CABS.OLE ¢V | CABS.ULE eV
C.SF C.NGLE C.SEQ C.NGL C.LT C.NGE C.LE C.NGT
7 | 111 CABS.SF eV | CABS.NGLE €V | CABS.SEQ €V | CABS.NGLeV | CABS.LTeV | CABS.NGEeV | CABS.LEeV | CABS.NGT eV
Table A.73 MIPS32 COP1 Encoding of Function Field When rs=D
’m bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 ADD SuUB MUL DIV SQRT ABS MOV NEG
1 | 001 ROUND.L V TRUNC.LV CEIL.LV FLOOR.L V ROUND.W TRUNC.W CEIL.W FLOOR.W
2 | 010 * MOVCF & MOvz MOVN #* RECIP V RSQRT V #*
3 [011 # * #* #* RECIP2 eV RECIP1 eV RSQRT1 eV RSQRT2 eV
4 | 100 CVTS * # #* CVT.W CVTLV #* #*
5 | 101 * * * ® * * * *
C.F C.UN C.EQ C.UEQ Cc.oLT C.ULT C.OLE C.ULE
6 [110 CABS.F eV CABS.UN eV CABS.EQ&eV | CABS.UEQ eV | CABS.OLT eV | CABS.ULT eV | CABS.OLE ¢V | CABS.ULE eV
C.SF C.NGLE C.SEQ C.NGL C.LT C.NGE C.LE C.NGT
7] 111 CABS.SF eV | CABS.NGLE ¢V | CABS.SEQ €V | CABS.NGL &V CABS.LT eV | CABS.NGEeV | CABS.LEeV | CABS.NGT eV

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

103

Instruction Bit Encodings

Table A.74 MIPS32 COP1 Encoding of Function Field When rs=W or L1

’W bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | ooo * ® ® ® ® * ® ®
1| o001 * * * * * * * *
2 010 # * % % ® ® * %
3 011 * * * % % % % %
4 | 100 CVTS CVT.D ® ® *® # CVT.PS.PW eV ®
5 | 101 ® * * * * * * *
6 | 110 * * ® ® ® * ® ®
7 | 112 * * * ® ® * ® ®
1. Format type L islegal only if 64-bit floating point operations are enabled.
Table A.75 MIPS64 COP1 Encoding of Function Field When rs=ps?t
function bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 ADD V SUBV MUL V # # ABS V MOV V NEG V
1 001 * * * * * * * *
2 | o010 * MOVCF 8V MOVZ V MOVN V # # # #
3 | o11 ADDR gV # MULR &V # RECIP2 eV RECIP1 eV RSQRT1eV | RSQRT2 &V
4 | 100 | CVT.SPUV # # * CVT.PW.PS eV * * *
5| 101 | CVT.SPLV # # # PLLPSV PLU.PS V PUL.PS V PUU.PS V
CFV CUNV CEQV C.UEQV COLTV CuLTv COLEV CULEV
6 | 110 | CABS.FeV | CABS.UNeV | CABS.EQeV | CABS.UEQeV | CABS.OLT eV | CABS.ULT ¢V | CABS.OLE ¢V | CABS.ULE eV
CSFV C.NGLE V C.SEQV C.NGLV CLTV C.NGE V CLEV CNGTV
7 | 111 | CABS.SFeV |CABS.NGLEeV | CABS.SEQeV | CABS.NGLeV | CABS.LTeV | CABS.NGEeV | CABS.LEeV | CABS.NGT eV

1. Format type PSislegal only if 64-bit floating point operations are enabled.

Table A.76 MIPS32 COP1 Encoding of tf Bit When rs=S, D, or PS, Function=MOVCF

104

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

tf bit 16
0 1
MOVFE.fmt MOVT.fmt

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

A.31 Floating Point Unit Instruction Format Encodings

Table A.77 MIPS32 COP2 Encoding of rs Field

’T bits 23..21
0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111
0 00 MFC2 0 B CFC26 MFHC2 6® MTC2 6 B CTC26 MTHC2 6®
1| o1 BC26 * % * * % . *
2 10
3| 11 c2 65

Table A.78 MIPS64 COP1X Encoding of Function Field!

