
Mac OS X ABI Function Call Guide

2005-12-06

Apple Computer, Inc.
© 2005 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval system, or
transmitted, in any form or by any means,
mechanical, electronic, photocopying,
recording, or otherwise, without prior
written permission of Apple Computer, Inc.,
with the following exceptions: Any person
is hereby authorized to store documentation
on a single computer for personal use only
and to print copies of documentation for
personal use provided that the
documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple
Computer, Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple
may constitute trademark infringement and
unfair competition in violation of federal
and state laws.

No licenses, express or implied, are granted
with respect to any of the technology
described in this document. Apple retains
all intellectual property rights associated
with the technology described in this
document. This document is intended to
assist application developers to develop
applications only for Apple-labeled or
Apple-licensed computers.

Every effort has been made to ensure that
the information in this document is
accurate. Apple is not responsible for
typographical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, Mac OS, and
Xcode are trademarks of Apple Computer,
Inc., registered in the United States and
other countries.

AIX is a trademark of IBM Corp., registered
in the U.S. and other countries, and is being
used under license.

Intel and Pentium are registered trademarks
of Intel Corportation or its subsidiaries in
the United States and other countries.

PowerPC and and the PowerPC logo are
trademarks of International Business
Machines Corporation, used under license
therefrom.

Simultaneously published in the United
States and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS
DOCUMENT IS PROVIDED “AS IS,” AND
YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if
advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple dealer, agent,
or employee is authorized to make any
modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability for
incidental or consequential damages, so the
above limitation or exclusion may not apply to
you. This warranty gives you specific legal
rights, and you may also have other rights which
vary from state to state.

Contents

Introduction to Mac OS X ABI Function Call Guide 7

Organization of This Document 7
See Also 7

32-bit PowerPC Function Calling Conventions 9

Data Types and Data Alignment 9
Function Calls 13

Stack Structure 13
Prologs and Epilogs 16
The Red Zone 17
Passing Arguments 18
Returning Results 22
Register Preservation 23

64-bit PowerPC Function Calling Conventions 25

Data Types and Data Alignment 25
Function Calls 28

Stack Structure 28
Prologs and Epilogs 31
The Red Zone 33
Passing Arguments 34
Returning Results 40
Register Preservation 40

IA-32 Function Calling Conventions 43

Data Types and Data Alignment 43
Function Calls 45

Stack Structure 45
Prologs and Epilogs 46
Passing Arguments 47
Returning Results 49
Register Preservation 50

3
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

Document Revision History 53

Index 55

4
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

Tables, Figures, and Listings

32-bit PowerPC Function Calling Conventions 9

Figure 1 Stack layout 13
Figure 2 The red zone 18
Figure 3 Assignment of parameters to registers and the parameter area 22
Listing 1 Example prolog 16
Listing 2 Example epilog 17
Listing 3 Example usage of the VRSAVE register 17
Listing 4 A variable-argument procedure 22
Table 1 Size and natural alignment of the scalar data types 9
Table 2 Alignment for structure fields 12
Table 3 Parameter area to general-purpose register mapping 14
Table 4 Parameter area layout for the foo call 15
Table 5 Assigning parameters to registers and the parameter area 21
Table 6 Processor registers in the 32-bit PowerPC architecture 23

64-bit PowerPC Function Calling Conventions 25

Figure 1 Stack layout 29
Figure 2 The red zone 33
Figure 3 Argument assignment when all parameter types are known 37
Listing 1 Example prolog 32
Listing 2 Example epilog 33
Listing 3 Example usage of the VRSAVE register 33
Table 1 Size and natural alignment of the scalar data types 25
Table 2 Alignment for structure fields 27
Table 3 Parameter area to general-purpose register mapping 29
Table 4 Parameter area layout for the foo call 30
Table 5 Passing arguments to a function that declares all the types of its parameters

36
Table 6 Passing arguments to a function with a struct parameter 37
Table 7 Passing arguments to a function with a variable argument list 38
Table 8 Passing arguments to a function with a pre–ANSI C prototype 39
Table 9 Examples of passing results to callers 40
Table 10 Processor registers in the 64-bit PowerPC architecture 41

5
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

IA-32 Function Calling Conventions 43

Figure 1 Stack layout 45
Figure 2 Argument assignment with arguments of the fundamental data types 48
Figure 3 Argument assignment with structure and vector arguments 49
Listing 1 Definition of the simp function 46
Listing 2 Example prolog 47
Listing 3 Example epilog 47
Listing 4 Using a large structure—source code 48
Listing 5 Using a large structure—compiler interpretation 48
Table 1 Size and natural alignment of the scalar data types 43
Table 2 Size and alignment of the vector types 44
Table 3 Processor registers in the IA-32 architecture 50

6
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

This document describes the interactions between the Mac OS X ABI and the architectores on which
Mac OS X can run. Specifically, 32-bit PowerPC, 64-bit PowerPC, and IA-32.

