
Chapter 8. Instruction Set 8-9Chapter 8. Instruction Set 8-9Chapter 8. Instruction Set 8-9

8

addx addx
Add (x’7C00 0214’)

add rD,rA,rB (OE = 0 Rc = 0)
add. rD,rA,rB (OE = 0 Rc = 1)
addo rD,rA,rB (OE = 1 Rc = 0)
addo. rD,rA,rB (OE = 1 Rc = 1)

rD ← (rA) + (rB)

The sum (rA) + (rB) is placed into rD.

The add instruction is preferred for addition because it sets few status bits.

Other registers altered:
• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (If Rc = 1)
NOTE: CR0 field may not reflect the infinitely precise result if overflow occurs (see

next bullet item.

• XER:
Affected: SO, OV (If OE = 1)
NOTE: For more information on condition codes see Section 2.1.3, “Condition

Register,” and Section 2.1.5, “XER Register.”

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31
31 D A B OE 266 Rc

8-12 PowerPC Microprocessor 32-bit Family: The Programming Environments8-12 PowerPC Microprocessor 32-bit Family: The Programming Environments8-12 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

addi addi
Add Immediate (x’3800 0000’)

addi rD,rA,SIMM

if rA = 0
then rD ←EXTS(SIMM)
else rD ← (rA) + EXTS(SIMM)

The sum (rA|0) + sign extended SIMM is placed into rD.

The addi instruction is preferred for addition because it sets few status bits.

NOTE: addi uses the value 0, not the contents of GPR0, if rA = 0.

Other registers altered:
• None

Simplified mnemonics:
li rD,value equivalent to addi rD,0,value
la rD,disp(rA) equivalent to addi rD,rA,disp
subi rD,rA,value equivalent to addi rD,rA,–value

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31
14 D A SIMM

Chapter 8. Instruction Set 8-15Chapter 8. Instruction Set 8-15Chapter 8. Instruction Set 8-15

8

addis addis
Add Immediate Shifted (x’3C00 0000’)

addis rD,rA,SIMM

if rA = 0
then rD ← (SIMM || (16)0)
else rD ← (rA) + (SIMM || (16)0)

The sum (rA|0) + (SIMM || 0x0000) is placed into rD.

The addis instruction is preferred for addition because it sets few status bits.

NOTE: addis uses the value 0, not the contents of GPR0, if rA = 0.

Other registers altered:
• None

Simplified mnemonics:
lis rD,value equivalent to addis rD,0,value
subis rD,rA,value equivalent to addis rD,rA,–value

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31
15 D A SIMM

8-18 PowerPC Microprocessor 32-bit Family: The Programming Environments8-18 PowerPC Microprocessor 32-bit Family: The Programming Environments8-18 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

andx andx
AND (x’7C00 0038’)

and rA,rS,rB (Rc = 0)
and. rA,rS,rB (Rc = 1)

rA ← (rS) & (rB)

The contents of rS are ANDed with the contents of rB and the result is placed into rA.

Other registers altered:
• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (If Rc = 1)

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31
31 S A B 28 Rc

8-20 PowerPC Microprocessor 32-bit Family: The Programming Environments8-20 PowerPC Microprocessor 32-bit Family: The Programming Environments8-20 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

andi. andi.
AND Immediate (x’7000 0000’)

andi. rA,rS,UIMM

rA ← (rS) & ((16)0 || UIMM)

The contents of rS are ANDed with 0x000 || UIMM and the result is placed into rA.

Other registers altered:
• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31
28 S A UIMM

Chapter 8. Instruction Set 8-21Chapter 8. Instruction Set 8-21Chapter 8. Instruction Set 8-21

8

andis. andis.
AND Immediate Shifted (x’7400 0000’)

andis. rA,rS,UIMM

rA ← (rS) & (UIMM || (16)0)

The contents of rS are ANDed with UIMM || 0x0000 and the result is placed into rA.

Other registers altered:
• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31
29 S A UIMM

8-22 PowerPC Microprocessor 32-bit Family: The Programming Environments8-22 PowerPC Microprocessor 32-bit Family: The Programming Environments8-22 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

bx bx
Branch (x’4800 0000’)

b target_addr (AA = 0 LK = 0)
ba target_addr (AA = 1 LK = 0)
bl target_addr (AA = 0 LK = 1)
bla target_addr (AA = 1 LK = 1)

if AA = 1
then NIA ←iea EXTS(LI || 0b00)
else NIA ←iea CIA + EXTS(LI || 0b00)

if LK = 1
then LR ←iea CIA + 4

target_addr specifies the branch target address.

If AA = 1, then the branch target address is the value LI || 0b00 sign-extended.

If AA = 0, then the branch target address is the sum of LI || 0b00 sign-extended plus the
address of this instruction.

If LK = 1, then the effective address of the instruction following the branch instruction is
placed into the link register.

Other registers altered:
Affected: Link Register (LR) (If LK = 1)

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA I

0 5 6 29 30 31
18 LI AA LK

Chapter 8. Instruction Set 8-23Chapter 8. Instruction Set 8-23Chapter 8. Instruction Set 8-23

8

bcx bcx
Branch Conditional (x’4000 0000’)

bc BO,BI,target_addr (AA = 0 LK = 0)
bca BO,BI,target_addr (AA = 1 LK = 0)
bcl BO,BI,target_addr (AA = 0 LK = 1)
bcla BO,BI,target_addr (AA = 1 LK = 1)

if ¬ BO[2]
then CTR ← CTR – 1

ctr_ok ← BO[2] | ((CTR ≠ 0) ⊕ BO[3])
cond_ok ←BO[0] | (CR[BI] ≡ BO[1])
if ctr_ok & cond_ok

then
if AA = 1

then NIA ←iea EXTS(BD || 0b00)
else NIA ←iea CIA + EXTS(BD || 0b00)

if LK = 1
then LR ←iea CIA + 4

The BI field specifies the bit in the condition register (CR) to be used as the condition of
the branch. The BO field is encoded as described in Table 8-6. Additional information
about BO field encoding is provided in Section 4.2.4.2, “Conditional Branch Control”.

Table 8-6. BO Operand Encodings

BO Description

0000y Decrement the CTR, then branch if the decremented CTR 0 and the condition is FALSE.

0001y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decremented CTR 0 and the condition is TRUE.

0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.

011zy Branch if the condition is TRUE.

1z00y Decrement the CTR, then branch if the decremented CTR 0.

1z01y Decrement the CTR, then branch if the decremented CTR = 0.

1z1zz Branch always.

In this table, z indicates a bit that is ignored.
Note: The z bits should be cleared, as they may be assigned a meaning in some future version of the
PowerPC architecture.

The y bit provides a hint about whether a conditional branch is likely to be taken, and may be used by some
PowerPC implementations to improve performance.

0 5 6 10 11 15 16 29 30 31
16 BO BI BD AA LK

8-24 PowerPC Microprocessor 32-bit Family: The Programming Environments8-24 PowerPC Microprocessor 32-bit Family: The Programming Environments8-24 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

target_addr specifies the branch target address.

If AA = 0, the branch target address is the sum of BD || 0b00 sign-extended and the address
of this instruction.

If AA = 1, the branch target address is the value BD || 0b00 sign-extended.

If LK = 1, the effective address of the instruction following the branch instruction is placed
into the link register.

Other registers altered:
Affected: Count Register (CTR) (If BO[2] = 0)
Affected: Link Register (LR) (If LK = 1)

Simplified mnemonics:
blt target equivalent to bc 12,0,target
bne cr2,target equivalent to bc 4,10,target
bdnz target equivalent to bc 16,0,target

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

Chapter 8. Instruction Set 8-27Chapter 8. Instruction Set 8-27Chapter 8. Instruction Set 8-27

8

bclrx bclrx
Branch Conditional to Link Register (x’4C00 0020’)

bclr BO,BI (LK = 0)
bclrl BO,BI (LK = 1)

if ¬ BO[2]
then CTR ← CTR – 1

ctr_ok ← BO[2] | ((CTR ≠ 0)⊕ BO[3])
cond_ok ← BO[0] | (CR[BI] ≡ BO[1])
if ctr_ok & cond_ok

then NIA ←iea LR[0–29] || 0b00
if LK

then LR ←iea CIA + 4

The BI field specifies the bit in the condition register to be used as the condition of the
branch. The BO field is encoded as described in Table 8-8. Additional information about
BO field encoding is provided in Section 4.2.4.2, “Conditional Branch Control”.

Table 8-8. BO Operand Encodings

The branch target address is LR[0–29] || 0b00.

BO Description

0000y Decrement the CTR, then branch if the decremented CTR 0 and the condition is FALSE.

0001y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decremented CTR 0 and the condition is TRUE.

0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.

011zy Branch if the condition is TRUE.

1z00y Decrement the CTR, then branch if the decremented CTR 0.

1z01y Decrement the CTR, then branch if the decremented CTR = 0.

1z1zz Branch always.

If the BO field specifies that the CTR is to be decremented, the entire 32-bit CTR is decremented.
In this table, z indicates a bit that is ignored.

Note: The z bits should be cleared, as they may be assigned a meaning in some future version of the
PowerPC architecture.

The y bit provides a hint about whether a conditional branch is likely to be taken, and may be used by
some PowerPC implementations to improve performance.

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 BO BI 0 0 0 0 0 16 LK

8-28 PowerPC Microprocessor 32-bit Family: The Programming Environments8-28 PowerPC Microprocessor 32-bit Family: The Programming Environments8-28 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

If LK = 1, then the effective address of the instruction following the branch instruction is
placed into the link register.

Other registers altered:
Affected: Count Register (CTR) (If BO[2] = 0)
Affected: Link Register (LR) (If LK = 1)

Simplified mnemonics:
bltlr equivalent to bclr 12,0
bnelr cr2 equivalent to bclr 4,10
bdnzlr equivalent to bclr 16,0

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XL

Chapter 8. Instruction Set 8-29Chapter 8. Instruction Set 8-29Chapter 8. Instruction Set 8-29

8

cmp cmp
Compare (x’7C00 0000’)

cmp crfD,L,rA,rB

a ← (rA)
b ← (rB)
if a < b

then c ← 0b100
else if a > b

then c ← 0b010
else c ← 0b001

CR[(4 ∗ crfD)–(4 ∗ crfD + 3)] ← c || XER[SO]

The contents of rA are compared with the contents of rB, treating the operands as signed
integers. The result of the comparison is placed into CR field crfD.

NOTE: If L = 1, the instruction form is invalid.