’W bits 2..0

0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 [000 LWXC1V LDXC1 V ® # * LUXC1V * *
1| 001 SWXC1V SDXC1V # #* * SUXC1V * PREFX V
2 | o10 * * * * * #* * *
3 011 3 s * % * * ALNV.PS V *
4 100 MADD.S V MADD.D V ® # * ® MADD.PS V *
5 101 MSUB.S V MSUB.D V ® # * ® MSUB.PS V *
6 110 | NMADD.SV | NMADD.D V ® # * ® NMADD.PS V *
7 111 | NMSUB.SV | NMSUB.D V * * * * NMSUB.PS V *

1. COP1X instructions are legal only if 64-bit floating point operations are enabled.
A.31 Floating Point Unit Instruction Format Encodings

Instruction format encodings for the floating point unit are presented in this section. Thisinformation is atabular pre-
sentation of the encodings described in tables Table A.71 and Table A.78 above.

Table A.79 Floating Point Unit Instruction Format Encodings

fmt field fmt3 field
(bits 25..21 of (bits 2..0 of COP1X
COP1 opcode) opcode)
Decimal Hex Decimal Hex Mnemonic Name Bit Width Data Type
0..15 00..0F — — Used to encode Coprocessor 1 interface instructions (MFC1,
CTC1, etc.). Not used for format encoding.
16 10 0 0 S Single 32 Floating
Point
17 11 1 1 D Double 64 Floating
Point
18..19 12..13 2.3 2.3 Reserved for future use by the architecture.
20 14 4 4 w Word 32 Fixed Point
MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60 105

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

Instruction Bit Encodings

Table A.79 Floating Point Unit Instruction Format Encodings

fmt field fmt3 field

(bits 25..21 of (bits 2..0 of COP1X

COP1 opcode) opcode)

Decimal Hex Decimal Hex Mnemonic Name Bit Width Data Type
21 15 5 5 L Long 64 Fixed Point
22 16 6 6 PS Paired Sin- 2x 32 Floating
gle Point

23 17 7 7 Reserved for future use by the architecture.

24.31 18..1F — — Reserved for future use by the architecture. Not available for

fmt3 encoding.
106 MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

Appendix B

Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of significant

changesto this document sinceitslast release. Significant changes are defined as those which you should take note of
asyou use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change
bars. Change bars will be removed for changes which are more than one revision old.

Please note: Limitations on the authoring tools make it difficult to place change bars on changes to figures. Change
bars on figure titles are used to denote a potential change in the figure itself.

Revision Date Description
0.95 March 12, 2001 External review copy of reorganized and updated architecture documentation.
Update based on all feedback received:
* Fix bit numbering in FEXR diagram
* Clarify the description of the width of FPRsin 32-bit implementations
* Correct tag on FIR diagram.
» Update the compatibility and subsetting rules to capture the current require-
ments.
» Remove the requirement that alicensee must consult with MIPS Technolo-
1.00 August 29, 2002 gieswhen assigning SPECIAL 2 function fields.
Update the specification with the changes due to Release 2 of the Architecture.
Changes included in this revision are:
» The Coprocessor 1 FIR register was updated with new fields and interpreta-
tions.
» Update architecture and ASE summaries with the new instructions and
1.90 September 1, 2002 information introduced by Release 2 of the Architecture.
Continue the update of the specification for Release 2 of the Architecture.
Changesincluded in this revision are:
 Correct the revision history year for Revision 1.00 (above). It should be
2002, not 2001.
2.00 June 8, 2003 * Remove NOR, OR, and XOR from the 2-operand ALU instruction table.
Changesin thisrevision:
* Correct the wording of the hidden modes section (see Section 2.6,
"Compliance and Subsetting").
* Update dl filesto FrameMaker 7.1.
 Allow shadow setsto be implemented without vectored interrupts or sup-
port for an external interrupt controller. In such an implementation, they are
2.50 July 1, 2005 software-managed.
» COP3 no longer extendable by customer.
 Section on Instruction fetches added - 1. fetches & endian-ness 2. fetches &
2.60 June 25, 2008 CCA 3. self-modified code

MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

107

Revision History

108 MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture, Revision 2.60

Copyright © 2001-2003,2005,2008 MIPS Technologies Inc. All rights reserved.