The information in this document is based on Mac OS X v10.4 and later, and Xcode Tools 2.2.

This document is intended for developers interested in the calling conventions used in the Mac OS
X ABI in each of the supported architectures. This information is especially useful to developers of
development tools.

Organization of This Document

This document contains the following articles:

 ■ "32-bit PowerPC Function Calling Conventions" (page 9)

 ■ "64-bit PowerPC Function Calling Conventions" (page 25)

 ■ "IA-32 Function Calling Conventions" (page 43)

Each of these articles describes the data types that can be used to manipulate the arguments and
results of function calls, how routines pass arguments to the functions they call, and how functions
pass results to their callers. They also list the registers available in each architecture and whether their
value is preserved after a function call.

See Also

The following documents contain information related to function calls in the Mac OS X ABI.

 ■ PowerPC Numerics in Performance Documentation. Describes how floating-point operations are
implemented in Mac OS X.

 ■ System V Applicatoin Binary Interface: Intel386 Architecture Processor Supplement. Describes the data
representation, register usage, stack management, and function-calling sequence the System V
ABI uses in the IA-32 architecture. This document is located at
http://www.caldera.com/developers/devspecs/abi386-4.pdf.

Organization of This Document 7
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

Introduction to Mac OS X ABI Function
Call Guide

http://www.caldera.com/developers/devspecs/abi386-4.pdf

8 See Also
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

Introduction to Mac OS X ABI Function Call Guide

When functions (routines) call other functions (subroutines), they may need to pass arguments to the
called functions. The called functions access those arguments as parameters. Conversely, some
functions return a result or return value to their callers. Both arguments and results can be passed
using the 32-bit PowerPC architecture registers or the runtime stack, depending on the data type of
the values involved. For the successful and efficient passing of values between routines and subroutines,
GCC follows strict rules when it generates a program’s object code.

This article describes the data types that can be used to manipulate the arguments and results of
function calls, how routines pass arguments to the subroutines they call, and how functions pass
results to their callers. It also lists the registers available in the 32-bit PowerPC architecture and whether
their value is preserved after a function call.

Data Types and Data Alignment

Using the correct data types for your variables and setting the appropriate data alignment for your
data can maximize the performance and portability of your programs. Data alignment specifies how
data is laid out in memory.

Table 1 lists the ANSI C scalar data types and their sizes and natural alignment in this environment.

Table 1 Size and natural alignment of the scalar data types

Size and natural alignment (in bytes)Data type

4_Bool, bool

1unsigned char

1char, signed char

2unsigned short

2signed short

4unsigned int

4signed int

Data Types and Data Alignment 9
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

32-bit PowerPC Function Calling
Conventions

Size and natural alignment (in bytes)Data type

4unsigned long

4signed long

8unsigned long long

8signed long long

4float

8double

16*long double

4pointer

(*) In Mac OS X v10.4 and later and GCC 4.0 and later, the size of the long double extended precision
data type is 16 bytes (it’s made up of two 8-byte doubles). In earlier versions of Mac OS X and GCC,
long double is equivalent to double. You should not use the long double type when you use GCC
4.0 or later to develop or in programs targeted at Mac OS X versions earlier than 10.4.

These are some important details about the 32-bit PowerPC environment:

 ■ A byte is 8 bits long.

 ■ A null pointer has a value of 0.

 ■ This environment uses the big-endian byte ordering scheme to store numeric and pointer data
types. That is, the most significant bytes go first, followed by the least significant bytes.

 ■ This environment uses the two’s-complement binary representation for signed integer data types.

 ■ Arithmetic for the 64-bit integer data types must be synthesized by the compiler since the 32-bit
PowerPC architecture does not implement 64-bit integer math operations.

 ■ The float and double data types conform to the IEEE-754 standard representation. For the value
range and precise format of floating-point data types, see PowerPC Numerics in Performance
Documentation.

This environment supports multiple data alignment modes. The alignment of data types falls into
two categories:

 ■ Natural alignment. The alignment of a data type when allocated in memory or assigned a memory
address.