Other registers altered:
• Condition Register (CR field specified by operand crfD):

Affected: LT, GT, EQ, SO
Simplified mnemonics:
cmpd rA,rB equivalent to cmp 0,1,rA,rB
cmpw cr3,rA,rB equivalent to cmp 3,0,rA,rB

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 8 9 10 11 15 16 20 21 30 31

Reserved

B 0 0 0 0 0 0 0 0 0 0 031 crfD 0 L A

8-30 PowerPC Microprocessor 32-bit Family: The Programming Environments8-30 PowerPC Microprocessor 32-bit Family: The Programming Environments8-30 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

cmpi cmpi
Compare Immediate (x’2C00 0000’)

cmpi crfD,L,rA,SIMM

a ← (rA)
if a < EXTS(SIMM)

then c ← 0b100
else if a > EXTS(SIMM)

then c ← 0b010
else c ← 0b001

CR[(4 ∗ crfD)–(4 ∗ crfD + 3)] ← c || XER[SO]

The contents of rA are compared with the sign-extended value of the SIMM field, treating
the operands as signed integers. The result of the comparison is placed into CR field crfD.

NOTE: If L = 1, the instruction form is invalid.

Other registers altered:
• Condition Register (CR field specified by operand crfD):

Affected: LT, GT, EQ, SO
Simplified mnemonics:
cmpdi rA,value equivalent to cmpi 0,1,rA,value
cmpwi cr3,rA,value equivalent to cmpi 3,0,rA,value

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 8 9 10 11 15 16 31

Reserved

SIMM11 crfD 0 L A

Chapter 8. Instruction Set 8-31Chapter 8. Instruction Set 8-31Chapter 8. Instruction Set 8-31

8

cmpl cmpl
Compare Logical (x’7C00 0040’)

cmpl crfD,L,rA,rB

a ← (rA)
b ← (rB)
if a <U b

then c ← 0b100
else if a >U b

then c ← 0b010
else c ← 0b001

CR[(4 ∗ crfD)–(4 ∗ crfD + 3)] ← c || XER[SO]

The contents of rA are compared with the contents of rB, treating the operands as unsigned
integers. The result of the comparison is placed into CR field crfD.

NOTE: If L = 1, the instruction form is invalid.

Other registers altered:
• Condition Register (CR field specified by operand crfD):

Affected: LT, GT, EQ, SO
Simplified mnemonics:
cmpld rA,rB equivalent to cmpl 0,1,rA,rB
cmplw cr3,rA,rB equivalent to cmpl 3,0,rA,rB

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 8 9 10 11 15 16 20 21 31

Reserved

31 crfD 0 L A B 32 0

8-32 PowerPC Microprocessor 32-bit Family: The Programming Environments8-32 PowerPC Microprocessor 32-bit Family: The Programming Environments8-32 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

cmpli cmpli
Compare Logical Immediate (x’2800 0000’)

cmpli crfD,L,rA,UIMM

a ← (rA)
if a <U ((16)0 || UIMM)

then c ← 0b100
else if a >U ((16)0 || UIMM)

then c ← 0b010
else c ← 0b001

CR[(4 ∗ crfD)-(4 ∗ crfD + 3)] ← c || XER[SO]

The contents of rA are compared with 0x0000 || UIMM, treating the operands as unsigned
integers. The result of the comparison is placed into CR field crfD.

NOTE: If L = 1, the instruction form is invalid.

Other registers altered:
• Condition Register (CR field specified by operand crfD):

Affected: LT, GT, EQ, SO
Simplified mnemonics:
cmpldi r A,value equivalent to cmpli 0,1,rA,value
cmplwi cr3,rA,value equivalent to cmpli 3,0,rA,value

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 8 9 10 11 15 16 31

Reserved

UIMM10 crfD 0 L A

8-50 PowerPC Microprocessor 32-bit Family: The Programming Environments8-50 PowerPC Microprocessor 32-bit Family: The Programming Environments8-50 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

divwx divwx
Divide Word (x’7C00 03D6’)

divw rD,rA,rB (OE = 0 Rc = 0)
divw. rD,rA,rB (OE = 0 Rc = 1)
divwo rD,rA,rB (OE = 1 Rc = 0)
divwo. rD,rA,rB (OE = 1 Rc = 1)

dividend ← (rA)
divisor ← (rB)
rD ← dividend ÷ divisor

The dividend is the contents of rA. The divisor is the contents of rB. The remainder is not
supplied as a result. Both the operands and the quotient are interpreted as signed integers.
The quotient is the unique signed integer that satisfies the equation—dividend = (quotient
* divisor) + r where 0 r < |divisor| (if the dividend is non-negative), and –|divisor| < r 0 (if
the dividend is negative).

If an attempt is made to perform either of the divisions—0x8000_0000 ÷ −1 or
<anything> ÷ 0, then the contents of rD are undefined, as are the contents of the LT, GT,
and EQ bits of the CR0 field (if Rc = 1). In this case, if OE = 1 then OV is set.

The 32-bit signed remainder of dividing the contents of rA by the contents of rB can be
computed as follows, except in the case that the contents of rA = –231 and the contents of
rB = –1.
divw rD,rA,rB # rD = quotient
mullw rD,rD,rB # rD = quotient * divisor
subf rD,rD,rA # rD = remainder

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (If Rc = 1)

• XER:
Affected: SO, OV (If OE = 1)
NOTE: For more information on condition codes see Section 2.1.3, “Condition

Register,” and Section 2.1.5, “XER Register.”

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31
31 D A B OE 491 Rc

Chapter 8. Instruction Set 8-51Chapter 8. Instruction Set 8-51Chapter 8. Instruction Set 8-51

8

divwux divwux
Divide Word Unsigned (x’7C00 0396’)

divwu rD,rA,rB (OE = 0 Rc = 0)
divwu. rD,rA,rB (OE = 0 Rc = 1)
divwuo rD,rA,rB (OE = 1 Rc = 0)
divwuo. rD,rA,rB (OE = 1 Rc = 1)

dividend ← (rA)
divisor ← (rB)
rD← dividend ÷ divisor

The dividend is the contents of rA. The divisor is the contents of rB. The remainder is not
supplied as a result.

Both operands and the quotient are interpreted as unsigned integers, except that if Rc = 1
the first three bits of CR0 field are set by signed comparison of the result to zero. The
quotient is the unique unsigned integer that satisfies the equation—dividend = (quotient *
divisor) + r (where 0 r < divisor). If an attempt is made to perform the
division—<anything> 0—then the contents of rD are undefined as are the contents of the
LT, GT, and EQ bits of the CR0 field (if Rc = 1). In this case, if OE = 1 then OV is set.

The 32-bit unsigned remainder of dividing the contents of rA by the contents of rB can be
computed as follows:
divwu rD,rA,rB # rD = quotient
mullw rD,rD,rB # rD = quotient * divisor
subf rD,rD,rA # rD = remainder

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (If Rc = 1)

• XER:
Affected: SO, OV (if OE = 1)
NOTE: For more information on condition codes see Section 2.1.3, “Condition

Register,” and Section 2.1.5, “XER Register.”

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31
31 D A B OE 459 Rc

8-122 PowerPC Microprocessor 32-bit Family: The Programming Environments8-122 PowerPC Microprocessor 32-bit Family: The Programming Environments8-122 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

lwz lwz
Load Word and Zero (x’8000 0000’)

lwz rD,d(rA)

if rA = 0
then b← 0
else b← (rA)

EA← b + EXTS(d)
rD← MEM(EA, 4)

EA is the sum (rA|0) + d. The word in memory addressed by EA is loaded into rD.

Other registers altered:
• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31
d32 D A

Chapter 8. Instruction set 8-123Chapter 8. Instruction set 8-123Chapter 8. Instruction set 8-123

8

lwzu lwzu
Load Word and Zero with Update (x’8400 0000’)

lwzu rD,d(rA)

EA ← (rA) + EXTS(d)
rD← MEM(EA, 4)
rA← EA

EA is the sum (rA) + d. The word in memory addressed by EA is loaded into rD.

EA is placed into rA.

If rA = 0, or rA = rD, the instruction form is invalid.
Other registers altered:

• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31
d33 D A

8-132 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-132 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-132 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl

8

mfspr mfspr
Move from Special-Purpose Register (x’7C00 02A6’)

mfspr rD,SPR

n ← spr[5–9] || spr[0–4]
rD← SPR(n)

In the PowerPC UISA, the SPR field denotes a special-purpose register, encoded as shown
in Table 8-9.The contents of the designated special purpose register are placed into rD
.

If the SPR field contains any value other than one of the values shown in Table 8-9 (and the
processor is in user mode), one of the following occurs:

• The system illegal instruction error handler is invoked.
• The system supervisor-level instruction error handler is invoked.
• The results are boundedly undefined.

Other registers altered:
• None

Simplified mnemonics:

mfxer rD equivalent to mfspr rD,1
mflr rD equivalent to mfspr rD,8
mfctr rD equivalent to mfspr rD,9

Table 8-9. PowerPC UISA SPR Encodings for mfspr

SPR**
Register Name

Decimal spr[5–9] spr[0–4]

1 00000 00001 XER

8 00000 01000 LR

9 00000 01001 CTR

** Note: The order of the two 5-bit halves of the SPR number
is reversed compared with the actual instruction coding.

0 5 6 10 11 20 21 30 31

Reserved

spr* 339 031 D

NOTE: *This is a split field.

Chapter 8. Instruction Set 8-133Chapter 8. Instruction Set 8-133Chapter 8. Instruction Set 8-133

8

In the PowerPC OEA, the SPR field denotes a special-purpose register, encoded as shown
in Table 8-10. The contents of the designated SPR are placed into rD.

In the PowerPC UISA, the SPR field denotes a special-purpose register, encoded as shown
in Table 8-10. If the SPR[0] = 0 (Access type User), the contents of the designated SPR are
placed into rD.

NOTE: For this instruction (mfspr), SPR[0] = 1 is supervisor-level, if and only if reading
the register. Execution of this instruction specifying a defined and supervisor-
level register when MSR[PR] = 1 results in a privileged instruction type program
exception.

If MSR[PR] = 1, the only effect of executing an instruction with an SPR number that is not
shown in Table 8-10 and has SPR[0] = 1 is to cause a supervisor-level instruction type
program exception or an illegal instruction type program exception. For all other cases,
MSR[PR] = 0 or SPR[0] = 0. If the SPR field contains any value that is not shown in
Table 8-10, either an illegal instruction type program exception occurs or the results are
boundedly undefined.