	MIPS32® Architecture For Programmers Volume I: Introduction to the MIPS32® Architecture
	Contents
	Figures
	Tables
	About This Book
	1.1 Typographical Conventions
	1.1.1 Italic Text
	1.1.2 Bold Text
	1.1.3 Courier Text

	1.2 UNPREDICTABLE and UNDEFINED
	1.2.1 UNPREDICTABLE
	1.2.2 UNDEFINED
	1.2.3 UNSTABLE

	1.3 Special Symbols in Pseudocode Notation
	1.4 For More Information

	The MIPS Architecture: An Introduction
	2.5 MIPS32 and MIPS64 Overview
	2.5.1 Historical Perspective
	2.5.2 Architectural Evolution
	2.5.2.1 Release 2 of the MIPS32 Architecture

	2.5.3 Architectural Changes Relative to the MIPS I through MIPS V Architectures

	2.6 Compliance and Subsetting
	2.7 Components of the MIPS Architecture
	2.7.1 MIPS Instruction Set Architecture (ISA)
	2.7.2 MIPS Privileged Resource Architecture (PRA)
	2.7.3 MIPS Application Specific Extensions (ASEs)
	2.7.4 MIPS User Defined Instructions (UDIs)

	2.8 Architecture Versus Implementation
	2.9 Relationship between the MIPS32 and MIPS64 Architectures
	2.10 Instructions, Sorted by ISA
	2.10.1 List of MIPS32 Instructions
	2.10.2 List of MIPS64 Instructions

	2.11 Pipeline Architecture
	2.11.1 Pipeline Stages and Execution Rates
	2.11.2 Parallel Pipeline
	2.11.3 Superpipeline
	2.11.4 Superscalar Pipeline

	2.12 Load/Store Architecture
	2.13 Programming Model
	2.13.1 CPU Data Formats
	2.13.2 FPU Data Formats
	2.13.3 Coprocessors (CP0-CP3)
	2.13.4 CPU Registers
	2.13.4.1 CPU General-Purpose Registers
	2.13.4.2 CPU Special-Purpose Registers

	2.13.5 FPU Registers
	2.13.6 Byte Ordering and Endianness
	2.13.6.1 Big-Endian Order
	2.13.6.2 Little-Endian Order
	2.13.6.3 MIPS Bit Endianness
	2.13.6.4 Addressing Alignment Constraints
	2.13.6.5 Unaligned Loads and Stores

	2.13.7 Memory Access Types
	2.13.7.1 Uncached Memory Access
	2.13.7.2 Cached Memory Access

	2.13.8 Implementation-Specific Access Types
	2.13.9 Cacheability and Coherency Attributes and Access Types
	2.13.10 Mixing Access Types
	2.13.11 Instruction Fetches
	2.13.11.1 Instruction fields layout
	2.13.11.2 Instruction placement and endianness
	2.13.11.3 Instruction fetches using uncached access to memory without side-effects
	2.13.11.4 Instruction fetches using uncached access to memory with side-effects
	2.13.11.5 Instruction fetches using cacheable access to memory
	2.13.11.6 Instruction fetchs and exceptions
	2.13.11.7 Self-Modified Code

	Application Specific Extensions
	3.14 Description of ASEs
	3.15 List of Application Specific Instructions
	3.15.1 The MIPS16e™ Application Specific Extension to the MIPS32Architecture
	3.15.2 The MDMX™ Application Specific Extension to the MIPS64 Architecture
	3.15.3 The MIPS-3D® Application Specific Extension to the MIPS32 Architecture
	3.15.4 The SmartMIPS® Application Specific Extension to the MIPS32 Architecture
	3.15.5 The MIPS® DSP Application Specific Extension to the MIPS32 Architecture
	3.15.6 The MIPS® MT Application Specific Extension to the MIPS32 Architecture