The natural alignment of a data type is its size. Table 1 (page 9) shows the natural alignment of
each data type supported by this environment.

 ■ Embedding alignment. The alignment of a data type within a composite data structure.

For example, the alignment of an unsigned short variable on the stack may differ from that of an
unsigned short element embedded in a data structure.

10 Data Types and Data Alignment
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

32-bit PowerPC Function Calling Conventions

The embedding alignment for data structures varies depending on the alignment mode selected.
Generally, you can set the alignment mode using compiler options or #pragma statements. You should
consider the compatibility and performance issues described later in this section when choosing a
particular alignment mode.

These are the embedding alignment modes available in the 32-bit PowerPC environment:

 ■ Power alignment mode is derived from the alignment rules used by the IBM XLC compiler for
the AIX operating system. It is the default alignment mode for the PowerPC-architecture version
of GCC used on AIX and Mac OS X. Because this mode is most likely to be compatible between
PowerPC-architecture compilers from different vendors, it’s typically used with data structures
that are shared between different programs.

The rules for power alignment are:

 ❏ The embedding alignment of the first element in a data structure is equal to the element’s
natural alignment.

 ❏ For subsequent elements with a natural alignment less than 4 bytes, the embedding alignment
of each element is equal to its natural alignment.

 ❏ For subsequent elements that have a natural alignment greater than 4 bytes, the embedding
alignment is 4, unless the element is a vector.

 ❏ The embedding alignment for vector elements is always 16 bytes.

 ❏ The embedding alignment of a composite data type (array or data structure) is determined
by the largest embedding alignment of its members.

 ❏ The total size of a composite type is rounded up to a multiple of its embedding alignment,
and is padded with null bytes.

Because the natural alignment of the double and long long data types is greater than 4 bytes,
they may not be appropriately aligned in power alignment mode. Any misalignment impairs
performance when such data members are accessed. When you use these data types for any
element after the first element, the compiler pads the structure to align the elements to their
natural alignment.

 ■ Mac68K alignment mode is usually used with legacy data structures inherited from Mac OS 9
and earlier systems. New code should not need to use this alignment mode except to preserve
compatibility with older data structures.

The rules for Mac68K alignment are:

 ❏ The embedding alignment of the char data type is 1 byte.

 ❏ The embedding alignment of all other data types (except vector) is 2 bytes.

 ❏ The embedding alignment for the vector data type is 16 bytes.

 ❏ The total size of a composite data type is rounded up to a multiple of 2 bytes.

 ■ Natural alignment mode uses the natural alignment of each data type as its embedding alignment.
Use this alignment mode to obtain the highest performance when using the double, long, and
long double data types.

 ■ Packed alignment mode contains no alignment padding between elements (the alignment for
all data types is 1 byte). Use this alignment mode when you need a data structure to use as little
memory as possible. Note, however, that packed alignment can significantly lower the performance
of your application.

Data Types and Data Alignment 11
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

32-bit PowerPC Function Calling Conventions

Note: Data items passed as parameters in a function call have special alignment rules. See "Stack
Structure" (page 13) for more information.

Table 2 lists the alignment for structure fields of the fundamental data types and composite data types
in the supported alignment modes.

Table 2 Alignment for structure fields

Packed
alignment

Mac68K
alignment

Natural alignmentPower alignmentData type

1244_Bool, bool

1111char

1222short

1244int

1244long

1284 or 8long long

1244float

1284 or 8double

12long double

1161616vector

121, 2, 4, 8, or 164, 8, or 16Composite (data structure or
array)

With GCC you can control data-structure alignment by adding #pragma statements to your source
code or by using command-line options. The power alignment mode is used if you do not specify
otherwise.

To set the alignment mode, use the gcc flags -malign-power, -malign-mac68k, and -malign-natural.
To use a specific alignment mode in a data structure, add this statement just before the data-structure
declaration:

#pragma option align=<mode>

Replace <mode> with power, mac68k, natural, or packed. To restore the previous alignment mode,
use reset as the alignment mode in a #pragma statement:

#pragma option align=reset

12 Data Types and Data Alignment
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

32-bit PowerPC Function Calling Conventions

Function Calls

This section details the process of calling a function and passing arguments to it, and how functions
return values to their callers.

Note: These argument-passing conventions are part of the Apple standard for procedural programming
interfaces. Object-oriented languages may use different rules for their own method calls. For example,
the conventions for C++ virtual function calls may be different from those for C functions.