Other registers altered:
None

Table 8-10. PowerPC OEA SPR Encodings for mfspr

SPR
1

Register
Name Access

Decimal spr[5–9] spr[0–4]

1 00000 00001 XER User

8 00000 01000 LR User

9 00000 01001 CTR User

18 00000 10010 DSISR Supervisor

19 00000 10011 DAR Supervisor

22 00000 10110 DEC Supervisor

25 00000 11001 SDR1 Supervisor

26 00000 11010 SRR0 Supervisor

27 00000 11011 SRR1 Supervisor

272 01000 10000 SPRG0 Supervisor

273 01000 10001 SPRG1 Supervisor

274 01000 10010 SPRG2 Supervisor

275 01000 10011 SPRG3 Supervisor

282 01000 11010 EAR Supervisor

287 01000 11111 PVR Supervisor

8-134 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-134 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-134 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl

8

528 10000 10000 IBAT0U Supervisor

529 10000 10001 IBAT0L Supervisor

530 10000 10010 IBAT1U Supervisor

531 10000 10011 IBAT1L Supervisor

532 10000 10100 IBAT2U Supervisor

533 10000 10101 IBAT2L Supervisor

534 10000 10110 IBAT3U Supervisor

535 10000 10111 IBAT3L Supervisor

536 10000 11000 DBAT0U Supervisor

537 10000 11001 DBAT0L Supervisor

538 10000 11010 DBAT1U Supervisor

539 10000 11011 DBAT1L Supervisor

540 10000 11100 DBAT2U Supervisor

541 10000 11101 DBAT2L Supervisor

542 10000 11110 DBAT3U Supervisor

543 10000 11111 DBAT3L Supervisor

1013 11111 10101 DABR Supervisor

1Note: The order of the two 5-bit halves of the SPR number is reversed
compared with actual instruction coding.

For mtspr and mfspr instructions, the SPR number coded in assembly
language does not appear directly as a 10-bit binary number in the
instruction. The number coded is split into two 5-bit halves that are
reversed in the instruction, with the high-order five bits appearing in bits
16–20 of the instruction and the low-order five bits in bits 11–15.

NOTE: mfspr is supervisor-level only if SPR[0] = 1.

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA/OEA yes* XFX

Table 8-10. PowerPC OEA SPR Encodings for mfspr (Continued)

SPR
1

Register
Name Access

Decimal spr[5–9] spr[0–4]

Chapter 8. Instruction Set 8-145Chapter 8. Instruction Set 8-145Chapter 8. Instruction Set 8-145

8

mtspr mtspr
Move to Special-Purpose Register (x’7C00 03A6’)

mtspr SPR,rS

n ← spr[5–9] || spr[0–4]
SPR(n)← (rS)

In the PowerPC UISA, the SPR field denotes a special-purpose register, encoded as shown
in Table 8-12. The contents of rS are placed into the designated special-purpose register.

If the SPR field contains any value other than one of the values shown in Table 8-12, and
the processor is operating in user mode, one of the following occurs:

• The system illegal instruction error handler is invoked.
• The system supervisor instruction error handler is invoked.
• The results are boundedly undefined.

Other registers altered:
• See Table 8-12.

Simplified mnemonics:
mtxer rD equivalent to mtspr 1,rD
mtlr rD equivalent to mtspr 8,rD
mtctr rD equivalent to mtspr 9,rD

Table 8-12. PowerPC UISA SPR Encodings for mtspr

 SPR**
Register Name

Decimal spr[5–9] spr[0–4]

1 00000 00001 XER

8 00000 01000 LR

9 00000 01001 CTR

** Note: The order of the two 5-bit halves of the SPR number
is reversed compared with actual instruction coding.

0 5 6 10 11 20 21 30 31

Reserved

spr* 467 031 S

NOTE: This is a split field.

8-146 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-146 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-146 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl

8

In the PowerPC OEA, the SPR field denotes a special-purpose register, encoded as shown
in Table 8-13. The contents of rS are placed into the designated special-purpose register.

In the PowerPC UISA, if the SPR[0]=0 (Access is User) the contents of rS are placed into
the designated special-purpose register.

For this instruction, SPRs TBL and TBU are treated as separate 32-bit registers; setting one
leaves the other unaltered.

The value of SPR[0] = 1 if and only if writing the register is a supervisor-level operation.
Execution of this instruction specifying a defined and supervisor-level register when
MSR[PR] = 1 results in a privileged instruction type program exception.

If MSR[PR] = 1 then the only effect of executing an instruction with an SPR number that
is not shown in Table 8-13 and has SPR[0] = 1 is to cause a privileged instruction type
program exception or an illegal instruction type program exception. For all other cases,
MSR[PR] = 0 or SPR[0] = 0, if the SPR field contains any value that is not shown in
Table 8-13, either an illegal instruction type program exception occurs or the results are
boundedly undefined.

Other registers altered:
• See Table 8-13.

Table 8-13. PowerPC OEA SPR Encodings for mtspr

 SPR
1

Register
Name Access

Decimal spr[5–9] spr[0–4]

1 00000 00001 XER User

8 00000 01000 LR User

9 00000 01001 CTR User

18 00000 10010 DSISR Supervisor

19 00000 10011 DAR Supervisor

22 00000 10110 DEC Supervisor

25 00000 11001 SDR1 Supervisor

26 00000 11010 SRR0 Supervisor

27 00000 11011 SRR1 Supervisor

272 01000 10000 SPRG0 Supervisor

273 01000 10001 SPRG1 Supervisor

274 01000 10010 SPRG2 Supervisor

275 01000 10011 SPRG3 Supervisor

282 01000 11010 EAR Supervisor

Chapter 8. Instruction Set 8-147Chapter 8. Instruction Set 8-147Chapter 8. Instruction Set 8-147

8

284 01000 11100 TBL Supervisor

285 01000 11101 TBU Supervisor

528 10000 10000 IBAT0U Supervisor

529 10000 10001 IBAT0L Supervisor

530 10000 10010 IBAT1U Supervisor

531 10000 10011 IBAT1L Supervisor

532 10000 10100 IBAT2U Supervisor

533 10000 10101 IBAT2L Supervisor

534 10000 10110 IBAT3U Supervisor

535 10000 10111 IBAT3L Supervisor

536 10000 11000 DBAT0U Supervisor

537 10000 11001 DBAT0L Supervisor

538 10000 11010 DBAT1U Supervisor

539 10000 11011 DBAT1L Supervisor

540 10000 11100 DBAT2U Supervisor

541 10000 11101 DBAT2L Supervisor

542 10000 11110 DBAT3U Supervisor

543 10000 11111 DBAT3L Supervisor

1013 11111 10101 DABR Supervisor

1Note: The order of the two 5-bit halves of the SPR number is reversed. For mtspr and
mfspr instructions, the SPR number coded in assembly language does not appear
directly as a 10-bit binary number in the instruction. The number coded is split into two
5-bit halves that are reversed in the instruction, with the high-order five bits appearing
in bits 16–20 of the instruction and the low-order five bits in bits 11–15.

.

NOTE: mtspr is supervisor-level only if SPR[0] = 1.

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA/OEA yes* XFX

Table 8-13. PowerPC OEA SPR Encodings for mtspr (Continued)

 SPR
1

Register
Name Access

Decimal spr[5–9] spr[0–4]

8-150 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-150 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-150 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl

8

mulhwx mulhwx
Multiply High Word (x’7C00 0096’)

mulhw rD,rA,rB (Rc = 0)
mulhw. rD,rA,rB (Rc = 1)

prod[0–63]← (rA) ∗ (rB)
rD← prod[0–31]

The 64-bit product is formed from the contents of rA and rB. The high-order 32 bits of the
64-bit product of the operands are placed into rD.

Both the operands and the product are interpreted as signed integers.

This instruction may execute faster on some implementations if rB contains the operand
having the smaller absolute value.

Other registers altered:
• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (If Rc = 1)

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XO

Reserved

0 5 6 10 11 15 16 20 21 22 30 31
31 D A B 0 75 Rc

Chapter 8. Instruction Set 8-151Chapter 8. Instruction Set 8-151Chapter 8. Instruction Set 8-151

8

mulhwux mulhwux
Multiply High Word Unsigned (x’7C00 0016’)

mulhwu rD,rA,rB (Rc = 0)
mulhwu. rD,rA,rB (Rc = 1)

prod[0–63] ← (rA) ∗ (rB)
rD← prod[0–31]

The 32-bit operands are the contents of rA and rB. The high-order 32 bits of the 64-bit
product of the operands are placed into rD.

Both the operands and the product are interpreted as unsigned integers, except that if
Rc = 1 the first three bits of CR0 field are set by signed comparison of the result to zero.

This instruction may execute faster on some implementations if rB contains the operand
having the smaller absolute value.

Other registers altered:
• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (If Rc = 1)

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XO

Reserved

0 5 6 10 11 15 16 20 21 22 30 31
31 D A B 0 11 Rc

8-152 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-152 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-152 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl

8

mulli mulli
 Multiply Low Immediate (x’1C00 0000’)

mulli rD,rA,SIMM

prod[0–63]← (rA) ∗ EXTS(SIMM)
rD← prod[32-63]

The first operand is (rA). The second operand is the sign-extended value of the SIMM field.
The low-order 32-bits of the 64-bit product of the operands are placed into rD.

Both the operands and the product are interpreted as signed integers. The low-order 32-bits
of the product are calculated independently of whether the operands are treated as signed
or unsigned 32-bit integers.

This instruction can be used with mulhdx ormulhwx to calculate a full 64-bit product.

Other registers altered:
• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31
SIMM07 D A

Chapter 8. Instruction Set 8-153Chapter 8. Instruction Set 8-153Chapter 8. Instruction Set 8-153

8

mullwx mullwx
Multiply Low Word (x’7C00 01D6’)

mullw rD,rA,rB (OE = 0 Rc = 0)
mullw. rD,rA,rB (OE = 0 Rc = 1)
mullwo rD,rA,rB (OE = 1 Rc = 0)
mullwo. rD,rA,rB (OE = 1 Rc = 1)

prod[0–63] ← (rA) ∗ (rB)
rD← prod[32-63]

The 32-bit operands are the contents of rA and rB. The low-order 32-bits of the 64-bit
product (rA) * (rB) are placed into rD.

The low-order 32-bits of the product are independent of whether the operands are regarded
as signed or unsigned 32-bit integers.

If OE = 1, then OV is set if the product cannot be represented in 32 bits. Both the operands
and the product are interpreted as signed integers.

This instruction can be used with mulhwx to calculate a full 64-bit product.

NOTE: This instruction may execute faster on some implementations if rB contains the
operand having the smaller absolute value.

Other registers altered:
• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (If Rc = 1)
NOTE: CR0 field may not reflect the infinitely precise result if overflow occurs (see

next).

• XER:
Affected: SO, OV (If OE = 1)

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31
31 D A B OE 235 Rc

8-154 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-154 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-154 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl

8

nandx nandx
NAND (x’7C00 03B8’)

nand rA,rS,rB (Rc = 0)
nand. rA,rS,rB (Rc = 1)

rA← ¬ ((rS) & (rB))

The contents of rS are ANDed with the contents of rB and the complemented result is
placed into rA.

nand with rS = rB can be used to obtain the one's complement.

Other registers altered:
• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (If Rc = 1)

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31
31 S A B 476 Rc

Chapter 8. Instruction Set 8-155Chapter 8. Instruction Set 8-155Chapter 8. Instruction Set 8-155

8

negx negx
Negate (x’7C00 00D0’)

neg rD,rA (OE = 0 Rc = 0)
neg. rD,rA (OE = 0 Rc = 1)
nego rD,rA (OE = 1 Rc = 0)
nego. rD,rA (OE = 1 Rc = 1)

rD← ¬ (rA) + 1

The value 1 is added to the one’s complement of the value in rA, and the resulting two’s
complement is placed into rD.