	Overview of the CPU Instruction Set
	4.16 CPU Instructions, Grouped By Function
	4.16.1 CPU Load and Store Instructions
	4.16.1.1 Types of Loads and Stores
	4.16.1.2 Load and Store Access Types
	4.16.1.3 List of CPU Load and Store Instructions
	4.16.1.4 Loads and Stores Used for Atomic Updates
	4.16.1.5 Coprocessor Loads and Stores

	4.16.2 Computational Instructions
	4.16.2.1 ALU Immediate and Three-Operand Instructions
	4.16.2.2 ALU Two-Operand Instructions
	4.16.2.3 Shift Instructions
	4.16.2.4 Multiply and Divide Instructions

	4.16.3 Jump and Branch Instructions
	4.16.3.1 Types of Jump and Branch Instructions Defined by the ISA
	4.16.3.2 Branch Delays and the Branch Delay Slot
	4.16.3.3 Branch and Branch Likely
	4.16.3.4 List of Jump and Branch Instructions

	4.16.4 Miscellaneous Instructions
	4.16.4.1 Instruction Serialization (SYNC and SYNCI)
	4.16.4.2 Exception Instructions
	4.16.4.3 Conditional Move Instructions
	4.16.4.4 Prefetch Instructions
	4.16.4.5 NOP Instructions

	4.16.5 Coprocessor Instructions
	4.16.5.1 What Coprocessors Do
	4.16.5.2 System Control Coprocessor 0 (CP0)
	4.16.5.3 Floating Point Coprocessor 1 (CP1)
	4.16.5.4 Coprocessor Load and Store Instructions

	4.17 CPU Instruction Formats

	Overview of the FPU Instruction Set
	5.18 Binary Compatibility
	5.19 Enabling the Floating Point Coprocessor
	5.20 IEEE Standard 754
	5.21 FPU Data Types
	5.21.1 Floating Point Formats
	5.21.1.1 Normalized and Denormalized Numbers
	5.21.1.2 Reserved Operand Values-Infinity and NaN
	5.21.1.3 Infinity and Beyond
	5.21.1.4 Signalling Non-Number (SNaN)
	5.21.1.5 Quiet Non-Number (QNaN)
	5.21.1.6 Paired Single Exceptions
	5.21.1.7 Paired Single Condition Codes

	5.21.2 Fixed Point Formats

	5.22 Floating Point Register Types
	5.22.1 FPU Register Models
	5.22.2 Binary Data Transfers (32-Bit and 64-Bit)
	5.22.3 FPRs and Formatted Operand Layout

	5.23 Floating Point Control Registers (FCRs)
	5.23.1 Floating Point Implementation Register (FIR, CP1 Control Register 0)
	5.23.2 Floating Point Control and Status Register (FCSR, CP1 Control Register 31)
	5.23.3 Floating Point Condition Codes Register (FCCR, CP1 Control Register 25)
	5.23.4 Floating Point Exceptions Register (FEXR, CP1 Control Register 26)
	5.23.5 Floating Point Enables Register (FENR, CP1 Control Register 28)

	5.24 Formats of Values Used in FP Registers
	5.25 FPU Exceptions
	5.25.0.1 Precise Exception Mode
	5.25.1 Exception Conditions
	5.25.1.1 Invalid Operation Exception
	5.25.1.2 Division By Zero Exception
	5.25.1.3 Underflow Exception
	5.25.1.4 Overflow Exception
	5.25.1.5 Inexact Exception
	5.25.1.6 Unimplemented Operation Exception

	5.26 FPU Instructions
	5.26.1 Data Transfer Instructions
	5.26.1.1 Data Alignment in Loads, Stores, and Moves
	5.26.1.2 Addressing Used in Data Transfer Instructions

	5.26.2 Arithmetic Instructions
	5.26.3 Conversion Instructions
	5.26.4 Formatted Operand-Value Move Instructions
	5.26.5 Conditional Branch Instructions
	5.26.6 Miscellaneous Instructions

	5.27 Valid Operands for FPU Instructions
	5.28 FPU Instruction Formats
	5.28.1 Implementation Note

	Instruction Bit Encodings
	A.29 Instruction Encodings and Instruction Classes
	A.30 Instruction Bit Encoding Tables
	A.31 Floating Point Unit Instruction Format Encodings

	Revision History