Stack Structure

This environment uses a stack that grows downward and contains linkage information, local variables,
and a function’s parameter information, as shown in Figure 1.

Figure 1 Stack layout

Stack grows
down

Local variables

Linkage area

Saved registers

Parameter area

Stack after
calling a function

Stack before
calling a function

SP

Parameter area

Linkage area

Parameter area

Linkage area
SP

Callee

Caller

Stack grows
down

Caller

The stack pointer (SP) points to the bottom of the stack. The stack has a fixed frame size, which is
known at compile time.

The calling routine’s stack frame includes a parameter area and some linkage information. The
parameter area has the arguments the caller passes to the called function or space for them, depending
on the type of each argument and the availability of registers (see "Passing Arguments" (page 18) for
details). Since the calling routine may call several functions, the parameter area must be large enough
to accommodate the largest argument list of all the functions the caller calls. It is the calling routine’s
responsibility to set up the parameter area before each function call. The called function is responsible
for accessing the arguments placed in the parameter area.

Function Calls 13
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

32-bit PowerPC Function Calling Conventions

The first 32 bytes in the parameter area correspond to the general-purpose registers GPR3 through
GPR10. When data is placed in a general-purpose register and not duplicated in the parameter area,
the corresponding section in the parameter area is reserved in case the called function needs to copy
the value in the register to the stack. Table 3 shows the correspondence of parameter area locations
to the general-purpose registers that can be used to pass arguments.

Table 3 Parameter area to general-purpose register mapping

RegisterStack frame location

GPR3SP+24

GPR4SP+28

GPR5SP+32

GPR6SP+36

GPR7SP+40

GPR8SP+44

GPR9SP+48

GPR10SP+52

These are the alignment rules followed when parameters are placed in the parameter area or in GPR3
through GPR10:

1. All nonvector parameters are aligned on 4-byte boundaries.

2. Vector parameters are aligned on 16-byte boundaries.

3. Noncomposite parameters (that is, parameters that are not arrays or data structures) smaller than
4 bytes occupy the high-order bytes of their 4-byte area.

4. Composite parameters (arrays, structures, and unions) 1 or 2 bytes in size occupy the low-order
bytes of their 4-byte area. They are preceded by padding to 4 bytes.

This rule is inconsistent with other 32-bit PowerPC binary interfaces. In AIX and Mac OS 9 (and
earlier), padding bytes always follow the data structure even in the case of composite parameters
smaller than 4 bytes.

5. Composite parameters 3 bytes or larger in size occupy the high-order bytes of their 4-byte area.
They are followed by padding to make a multiple of 4 bytes, with the padding bytes being
undefined.

For example, consider the foo function, declared like this:

void foo(SInt32 i1, float f1, double d1, SInt16 s1, double d2,
 UInt8 c1, UInt16 s2, float f2, SInt32 i2);

Table 4 shows how the function’s arguments are assigned locations in the parameter area. The
assignment takes into account the 4-byte alignment required for each argument.

14 Function Calls
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

32-bit PowerPC Function Calling Conventions

Table 4 Parameter area layout for the foo call

Data size and padding (in bytes)LocationTypeParameter

4, 0SP+24SInt32i1

4, 0SP+28floatf1

8, 0SP+32doubled1

2, 2SP+40SInt16s1

8, 0SP+44doubled2

1, 3SP+52UInt8c1

2, 2SP+56UInt16s2

4, 0SP+60floatf2

4, 0SP+64SInt32i2

The calling routine’s linkage area holds a number of values, some of which are saved by the calling
routine and some by the called function. The elements within the linkage area are:

 ■ The link register (LR). It’s value is saved at 8(SP) by the called function if it chooses to do so.
The link register holds the return address of the instruction that follows a branch and link
instruction.

 ■ The condition register (CR). It’s value may be saved at 4(SP) by the called function. The condition
register holds the results of comparison operations. As with the link register, the called procedure
is not required to save this value.

 ■ The stack pointer (SP). It’s value may be saved at 0(SP) by the called function as part of its stack
frame. Leaf functions are not required to save the the stack pointer. A leaf function is a function
that does not call any other functions.

Note: The space in the linkage area from 12(SP) to 23(SP) is reserved.

The linkage area is at the top of the stack, adjacent to the stack pointer. This positioning is necessary
so that the calling routine can find and restore the values stored there and also allow the called function
to find the caller’s parameter area. This placement means that a routine cannot push and pop
parameters from the stack once the stack frame is set up.