If rA contains the most negative 32-bit number (0x8000_0000), the result is the most
negative number and, if OE = 1, OV is set.

Other registers altered:
• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (If Rc = 1)
• XER:

Affected: SO OV (If OE = 1)

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XO

Reserved

0 5 6 10 11 15 16 20 21 22 30 31
31 D A 0 0 0 0 0 OE 104 Rc

8-156 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-156 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-156 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl

8

norx norx
 NOR (x’7C00 00F8’)

nor rA,rS,rB (Rc = 0)
nor. rA,rS,rB (Rc = 1)

rA← ¬ ((rS) | (rB))

The contents of rS are ORed with the contents of rB and the complemented result is placed
into rA.

nor with rS = rB can be used to obtain the one’s complement.

Other registers altered:
• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (If Rc = 1)
Simplified mnemonics:

not rD,rS equivalent to nor rA,rS,rS

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31
31 S A B 124 Rc

Chapter 8. Instruction Set 8-157Chapter 8. Instruction Set 8-157Chapter 8. Instruction Set 8-157

8

orx orx
OR (x’7C00 0378’)

or rA,rS,rB (Rc = 0)
or. rA,rS,rB (Rc = 1)

rA← (rS) | (rB)

The contents of rS are ORed with the contents of rB and the result is placed into rA.

The simplified mnemonic mr (shown below) demonstrates the use of the or instruction to
move register contents.

Other registers altered:
• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (If Rc = 1)
Simplified mnemonics:

mr rA,rS equivalent to or rA,rS,rS

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31
31 S A B 444 Rc

Chapter 8. Instruction Set 8-159Chapter 8. Instruction Set 8-159Chapter 8. Instruction Set 8-159

8

ori ori
OR Immediate (x’6000 0000’)

ori rA,rS,UIMM

rA← (rS) | ((16)0 || UIMM)

The contents of rS are ORed with 0x0000 || UIMM and the result is placed into rA.

The preferred no-op (an instruction that does nothing) is ori 0,0,0.

Other registers altered:
• None

Simplified mnemonics:

nop equivalent to ori 0,0,0

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31
24 S A UIMM

8-160 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-160 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl8-160 PowerPC Microprocessor 32-bit Family: The Programming Environmentsl

8

oris oris
OR Immediate Shifted (x’6400 0000’)

oris rA,rS,UIMM

rA← (rS) | (UIMM || (16)0)

The contents of rS are ORed with UIMM || 0x0000 and the result is placed into rA.

Other registers altered:
• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31
25 S A UIMM

8-162 PowerPC Microprocessor 32-bit Family: The Programming Environments8-162 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

rlwimix rlwimix
Rotate Left Word Immediate then Mask Insert (x’5000 0000’)

rlwimi rA,rS,SH,MB,ME (Rc = 0)
rlwimi. rA,rS,SH,MB,ME (Rc = 1)

n← SH
r← ROTL(rS, n)
m← MASK(MB, ME)
rA← (r & m) | (rA & ¬ m)

The contents of rS are rotated left the number of bits specified by operand SH. A mask is
generated having 1 bits from bit MB through bit ME and 0 bits elsewhere. The rotated data
is inserted into rA under control of the generated mask.

NOTE: rlwimi can be used to copy a bit field of any length from register rS into the
contents of rA. This field can start from any bit position in rS and be placed into
any position in rA. The length of the field can range from 0 to 32 bits. The
remaining bits in register rA remain unchanged:

• To copy byte_0 (bits 0-7) from rS into byte_3 (bits 24-31) of rA, set SH = 8 , MB =
24, and ME = 31.

• In general, to copy an n-bit field that starts in bit position b in register rS into register
rA starting a bit position c: set SH = 32 - c + b Mod(32), set MB = c, and set ME =
(c + n) – 1 Mod(32).

Other registers altered:
• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)
Simplified mnemonics:
inslwi rA,rS,n,b equivalent to rlwimirA,rS,32 – b,b,b + n – 1
insrwi rA,rS,n,b (n > 0)equivalent to rlwimi rA,rS,32 – (b + n),b, (b + n) – 1

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA M

0 5 6 10 11 15 16 20 21 25 26 30 31
20 S A SH MB ME Rc

Chapter 8. Instruction Set 8-163Chapter 8. Instruction Set

8

rlwinmx rlwinmx
Rotate Left Word Immediate then AND with Mask (x’5400 0000’)

rlwinm rA,rS,SH,MB,ME (Rc = 0)
rlwinm. rA,rS,SH,MB,ME (Rc = 1)

n ← SH
r← ROTL(rS, n)
m← MASK(MB , ME)
rA← r & m

The contents of rS are rotated left the number of bits specified by operand SH. A mask is
generated having 1 bits from bit MB through bit ME and 0 bits elsewhere. The rotated data
is ANDed with the generated mask and the result is placed into rA.

NOTE: rlwinm can be used to extract, rotate, shift, and clear bit fields using the methods
shown below:

• To extract an n-bit field, that starts at bit position b in rS, right-justified into rA
(clearing the remaining 32 – n bits of rA), set SH = b + n,
MB = 32 – n, and ME = 31.

• To extract an n-bit field, that starts at bit position b in rS, left-justified into rA
(clearing the remaining 32 – n bits of rA), set SH = b, MB = 0, and ME = n – 1.

• To rotate the contents of a register left (or right) by n bits, set SH = n (32 – n),
MB = 0, and ME = 31.

• To shift the contents of a register right by n bits, by setting SH = 32 – n, MB = n, and
ME = 31. It can be used to clear the high-order b bits of a register and then shift the
result left by n bits by setting SH = n, MB = b – n and ME = 31 – n.

• To clear the low-order n bits of a register, by setting SH = 0, MB = 0, and
ME = 31 – n..

Other registers altered:
• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

0 5 6 10 11 15 16 20 21 25 26 30 31
21 S A SH MB ME Rc

8-164 PowerPC Microprocessor 32-bit Family: The Programming Environments8-164 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

Simplified mnemonics:
extlwi rA,rS,n,b (n > 0) equivalent to rlwinm rA,rS,b,0,n – 1
extrwi rA,rS,n,b (n > 0) equivalent to rlwinm rA,rS,b + n,32 – n,31
rotlwi rA,rS,n equivalent to rlwinm rA,rS,n,0,31
rotrwi rA,rS,n equivalent to rlwinm rA,rS,32 – n,0,31
slwi rA,rS,n (n < 32) equivalent to rlwinm rA,rS,n,0,31–n
srwi rA,rS,n (n < 32) equivalent to rlwinm rA,rS,32 – n,n,31
clrlwi rA,rS,n (n < 32) equivalent to rlwinm rA,rS,0,n,31
clrrwi rA,rS,n (n < 32) equivalent to rlwinm rA,rS,0,0,31 – n
clrlslwi rA,rS,b,n (n ≤ b < 32) equivalent to rlwinm rA,rS,n,b – n,31 – n

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA M

Chapter 8. Instruction Set 8-165Chapter 8. Instruction Set

8

rlwnmx rlwnmx
Rotate Left Word then AND with Mask (x’5C00 0000’)

rlwnm rA,rS,rB,MB,ME (Rc = 0)
rlwnm. rA,rS,rB,MB,ME (Rc = 1)

n ← rB[27-31]
r← ROTL(rS, n)
m← MASK(MB, ME)
rA← r & m

The contents of rS are rotated left the number of bits specified by the low-order five bits of
rB. A mask is generated having 1 bits from bit MB through bit ME and 0 bits elsewhere.
The rotated data is ANDed with the generated mask and the result is placed into rA.

NOTE: rlwnm can be used to extract and rotate bit fields using the methods shown as
follows:

• To extract an n-bit field, that starts at variable bit position b in rS, right-justified into
rA (clearing the remaining 32 – n bits of rA), by setting the low-order five bits of
rB to b + n, MB = 32 – n, and ME = 31.

• To extract an n-bit field, that starts at variable bit position b in rS, left-justified into
rA (clearing the remaining 32 – n bits of rA), by setting the low-order five bits of
rB to b, MB = 0, and ME = n – 1.

• To rotate the contents of a register left (or right) by n bits, by setting the low-order
five bits of rB to n (32 – n), MB = 0, and ME = 31.

Other registers altered:
• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)
Simplified mnemonics:
rotlw rA,rS,rB equivalent to rlwnm rA,rS,rB,0,31

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA M

0 5 6 10 11 15 16 20 21 25 26 30 31
23 S A B MB ME Rc

Chapter 8. Instruction Set 8-167Chapter 8. Instruction Set

8

slwx slwx
Shift Left Word (x’7C00 0030’)

slw rA,rS,rB (Rc = 0)
slw. rA,rS,rB (Rc = 1)

n← rB[27-31]
r ← ROTL(rS, n)
if rB[26] = 0

then m ← MASK(0, 31 – n)
else m ← (32)0

rA← r & m

The contents of rS are shifted left the number of bits specified by the low-order five bits of
rB. Bits shifted out of position 0 are lost. Zeros are supplied to the vacated positions on the
right. The 32-bit result is placed into rA. However, shift amounts from 32 to 63 give a zero
result.

Other registers altered:
• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31
31 S A B 24 Rc

8-168 PowerPC Microprocessor 32-bit Family: The Programming Environments8-168 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

srawx srawx
Shift Right Algebraic Word (x’7C00 0630’)

sraw rA,rS,rB (Rc = 0)
sraw. rA,rS,rB (Rc = 1)

n← rB[27-31]
r ← ROTL(rS, 32– n)
if rB[26] = 0

then m← MASK(n, 31)
else m← (32)0

S ← rS(0)
rA ← r & m | (32)S & ¬ m
XER[CA] ← S & ((r & ¬ m) ≠ 0)

The contents of rS are shifted right the number of bits specified by the low-order five bits
of rB (shift amounts between 0-31). Bits shifted out of position 31 are lost. Bit 0 of rS is
replicated to fill the vacated positions on the left. The 32-bit result is placed into rA.
XER[CA] is set if rS contains a negative number and any 1 bits are shifted out of position
31; otherwise XER[CA] is cleared. A shift amount of zero causes rA to receive the 32 bits
of rS, and XER[CA] to be cleared. However, shift amounts from 32 to 63 give a result of
32 sign bits, and cause XER[CA] to receive the sign bit of rS.