The stack frame also includes space for the called function’s local variables. However, some registers
are also available for use by the called function; see "Register Preservation" (page 23) for details. If
the subroutine contains more local variables than would fit in the registers, it uses additional space
on the stack. The size of the local-variable area is determined at compile time. Once a stack frame is
allocated, the size of the local-variable area does not change.

Function Calls 15
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

32-bit PowerPC Function Calling Conventions

Prologs and Epilogs

The called function is responsible for allocating its own stack frame, making sure to preserve 16-byte
alignment in the stack. This operation is accomplished by a section of code called the prolog, which
the compiler places before the body of the subroutine. After the body of the subroutine, the compiler
places an epilog to restore the processor to the state it was prior to the subroutine call.

The compiler-generated prolog code does the following:

1. Decrements the stack pointer to account for the new stack frame and writes the previous value
of the stack pointer to its own linkage area, which ensures the stack can be restored to its original
state after returning from the call.

It is important that the decrement and update tasks happen atomically (for example, with stwu,
stwux, stdu, or stdux) so that the stack pointer and back-link are in a consistent state. Otherwise,
asynchronous signals or interrupts could corrupt the stack.

2. Saves all nonvolatile general-purpose and floating-point registers into the saved-registers area.
Note that if the called function does not change a particular nonvolatile register, it does not save
it.

3. Saves the link-register and condition-register values in the caller’s linkage area, if needed.

These actions don’t need to be executed in any particular order. Listing 1 shows an example of a
subroutine prolog. Notice that the order of these actions differs from the order previously described.

Listing 1 Example prolog

linkageArea = 24 ; size in 32-bit
PowerPC ABI
params = 32 ; callee parameter
area
localVars = 0 ; callee local
variables
numGPRs = 0 ; volatile GPRs used
 by callee
numFPRs = 0 ; volatile FPRs used
 by callee

spaceToSave = linkageArea + params + localVars + 4*numGPRs + 8*numFPRs
spaceToSaveAligned = ((spaceToSave+15) & (-16)) ; 16-byte-aligned
stack

_functionName: ; PROLOG
 mflr r0 ; extract return
address
 stw r0, 8(SP) ; save the return
address
 stwu SP, -spaceToSaveAligned(SP) ; skip over caller
save area

At the end of the subroutine, the compiler-generated epilog does the following:

1. Restores the nonvolatile general-purpose and floating-point registers that were saved in the stack
frame.

16 Function Calls
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

32-bit PowerPC Function Calling Conventions

Nonvolatile registers are saved in the new stack frame before the stack pointer is updated only
when they fit within the space beneath the stack pointer, where a new stack frame would normally
be allocated, also known as the red zone. The red zone is by definition large enough to hold all
nonvolatile general-purpose and floating-point registers but not the nonvolatile vector registers.
See "The Red Zone" (page 17) for details.

2. Restores the condition-register and link-register values that were stored in the linkage area.

3. Restores the stack pointer to its previous value.

4. Returns control to the the calling routine using the address stored in the link register.

Again, these actions do not need to be executed in any particular order. Listing 2 shows an example
epilog.

Listing 2 Example epilog

 ; EPILOG
lwz r0, spaceToSaveAligned + 8(SP) ; get the return address
mtlr r0 ; into the link register
addi SP, SP, spaceToSaveAligned ; restore stack pointer
blr ; and branch to the return
 address

The VRSAVE register is used to specify which vector registers must be saved during a thread or
process context switch.Listing 3 shows an example prolog that sets up VRSAVE so that vector registers
V0 through V2 are saved. Listing 3 also includes the epilog that restores VRSAVE to its previous state.

Listing 3 Example usage of the VRSAVE register

#define VRSAVE 256 // VRSAVE IS SPR# 256

 _functionName:
 mfspr r2, VRSAVE ; get vector of live VRs
 oris r0, r2, 0xE000 ; set bits 0-2 since we use V0..V2
 mtspr VRSAVE, r0 ; update live VR vector before
using any VRs

 ; Now, V0..V2 can be safely used.
 ; Function body goes here.

 mtspr VRSAVE, r2 ; restore VRSAVE
 blr ; return to caller

The Red Zone

The space beneath the stack pointer, where a new stack frame would normally be allocated by a
subroutine, is called the red zone. The red zone, shown in Figure 2, is considered part of the current
stack frame. This area is not modified by asynchronous pushes, such as signals or interrupt handlers.
Therefore, the red zone may be used for any purpose as long as a new stack frame does not need to
be added to the stack. However, the contents of the red zone are assumed to be destroyed by any
synchronous call.