NOTE: The sraw instruction, followed by addze, can be used to divide quickly by 2n.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = 1)

• XER:
Affected: CA

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31
31 S A B 792 Rc

Chapter 8. Instruction Set 8-169Chapter 8. Instruction Set

8

srawix srawix
Shift Right Algebraic Word Immediate (x’7C00 0670’)

srawi rA,rS,SH (Rc = 0)
srawi. rA,rS,SH (Rc = 1)

n ← SH
r← ROTL(rS, 32– n)
m← MASK(n, 31)
S ← rS(0)
rA ← r & m | (32)S & ¬ m
XER[CA] ← S & ((r & ¬ m) ≠ 0)

The contents of rS are shifted right SH bits. Bits shifted out of position 31 are lost. Bit 0 of
rS is replicated to fill the vacated positions on the left. The result is placed into rA.
XER[CA] is set if the 32 bits of rS contain a negative number and any 1 bits are shifted out
of position 31; otherwise XER[CA] is cleared. A shift amount of zero causes rA to receive
the value of rS, and XER[CA] to be cleared.

NOTE: The srawi instruction, followed by addze, can be used to divide quickly by 2n.

Other registers altered:
• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)
• XER:

Affected: CA

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31
31 S A SH 824 Rc

8-170 PowerPC Microprocessor 32-bit Family: The Programming Environments8-170 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

srwx srwx
Shift Right Word (x’7C00 0430’)

srw rA,rS,rB (Rc = 0)
srw. rA,rS,rB (Rc = 1)

n ← rB[27-31]
r← ROTL(rS, 32– n)
if rB[26] = 0

then m← MASK(n, 31)
else m← (32)0

rA← r & m

The contents of rS are shifted right the number of bits specified by the low-order five bits
of rB (shift amounts between 0-31). Bits shifted out of position 31 are lost. Zeros are
supplied to the vacated positions on the left. The 32-bit result is placed into rA. However,
shift amounts from 32 to 63 give a zero result.

Other registers altered:
• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31
31 S A B 536 Rc

8-192 PowerPC Microprocessor 32-bit Family: The Programming Environments8-192 PowerPC Microprocessor 32-bit Family: The Programming Environments

8

stw stw
Store Word (x’9000 0000’)

stw rS,d(rA)

if rA = 0
then b← 0
else b← (rA)

EA← b + EXTS(d)
MEM(EA, 4)← rS

EA is the sum (rA|0) + d. The contents of rS are stored into the word in memory addressed
by EA.

Other registers altered:
• None

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA D

0 5 6 10 11 15 16 31
36 S A d

Chapter 8. Instruction Set 8-199Chapter 8. Instruction Set

8

subfx subfx
Subtract From (x’7C00 0050’)

subf rD,rA,rB (OE = 0 Rc = 0)
subf. rD,rA,rB (OE = 0 Rc = 1)
subfo rD,rA,rB (OE = 1 Rc = 0)
subfo. rD,rA,rB (OE = 1 Rc = 1)

rD← ¬(rA) + (rB) + 1

The sum ¬ (rA) + (rB) + 1 is placed into rD. (equivlent to (rB)--(rA))

The subf instruction is preferred for subtraction because it sets few status bits.

Other registers altered:
• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)
• XER:

Affected: SO, OV (if OE = 1)
Simplified mnemonics:
sub rD,rA,rB equivalent to subf rD,rB,rA

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31
31 D A B OE 40 Rc

Appendix F.Simplified Mnemonics F-1

F

Appendix F. Simplified Mnemonics
F0
F0

This appendix is provided in order to simplify the writing and comprehension of assembler
language programs. Included are a set of simplified mnemonics and symbols that define the
simple shorthand used for the most frequently-used forms of branch conditional, compare,
trap, rotate and shift, and certain other instructions.

NOTE: The architecture specification refers to simplified mnemonics as extended
mnemonics.

F.1 Symbols
The symbols in Table F-1 are defined for use in instructions (basic or simplified
mnemonics) that specify a condition register (CR) field or a bit in the CR.

Table F-1. Condition Register Bit and Identification Symbol Descriptions

Symbol Value Bit Field
Range Description

lt 0 — Less than. Identifies a bit number within a CR field.

gt 1 — Greater than. Identifies a bit number within a CR field.

eq 2 — Equal. Identifies a bit number within a CR field.

so 3 — Summary overflow. Identifies a bit number within a CR field.

un 3 — Unordered (after floating-point comparison). Identifies a bit number in a CR field.

cr0 0 0–3 CR0 field

cr1 1 4–7 CR1 field

cr2 2 8–11 CR2 field

cr3 3 12–15 CR3 field

cr4 4 16–19 CR4 field

cr5 5 20–23 CR5 field

cr6 6 24–27 CR6 field

cr7 7 28–31 CR7 field

Note: To identify a CR bit, an expression in which a CR field symbol is multiplied by 4 and then added to a bit-number-
within-CR-field symbol can be used.

F-2 PowerPC Microprocessor 32-bit Family: The Programming Environments

F

The simplified mnemonics in Section F.5.2, “Basic Branch Mnemonics,” and Section F.6,
“Simplified Mnemonics for Condition Register Logical Instructions,” require identification
of a CR bit—if one of the CR field symbols is used, it must be multiplied by 4 and added
to a bit-number-within-CR-field (value in the range of 0–3, explicit or symbolic).

The simplified mnemonics in Section F.5.3, “Branch Mnemonics Incorporating
Conditions,” and Section F.3, “Simplified Mnemonics for Compare Instructions,” require
identification of a CR field—if one of the CR field symbols is used, it must not be multiplied
by 4.

Also, for the simplified mnemonics in Section F.5.3, “Branch Mnemonics Incorporating
Conditions,” the bit number within the CR field is part of the simplified mnemonic. The CR
field is identified, and the assembler does the multiplication and addition required to
produce a CR bit number for the BI field of the underlying basic mnemonic.

F.2 Simplified Mnemonics for Subtract Instructions
This section discusses simplified mnemonics for the subtract instructions.

F.2.1 Subtract Immediate
Although there is no subtract immediate instruction, its effect can be achieved by using an
add immediate instruction with the immediate operand negated. Simplified mnemonics are
provided that include this negation, making the intent of the computation more clear.

subi rD,rA,value (equivalent to addi rD,rA,–value)
subis rD,rA,value (equivalent to addis rD,rA,–value)
subic rD,rA,value (equivalent to addic rD,rA,–value)
subic. rD,rA,value (equivalent to addic. rD,rA,–value)

F.2.2 Subtract
The subtract from instructions subtract the second operand (rA) from the third (rB).
Simplified mnemonics are provided that use the more normal order in which the third
operand is subtracted from the second. Both these mnemonics can be coded with an o suffix
and/or dot (.) suffix to cause the OE and/or Rc bit to be set in the underlying instruction.

sub rD,rA,rB (equivalent to subf rD,rB,rA)
subc rD,rA,rB (equivalent to subfc rD,rB,rA)

Appendix F.Simplified Mnemonics F-3

F

F.3 Simplified Mnemonics for Compare Instructions
The crfD field can be omitted if the result of the comparison is to be placed into the CR0
field. Otherwise, the target CR field must be specified as the first operand. One of the CR
field symbols defined in Section F.1, “Symbols,” can be used for this operand.

NOTE: The basic compare mnemonics of PowerPC are the same as those of POWER,
but the POWER instructions have three operands whereas the PowerPC
instructions have four.
The assembler recognizes a basic compare mnemonic with the three operands as
the POWER form, and generates the instruction with L = 0. The crfD field can
normally be omitted when the CR0 field is the target.

F.3.1 Word Comparisons
The instructions listed in Table F-2 are simplified mnemonics that should be supported by
assemblers for all PowerPC implementations.

Following are examples using the word compare mnemonics.
1. Compare rA with immediate value 100 as signed 32-bit integers and place result in

CR0.
cmpwi rA,100 (equivalent to cmpi 0,0,rA,100)

2. Same as (1), but place results in CR4.
cmpwi cr4,rA,100 (equivalent to cmpi 4,0,rA,100)

3. Compare rA and rB as unsigned 32-bit integers and place result in CR0.
cmplw rA,rB (equivalent to cmpl 0,0,rA,rB)

Table F-2. Simplified Mnemonics for Word Compare Instructions

Operation Simplified Mnemonic Equivalent to:

Compare Word Immediate cmpwi crfD,rA,SIMM cmpi crfD,0,rA,SIMM

Compare Word cmpw crfD,rA,rB cmp crfD,0,rA,rB

Compare Logical Word Immediate cmplwi crfD,rA,UIMM cmpli crfD,0,rA,UIMM

Compare Logical Word cmplw crfD,rA,rB cmpl crfD,0,rA,rB

F-4 PowerPC Microprocessor 32-bit Family: The Programming Environments

F

F.4 Simplified Mnemonics for Rotate and Shift
Instructions

The rotate and shift instructions provide powerful and general ways to manipulate register
contents, but can be difficult to understand. Simplified mnemonics that allow some of the
simpler operations to be coded easily are provided for the following types of operations:

• Extract—Select a field of n bits starting at bit position b in the source register; left
or right justify this field in the target register; clear all other bits of the target register.

• Insert—Select a left-justified or right-justified field of n bits in the source register;
insert this field starting at bit position b of the target register; leave other bits of the
target register unchanged. (No simplified mnemonic is provided for insertion of a
left-justified field, when operating on double words, because such an insertion
requires more than one instruction.)

• Rotate—Rotate the contents of a register right or left n bits without masking.
• Shift—Shift the contents of a register right or left n bits, clearing vacated bits

(logical shift).
• Clear—Clear the leftmost or rightmost n bits of a register.
• Clear left and shift left—Clear the leftmost b bits of a register, then shift the register

left by n bits. This operation can be used to scale a (known non-negative) array index
by the width of an element.

Appendix F.Simplified Mnemonics F-5

F

F.4.1 Operations on Words
The operations shown in Table F-3 are available in all implementations. All these
mnemonics can be coded with a dot (.) suffix to cause the Rc bit to be set in the underlying
instruction.

Examples using word mnemonics follow:
1. Extract the sign bit (bit 0) of rS and place the result right-justified into rA.

extrwi rA,rS,1,0 (equivalent to rlwinm rA,rS,1,31,31)
2. Insert the bit extracted in (1) into the sign bit (bit 0) of rB.

insrwi rB,rA,1,0 (equivalent to rlwimi rB,rA,31,0,0)
3. Shift the contents of rA left 8 bits.

slwi rA,rA,8 (equivalent to rlwinm rA,rA,8,0,23)
4. Clear the high-order 16 bits of rS and place the result into rA.

clrlwi rA,rS,16 (equivalent to rlwinm rA,rS,0,16,31)

F.5 Simplified Mnemonics for Branch Instructions
Mnemonics are provided so that branch conditional instructions can be coded with the
condition as part of the instruction mnemonic rather than as a numeric operand. Some of
these are shown as examples with the branch instructions.

The mnemonics discussed in this section are variations of the branch conditional
instructions.

Table F-3. Word Rotate and Shift Instructions

Operation Simplified Mnemonic Equivalent to:

Extract and left justify immediate extlwi rA,rS,n,b (n > 0) rlwinm rA,rS,b,0,n – 1

Extract and right justify immediate extrwi rA,rS,n,b (n > 0) rlwinm rA,rS,b + n, 32 – n,31

Insert from left immediate inslwi rA,rS,n,b (n > 0) rlwimi rA,rS,32 – b,b,(b + n) – 1

Insert from right immediate insrwi rA,rS,n,b (n > 0) rlwimi rA,rS,32 – (b + n),b,(b + n) – 1

Rotate left immediate rotlwi rA,rS,n rlwinm rA,rS,n,0,31

Rotate right immediate rotrwi rA,rS,n rlwinm rA,rS,32 – n,0,31

Rotate left rotlw rA,rS,rB rlwnm rA,rS,rB,0,31

Shift left immediate slwi rA,rS,n (n < 32) rlwinm rA,rS,n,0,31 – n

Shift right immediate srwi rA,rS,n (n < 32) rlwinm rA,rS,32 – n,n,31

Clear left immediate clrlwi rA,rS,n (n < 32) rlwinm rA,rS,0,n,31

Clear right immediate clrrwi rA,rS,n (n < 32) rlwinm rA,rS,0,0,31 – n

Clear left and shift left immediate clrlslwi rA,rS,b,n (n ≤ b ≤ 31) rlwinm rA,rS,n,b – n,31 – n

F-6 PowerPC Microprocessor 32-bit Family: The Programming Environments

F

F.5.1 BO and BI Fields
The 5-bit BO field in branch conditional instructions encodes the following operations.

• Decrement count register (CTR)
• Test CTR equal to zero
• Test CTR not equal to zero
• Test condition true
• Test condition false
• Branch prediction (taken, fall through)

The 5-bit BI field in branch conditional instructions specifies which of the 32 bits in the CR
represents the condition to test.

To provide a simplified mnemonic for every possible combination of BO and BI fields
would require 210 = 1024 mnemonics and most of these would be only marginally useful.
The abbreviated set found in Section F.5.2, “Basic Branch Mnemonics,” is intended to
cover the most useful cases. Unusual cases can be coded using a basic branch conditional
mnemonic (bc, bclr, bcctr) with the condition to be tested specified as a numeric operand.

F.5.2 Basic Branch Mnemonics
The mnemonics in Table F-4 allow all the common BO operand encodings to be specified
as part of the mnemonic, along with the absolute address (AA), and set link register (LR)
bits.

Notice that there are no simplified mnemonics for relative and absolute unconditional
branches. For these, the basic mnemonics b, ba, bl, and bla are used.

Table F-4 provides the abbreviated set of simplified mnemonics for the most commonly
performed conditional branches.

Appendix F.Simplified Mnemonics F-7

F

The simplified mnemonics shown in Table F-4 that test a condition require a corresponding
CR bit as the first operand of the instruction. The symbols defined in Section F.1,
“Symbols,” can be used in the operand in place of a numeric value.

The simplified mnemonics found in Table F-4 are used in the following examples:
1. Decrement CTR and branch if it is still nonzero (closure of a loop controlled by a

count loaded into CTR).
bdnz target (equivalent to bc 16,0,target)

2. Same as (1) but branch only if CTR is non-zero and condition in CR0 is “equal.”
bdnzt eq,target (equivalent to bc 8,2,target)

3. Same as (2), but “equal” condition is in CR5.
bdnzt 4 * cr5 + eq,target (equivalent to bc 8,22,target)

4. Branch if bit 27 of CR is false.
bf 27,target (equivalent to bc 4,27,target)

5. Same as (4), but set the link register. This is a form of conditional call.
bfl 27,target (equivalent to bcl 4,27,target)

Table F-4. Simplified Branch Mnemonics

Branch Semantics
LR Update Not Enabled LR Update Enabled

bc
Relative

bca
Absolute

bclr
to LR

bcctr
to CTR

bcl
Relative

bcla
Absolute

bclrl
to LR

bcctrl
to CTR

Branch unconditionally — — blr bctr — — blrl bctrl

Branch if condition true bt bta btlr btctr btl btla btlrl btctrl

Branch if condition
false

bf bfa bflr bfctr bfl bfla bflrl bfctrl

Decrement CTR,
branch if CTR non-zero

bdnz bdnza bdnzlr — bdnzl bdnzla bdnzlrl —

Decrement CTR,
branch if CTR non-zero
AND condition true

bdnzt bdnzta bdnztlr — bdnztl bdnztla bdnztlrl —

Decrement CTR,
branch if CTR non-zero
AND condition false

bdnzf bdnzfa bdnzflr — bdnzfl bdnzfla bdnzflrl —

Decrement CTR,
branch if CTR zero

bdz bdza bdzlr — bdzl bdzla bdzlrl —

Decrement CTR,
branch if CTR zero
AND condition true

bdzt bdzta bdztlr — bdztl bdztla bdztlrl —

Decrement CTR,
branch if CTR zero
AND condition false

bdzf bdzfa bdzflr — bdzfl bdzfla bdzflrl —

F-8 PowerPC Microprocessor 32-bit Family: The Programming Environments

F

Table F-5 provides the simplified mnemonics for the bc and bca instructions without link
register updating, and the syntax associated with these instructions.

NOTE: The default condition register specified by the simplified mnemonics in the table
is CR0.

Table F-5. Simplified Branch Mnemonics for bc and bca Instructions without Link
Register Update

Branch Semantics

LR Update Not Enabled

bc
 Relative

Simplified
Mnemonic

bca
Absolute

Simplified
Mnemonic

Branch unconditionally — — — —

Branch if condition true bc 12,0,target bt 0,target bca 12,0,target bta 0,target

Branch if condition false bc 4,0,target bf 0,target bca 4,0,target bfa 0,target

Decrement CTR, branch if CTR nonzero bc16,0,target bdnz target bca 16,0,target bdnza target

Decrement CTR, branch if CTR nonzero
AND condition true

bc 8,0,target bdnzt 0,target bca 8,0,target bdnzta 0,target

Decrement CTR, branch if CTR nonzero
AND condition false

bc 0,0,target bdnzf 0,target bca 0,0,target bdnzfa 0,target

Decrement CTR, branch if CTR zero bc18,0,target bdz target bca 18,0,target bdza target

Decrement CTR, branch if CTR zero
AND condition true

bc10,0,target bdzt 0,target bca 10,0,target bdzta 0,target

Decrement CTR, branch if CTR zero
AND condition false

bc 2,0,target bdzf 0,target bca 2,0,target bdzfa 0,target

Appendix F.Simplified Mnemonics F-9

F

Table F-6 provides the simplified mnemonics for the bclr and bcclr instructions without
link register updating, and the syntax associated with these instructions.

NOTE: The default condition register specified by the simplified mnemonics in the table
is CR0.

Table F-6. Simplified Branch Mnemonics for bclr and bcclr Instructions without
Link Register Update

Branch Semantics

LR Update Not Enabled

bclr
to LR

Simplified
Mnemonic bcctr to CTR Simplified

Mnemonic

Branch unconditionally bclr 20,0 blr bcctr 20,0 bctr

Branch if condition true bclr 12,0 btlr 0 bcctr 12,0 btctr 0

Branch if condition false bclr 4,0 bflr 0 bcctr 4,0 bfctr 0

Decrement CTR, branch if CTR
nonzero

bclr 16,0 bdnzlr — —

Decrement CTR, branch if CTR
nonzero AND condition true

bclr 10,0 bdztlr 0 — —

Decrement CTR, branch if CTR
nonzero AND condition false

bclr 0,0 bdnzflr 0 — —

Decrement CTR, branch if CTR
zero

bclr 18,0 bdzlr — —

Decrement CTR, branch if CTR
zero AND condition true

bclr 10,0 bdztlr 0 — —

Decrement CTR, branch if CTR
zero AND condition false

bcctr 0,0 bdzflr 0 — —

F-10 PowerPC Microprocessor 32-bit Family: The Programming Environments

F

Table F-7 provides the simplified mnemonics for the bcl and bcla instructions with link
register updating, and the syntax associated with these instructions.

NOTE: The default condition register specified by the simplified mnemonics in the table
is CR0.

Table F-7. Simplified Branch Mnemonics for bcl and bcla Instructions with Link
Register Update

Branch Semantics

LR Update Enabled

bcl Relative Simplified
Mnemonic bcla Absolute Simplified

Mnemonic

Branch unconditionally — — — —

Branch if condition true bcl1 2,0,target btl 0,target bcla 12,0,target btla 0,target

Branch if condition false bcl 4,0,target bfl 0,target bcla 4,0,target bfla 0,target

Decrement CTR, branch if CTR
nonzero

bcl 16,0,target bdnzl target bcla 16,0,target bdnzla target

Decrement CTR, branch if CTR
nonzero AND condition true

bcl 8,0,target bdnztl 0,target bcla 8,0,target bdnztla 0,target

Decrement CTR, branch if CTR
nonzero AND condition false

bcl 0,0,target bdnzfl 0,target bcla 0,0,target bdnzfla 0,target

Decrement CTR, branch if CTR
zero

bcl 18,0,target bdzl target bcla 18,0,target bdzla target

Decrement CTR, branch if CTR
zero AND condition true

bcl 10,0,target bdztl 0,target bcla 10,0,target bdztla 0,target

Decrement CTR, branch if CTR
zero AND condition false

bcl 2,0,target bdzfl 0,target bcla 2,0,target bdzfla 0,target

Appendix F.Simplified Mnemonics F-11

F

Table F-8 provides the simplified mnemonics for the bclrl and bcctrl instructions with link
register updating, and the syntax associated with these instructions.

NOTE: The default condition register specified by the simplified mnemonics in the table
is CR0.

Table F-8. Simplified Branch Mnemonics for bclrl and bcctrl Instructions with Link
Register Update

Branch Semantics

LR Update Enabled

bclrl
to LR

Simplified
Mnemonic

bcctrl
to CTR

Simplified
Mnemonic

Branch unconditionally bclrl 20,0 blrl bcctrl 20,0 bctrl

Branch if condition true bclrl12,0 btlrl 0 bcctrl 12,0 btctrl 0

Branch if condition false bclrl 4,0 bflrl 0 bcctrl 4,0 bfctrl 0

Decrement CTR, branch if CTR
nonzero

bclrl 16,0 bdnzlrl — —

Decrement CTR, branch if CTR
nonzero AND condition true

bclrl 8,0 bdnztlrl 0 — —

Decrement CTR, branch if CTR
nonzero AND condition false

bclrl 0,0 bdnzflrl 0 — —

Decrement CTR, branch if CTR zero bclrl 18,0 bdzlrl — —

Decrement CTR, branch if CTR zero
AND condition true

bdztlrl 0 bdztlrl 0 — —

Decrement CTR, branch if CTR zero
AND condition false

bclrl 4,0 bflrl 0 — —

F-12 PowerPC Microprocessor 32-bit Family: The Programming Environments

F

F.5.3 Branch Mnemonics Incorporating Conditions
The mnemonics defined in Table F-4 are variations of the branch if condition true and
branch if condition false BO encodings, with the most useful values of BI represented in
the mnemonic rather than specified as a numeric operand.

A standard set of codes (shown in Table F-9) has been adopted for the most common
combinations of branch conditions.

Table F-9. Standard Coding for Branch Conditions

Code Description

lt Less than

le Less than or equal

eq Equal

ge Greater than or equal

gt Greater than

nl Not less than

ne Not equal

ng Not greater than

so Summary overflow

ns Not summary overflow

un Unordered (after floating-point comparison)

nu Not unordered (after floating-point comparison)

Appendix F.Simplified Mnemonics F-13

F

Table F-10 shows the simplified branch mnemonics incorporating conditions.

Instructions using the mnemonics in Table F-10 specify the condition register field in an
optional first operand. If the CR field being tested is CR0, this operand need not be
specified. One of the CR field symbols defined in Section F.1, “Symbols,” can be used for
this operand.

The simplified mnemonics found in Table F-10 are used in the following examples:
1. Branch if CR0 reflects condition “not equal.”

bne target (equivalent to bc 4,2,target)
2. Same as (1) but condition is in CR3.

bne cr3,target (equivalent to bc 4,14,target)
3. Branch to an absolute target if CR4 specifies “greater than,” setting the link register.

This is a form of conditional “call.”
bgtla cr4,target (equivalent to bcla 12,17,target)

4. Same as (3), but target address is in the CTR.
bgtctrl cr4 (equivalent to bcctrl 12,17)

Table F-10. Simplified Branch Mnemonics with Comparison Conditions

Branch Semantics

LR Update Not Enabled LR Update Enabled

bc
Relative

bca
Absolute

bclr
to LR

bcctr
to CTR

bcl
Relative

bcla
Absolute

bclrl
to LR

bcctrl
to CTR

Branch if less than blt blta bltlr bltctr bltl bltla bltlrl bltctrl

Branch if less than or
equal

ble blea blelr blectr blel blela blelrl blectrl

Branch if equal beq beqa beqlr beqctr beql beqla beqlrl beqctrl

Branch if greater than
or equal

bge bgea bgelr bgectr bgel bgela bgelrl bgectrl

Branch if greater than bgt bgta bgtlr bgtctr bgtl bgtla bgtlrl bgtctrl

Branch if not less than bnl bnla bnllr bnlctr bnll bnlla bnllrl bnlctrl

Branch if not equal bne bnea bnelr bnectr bnel bnela bnelrl bnectrl

Branch if not greater
than

bng bnga bnglr bngctr bngl bngla bnglrl bngctrl

Branch if summary
overflow

bso bsoa bsolr bsoctr bsol bsola bsolrl bsoctrl

Branch if not summary
overflow

bns bnsa bnslr bnsctr bnsl bnsla bnslrl bnsctrl

Branch if unordered bun buna bunlr bunctr bunl bunla bunlrl bunctrl

Branch if not unordered bnu bnua bnulr bnuctr bnul bnula bnulrl bnuctrl

F-14 PowerPC Microprocessor 32-bit Family: The Programming Environments

F

Table F-11 shows the simplified branch mnemonics for the bc and bca instructions without
link register updating, and the syntax associated with these instructions.

NOTE: The default condition register specified by the simplified mnemonics in the table
is CR0.

Table F-11. Simplified Branch Mnemonics for bc and bca Instructions without
Comparison Conditions and Link Register Updating

Branch Semantics

LR Update Not Enabled

bc Relative Simplified
Mnemonic bca Absolute Simplified

Mnemonic

Branch if less than bc 12,0,target blt target bca 12,0,target blta target

Branch if less than or equal bc 4,1,target ble target bca 4,1,target blea target

Branch if equal bc 12,2,target beq target bca 12,2,target beqa target

Branch if greater than or equal bc 4,0,target bge target bca 4,0,target bgea target

Branch if greater than bc 12,1,target bgt target bca 12,1,target bgta target

Branch if not less than bc 4,0,target bnl target bca 4,0,target bnla target

Branch if not equal bc 4,2,target bne target bca 4,2,target bnea target

Branch if not greater than bc 4,1,target bng target bca 4,1,target bnga target

Branch if summary overflow bc 12,3,target bso target bca 12,3,target bsoa target

Branch if not summary overflow bc 4,3,target bns target bca 4,3,target bnsa target

Branch if unordered bc 12,3,target bun target bca 12,3,target buna target

Branch if not unordered bc 4,3,target bnu target bca 4,3,target bnua target

Appendix F.Simplified Mnemonics F-15

F

Table F-12 shows the simplified branch mnemonics for the bclr and bcctr instructions
without link register updating, and the syntax associated with these instructions.

NOTE: The default condition register specified by the simplified mnemonics in the table
is CR0.

Table F-12. Simplified Branch Mnemonics for bclr and bcctr Instructions without
Comparison Conditions and Link Register Updating

Branch Semantics

LR Update Not Enabled

bclr to LR Simplified
Mnemonic bcctr to CTR Simplified

Mnemonic

Branch if less than bclr 12,0 bltlr bcctr 12,0 bltctr

Branch if less than or equal bclr 4,1 blelr bcctr 4,1 blectr

Branch if equal bclr 12,2 beqlr bcctr 12,2 beqctr

Branch if greater than or equal bclr 4,0 bgelr bcctr 4,0 bgectr

Branch if greater than bclr 12,1 bgtlr bcctr 12,1 bgtctr

Branch if not less than bclr 4,0 bnllr bcctr 4,0 bnlctr

Branch if not equal bclr 4,2 bnelr bcctr 4,2 bnectr

Branch if not greater than bclr 4,1 bnglr bcctr 4,1 bngctr

Branch if summary overflow bclr 12,3 bsolr bcctr 12,3 bsoctr

Branch if not summary overflow bclr 4,3 bnslr bcctr 4,3 bnsctr

Branch if unordered bclr 12,3 bunlr bcctr 12,3 bunctr

Branch if not unordered bclr 4,3 bnulr bcctr 4,3 bnuctr

F-16 PowerPC Microprocessor 32-bit Family: The Programming Environments

F

Table F-13 shows the simplified branch mnemonics for the bcl and bcla instructions with
link register updating, and the syntax associated with these instructions.

NOTE: The default condition register specified by the simplified mnemonics in the table
is CR0.

Table F-13. Simplified Branch Mnemonics for bcl and bcla Instructions with
Comparison Conditions and Link Register Update

Branch Semantics

LR Update Enabled

bcl Relative Simplified
Mnemonic bcla Absolute Simplified

Mnemonic

Branch if less than bcl 12,0,target bltl target bcla 12,0,target bltla target

Branch if less than or equal bcl 4,1,target blel target bcla 4,1,target blela target

Branch if equal beql target beql target bcla 12,2,target beqla target

Branch if greater than or equal bcl 4,0,target bgel target bcla 4,0,target bgela target

Branch if greater than bcl 12,1,target bgtl target bcla 12,1,target bgtla target

Branch if not less than bcl 4,0,target bnll target bcla 4,0,target bnlla target

Branch if not equal bcl 4,2,target bnel target bcla 4,2,target bnela target

Branch if not greater than bcl 4,1,target bngl target bcla 4,1,target bngla target

Branch if summary overflow bcl 12,3,target bsol target bcla 12,3,target bsola target

Branch if not summary overflow bcl 4,3,target bnsl target bcla 4,3,target bnsla target

Branch if unordered bcl 12,3,target bunl target bcla 12,3,target bunla target

Branch if not unordered bcl 4,3,target bnul target bcla 4,3,target bnula target

Appendix F.Simplified Mnemonics F-17

F

Table F-14 shows the simplified branch mnemonics for the bclrl and bcctl instructions with
link register updating, and the syntax associated with these instructions.

NOTE: The default condition register specified by the simplified mnemonics in the table
is CR0.

F.5.4 Branch Prediction
In branch conditional instructions that are not always taken, the low-order bit (y bit) of the
BO field provides a hint about whether the branch is likely to be taken. See Section 4.2.4.2,
“Conditional Branch Control,” for more information on the y bit.

Assemblers should clear this bit unless otherwise directed. This default action indicates the
following:

• A branch conditional with a negative displacement field is predicted to be taken.
• A branch conditional with a non-negative displacement field is predicted not to be

taken (fall through).
• A branch conditional to an address in the LR or CTR is predicted not to be taken (fall

through).

Table F-14. Simplified Branch Mnemonics for bclrl and bcctl Instructions with
Comparison Conditions and Link Register Update

Branch Semantics

LR Update Enabled

bclrl to LR Simplified
Mnemonic bcctrl to CTR Simplified

Mnemonic

Branch if less than bclrl 12,0 bltlrl 0 bcctrl 12,0 bltctrl 0

Branch if less than or equal bclrl 4,1 blelrl 0 bcctrl 4,1 blectrl 0

Branch if equal bclrl 12,2 beqlrl 0 bcctrl 12,2 beqctrl 0

Branch if greater than or equal bclrl 4,0 bgelrl 0 bcctrl 4,0 bgectrl 0

Branch if greater than bclrl 12,1 bgtlrl 0 bcctrl 12,1 bgtctrl 0

Branch if not less than bclrl 4,0 bnllrl 0 bcctrl 4,0 bnlctrl 0

Branch if not equal bclrl 4,2 bnelrl 0 bcctrl 4,2 bnectrl 0

Branch if not greater than bclrl 4,1 bnglrl 0 bcctrl 4,1 bngctrl 0

Branch if summary overflow bclrl 12,3 bsolrl 0 bcctrl 12,3 bsoctrl 0

Branch if not summary overflow bclrl 4,3 bnslrl 0 bcctrl 4,3 bnsctrl 0

Branch if unordered bclrl 12,3 bunlrl 0 bcctrl 12,3 bunctrl 0

Branch if not unordered bclrl 4,3 bnulrl 0 bcctrl 4,3 bnuctrl 0

F-18 PowerPC Microprocessor 32-bit Family: The Programming Environments

F

If the likely outcome (branch or fall through) of a given branch conditional instruction is
known, a suffix can be added to the mnemonic that tells the assembler how to set the y bit.
That is, ‘+’ indicates that the branch is to be taken and ‘–’ indicates that the branch is not
to be taken. Such a suffix can be added to any branch conditional mnemonic, either basic
or simplified.

For relative and absolute branches (bc[l][a]), the setting of the y bit depends on whether the
displacement field is negative or non-negative. For negative displacement fields, coding the
suffix ‘+’ causes the bit to be cleared, and coding the suffix ‘–’ causes the bit to be set. For
non-negative displacement fields, coding the suffix ‘+’ causes the bit to be set, and coding
the suffix ‘–’ causes the bit to be cleared.

For branches to an address in the LR or CTR (bcclr[l] or bcctr[l]), coding the suffix ‘+’
causes the y bit to be set, and coding the suffix ‘–’ causes the bit to be cleared.

Examples of branch prediction follow:
1. Branch if CR0 reflects condition “less than,” specifying that the branch should be

predicted to be taken.
blt+ target

2. Same as (1), but target address is in the LR and the branch should be predicted not
to be taken.
bltlr–

F.6 Simplified Mnemonics for Condition Register
Logical Instructions

The condition register logical instructions, shown in Table F-15, can be used to set, clear,
copy, or invert a given condition register bit. Simplified mnemonics are provided that allow
these operations to be coded easily.

NOTE: The symbols defined in Section F.1, “Symbols,” can be used to identify the
condition register bit.

Table F-15. Condition Register Logical Mnemonics

Operation Simplified Mnemonic Equivalent to

Condition register set crset bx creqv bx,bx,bx

Condition register clear crclr bx crxor bx,bx,bx

Condition register move crmove bx,by cror bx,by,by

Condition register not crnot bx,by crnor bx,by,by

Appendix F.Simplified Mnemonics F-19

F

Examples using the condition register logical mnemonics follow:
1. Set CR bit 25.

crset 25 (equivalent to creqv 25,25,25)
2. Clear the SO bit of CR0.

crclr so (equivalent to crxor 3,3,3)
3. Same as (2), but SO bit to be cleared is in CR3.

crclr 4 * cr3 + so (equivalent to crxor 15,15,15)
4. Invert the EQ bit.

crnot eq,eq (equivalent to crnor 2,2,2)
5. Same as (4), but EQ bit to be inverted is in CR4, and the result is to be placed into

the EQ bit of CR5.
crnot 4 * cr5 + eq, 4 * cr4 + eq (equivalent to crnor 22,18,18)

F.7 Simplified Mnemonics for Trap Instructions
A standard set of codes, shown in Table F-16, has been adopted for the most common
combinations of trap conditions.

Table F-16. Standard Codes for Trap Instructions

Code Description TO Encoding < > = <U >U

lt Less than 16 1 0 0 0 0

le Less than or equal 20 1 0 1 0 0

eq Equal 4 0 0 1 0 0

ge Greater than or equal 12 0 1 1 0 0

gt Greater than 8 0 1 0 0 0

nl Not less than 12 0 1 1 0 0

ne Not equal 24 1 1 0 0 0

ng Not greater than 20 1 0 1 0 0

llt Logically less than 2 0 0 0 1 0

lle Logically less than or equal 6 0 0 1 1 0

lge Logically greater than or equal 5 0 0 1 0 1

lgt Logically greater than 1 0 0 0 0 1

lnl Logically not less than 5 0 0 1 0 1

lng Logically not greater than 6 0 0 1 1 0

— Unconditional 31 1 1 1 1 1

Note: The symbol “<U” indicates an unsigned less than evaluation will be performed. The symbol “>U” indi-
cates an unsigned greater than evaluation will be performed.

F-20 PowerPC Microprocessor 32-bit Family: The Programming Environments

F

The mnemonics defined in Table F-17 are variations of trap instructions, with the most
useful values of TO represented in the mnemonic rather than specified as a numeric
operand.

Examples of the uses of trap mnemonics, shown in Table F-17, follow:

1. Trap if register rA is not zero.
twnei rA,0 (equivalent to twi 24,rA,0)

2. Trap if register rA is not equal to rB.
twne rA, rB (equivalent to tw 24,rA,rB)

3. Trap if rA is logically greater than 0x7FF.
twlgti rA, 0x7FF (equivalent to twi 1,rA, 0x7FF)

4. Trap unconditionally.
trap (equivalent to tw 31,0,0)

Trap instructions evaluate a trap condition as follows:
• The contents of register rA are compared with either the sign-extended SIMM field

or the contents of register rB, depending on the trap instruction.

Table F-17. Trap Mnemonics

Trap Semantics
32-Bit Comparison

twi Immediate tw Register

Trap unconditionally — trap

Trap if less than twlti twlt

Trap if less than or equal twlei twle

Trap if equal tweqi tweq

Trap if greater than or equal twgei twge

Trap if greater than twgti twgt

Trap if not less than twnli twnl

Trap if not equal twnei twne

Trap if not greater than twngi twng

Trap if logically less than twllti twllt

Trap if logically less than or equal twllei twlle

Trap if logically greater than or equal twlgei twlge

Trap if logically greater than twlgti twlgt

Trap if logically not less than twlnli twlnl

Trap if logically not greater than twlngi twlng

Appendix F.Simplified Mnemonics F-21

F

The comparison results in five conditions which are ANDed with operand TO. If the result
is not 0, the trap exception handler is invoked.

NOTE: Exceptions are referred to as interrupts in the architecture specification.See
Table F-18 for these conditions.

F.8 Simplified Mnemonics for Special-Purpose
Registers

The mtspr and mfspr instructions specify a special-purpose register (SPR) as a numeric
operand. Simplified mnemonics are provided that represent the SPR in the mnemonic rather
than requiring it to be coded as a numeric operand. Table F-19 provides a list of the
simplified mnemonics that should be provided by assemblers for SPR operations.

Table F-18. TO Operand Bit Encoding

TO Bit ANDed with Condition

0 Less than, using signed comparison

1 Greater than, using signed comparison

2 Equal

3 Less than, using unsigned comparison

4 Greater than, using unsigned comparison

Table F-19. Simplified Mnemonics for SPRs

Special-Purpose Register

Move to SPR Move from SPR

Simplified
Mnemonic Equivalent to Simplified

Mnemonic Equivalent to

XER mtxer rS mtspr 1,rS mfxer rD mfspr rD,1

Link register mtlr rS mtspr 8,rS mflr rD mfspr rD,8

Count register mtctr rS mtspr 9,rS mfctr rD mfspr rD,9

DSISR mtdsisr rS mtspr 18,rS mfdsisr rD mfspr rD,18

Data address register mtdar rS mtspr 19,rS mfdar rD mfspr rD,19

Decrementer mtdec rS mtspr 22,rS mfdec rD mfspr rD,22

SDR1 mtsdr1 rS mtspr 25,rS mfsdr1 rD mfspr rD,25

Save and restore register 0 mtsrr0 rS mtspr 26,rS mfsrr0 rD mfspr rD,26

Save and restore register 1 mtsrr1 rS mtspr 27,rS mfsrr1 rD mfspr rD,27

SPRG0–SPRG3 mtspr n, rS mtspr 272 + n,rS mfsprg rD, n mfspr rD,272 + n

External access register mtear rS mtspr 282,rS mfear rD mfspr rD,282

F-22 PowerPC Microprocessor 32-bit Family: The Programming Environments

F

Following are examples using the SPR simplified mnemonics found in Table F-19:
1. Copy the contents of rS to the XER.

mtxer rS (equivalent to mtspr 1,rS)
2. Copy the contents of the LR to rS.

mflr rS (equivalent to mfspr rS,8)
3. Copy the contents of rS to the CTR.

mtctr rS (equivalent to mtspr 9,rS)

F.9 Recommended Simplified Mnemonics
This section describes some of the most commonly-used operations (such as no-op, load
immediate, load address, move register, and complement register).

F.9.1 No-Op (nop)
Many PowerPC instructions can be coded in a way that, effectively, no operation is
performed. An additional mnemonic is provided for the preferred form of no-op. If an
implementation performs any type of run-time optimization related to no-ops, the preferred
form is the no-op that triggers the following:

nop (equivalent to ori 0,0,0)

F.9.2 Load Immediate (li)
The addi and addis instructions can be used to load an immediate value into a register.
Additional mnemonics are provided to convey the idea that no addition is being performed
but that data is being moved from the immediate operand of the instruction to a register.

1. Load a 16-bit signed immediate value into rD.
li rD,value (equivalent to addi rD,0,value)

Time base lower mttbl rS mtspr 284,rS mftb rD mftb rD,268

Time base upper mttbu rS mtspr 285,rS mftbu rD mftb rD,269

Processor version register — — mfpvr rD mfspr rD,287

IBAT register, upper mtibatu n, rS mtspr 528 + (2 * n),rS mfibatu rD, n mfspr rD,528 + (2 * n)

IBAT register, lower mtibatl n, rS mtspr 529 + (2 * n),rS mfibatl rD, n mfspr rD,529 + (2 * n)

DBAT register, upper mtdbatu n, rS mtspr 536 + (2 *n),rS mfdbatu rD, n mfspr rD,536 + (2 *n)

DBAT register, lower mtdbatl n, rS mtspr 537 + (2 * n),rS mfdbatl rD, n mfspr rD,537 + (2 * n)

Table F-19. Simplified Mnemonics for SPRs (Continued)

Special-Purpose Register

Move to SPR Move from SPR

Simplified
Mnemonic Equivalent to Simplified

Mnemonic Equivalent to

Appendix F.Simplified Mnemonics F-23

F

2. Load a 16-bit signed immediate value, shifted left by 16 bits, into rD.
lis rD,value (equivalent to addis rD,0,value)

F.9.3 Load Address (la)
This mnemonic permits computing the value of a base-displacement operand, using the
addi instruction which normally requires a separate register and immediate operands.

la rD,d(rA) (equivalent to addi rD,rA,d)
The la mnemonic is useful for obtaining the address of a variable specified by name,
allowing the assembler to supply the base register number and compute the displacement.
If the variable v is located at offset dv bytes from the address in register rv, and the
assembler has been told to use register rv as a base for references to the data structure
containing v, the following line causes the address of v to be loaded into register rD:

la rD,v (equivalent to addi rD,rv,dv

F.9.4 Move Register (mr)
Several PowerPC instructions can be coded to copy the contents of one register to another.
A simplified mnemonic is provided that signifies that no computation is being performed,
but merely that data is being moved from one register to another.

The following instruction copies the contents of rS into rA. This mnemonic can be coded
with a dot (.) suffix to cause the Rc bit to be set in the underlying instruction.

mr rA,rS (equivalent to or rA,rS,rS)

F.9.5 Complement Register (not)
Several PowerPC instructions can be coded in a way that they complement the contents of
one register and place the result into another register. A simplified mnemonic is provided
that allows this operation to be coded easily.

The following instruction complements the contents of rS and places the result into rA.
This mnemonic can be coded with a dot (.) suffix to cause the Rc bit to be set in the
underlying instruction.

not rA,rS (equivalent to nor rA,rS,rS)

F.9.6 Move to Condition Register (mtcr)
This mnemonic permits copying the contents of a GPR to the condition register, using the
same syntax as the mfcr instruction.

mtcr rS (equivalent to mtcrf 0xFF,rS)

F-24 PowerPC Microprocessor 32-bit Family: The Programming Environments

F