Function Calls 17
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

32-bit PowerPC Function Calling Conventions

Figure 2 The red zone

Linkage area

Parameter area

Red Zone

SP

For example, because a leaf function does not call any other functions—and, therefore, does not
allocate a parameter area on the stack—it can use the red zone. Furthermore, such a function does
not need to use the stack to store local variables; it needs to save only the nonvolatile registers it uses
for local variables. Since, by definition, no more than one leaf function is active at any time within a
thread, there is no possibility of multiple leaf functions competing for the same red zone space.

A leaf function may or may not allocate a stack frame and decrement the stack pointer. When it doesn’t
allocate a stack frame, a leaf function stores the link register and condition register values in the
linkage area of the routine that calls it (if necessary) and stores the values of any nonvolatile registers
it uses in the red zone. This streamlining means that a leaf function’s prolog and epilog do minimal
work; they do not have to set up and take down a stack frame.

The size of the red zone is 224 bytes, which is enough space to store the values of nineteen 32-bit
general-purpose registers and eighteen 64-bit floating-point registers, rounded up to the nearest
16-byte boundary. If a leaf function’s red zone usage would exceed the red zone size, it must set up
a stack frame, just as functions that call other functions do.

Passing Arguments

In the C language, functions can declare their parameters using one of three conventions:

 ■ The types of all parameters is specified in the function’s prototype. For example:

int foo(int, short);

In this case, the type of all the function’s parameters is known at compile time.

 ■ The function’s prototype declares some fixed parameters and some nonfixed parameters. The
group of nonfixed parameters is also called a variable argument list. For example:

int foo(int, ...);

In this case, the type of one of the function’s parameters in known at compile time. The type of
the nonfixed parameters is not known.

 ■ The function has no prototype or uses a pre–ANSI C declaration. For example:

int foo();

In this case, the type of all the function’s parameters is unknown at compile time.

18 Function Calls
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

32-bit PowerPC Function Calling Conventions

When the compiler generates the prolog for a function call, it uses the information from the function’s
declaration to decide how arguments are passed to the function. When the compiler knows the type
of a parameter, it passes it in the most efficient way possible. But when the type is unknown, it passes
the parameter using the safest approach, which may involve placing data both in registers and in the
parameter area. For called functions to access their parameters correctly, it’s important that they know
when parameters are passed in the stack or in registers.

Arguments are passed in the stack or in registers depending on their types and the availability of
registers. There are three types of registers: general purpose, floating point, and vector. General-purpose
registers (GPRs) are 32-bit registers that can manipulate integral values and pointers. Floating-point
registers (FPRs) are 64-bit registers that can manipulate single-precision and double-precision
floating-point values. Vector registers are 128-bit registers that can manipulate 4 through 16 chunks
of data in parallel.

The registers that can be used to pass arguments to called functions are the general-purpose registers
GPR3 through GPR10, the floating-point registers FPR1 through FPR13, and the vector registers V2
through V13 (see "Register Preservation" (page 23) for details). These registers are also known as
parameter registers.

Important: Only the low 32 bits in each of the general-purpose registers available on the 64-bit PowerPC
architecture are used in this environment. That is, only the low 32 bits of nonvolatile registers are
saved and restored. However, all 64 bits are saved across asynchronous events, such as signals and
preemptions. Therefore, you can use the 64 bits in each register between function calls. You control
this feature through the gcc options -arch and -mcpu.

Typically, the calling routine passes arguments in registers. However, the compiler generates a
parameter area in the caller’s stack frame that is large enough to hold all the arguments passed to the
called function, regardless of how many of the arguments are actually passed in registers. (You can
think of the parameter area as a data structure that has space to hold all the arguments in a given
call.) There are several reasons for these scheme:

 ■ It provides the called function with space in the stack to store a register-based parameter if it
wants to use one of the parameter registers for some other purpose. For example, the callee can
use these space to pass arguments to a function it calls.

 ■ Functions with variable argument lists must often access their parameters from RAM, not from
registers. Such functions must reserve 32 bytes (8 registers) in the parameter area to hold the
parameter values.

 ■ To simplify debugging, GCC writes parameters from the parameter registers into the parameter
area in the stack frame. This allows you to see all the parameters by looking only at the parameter
area.

The caller doesn’t place any parameters in the first 8 words of the parameter area, except composite
parameters whose size is 3 bytes or more and not divisible by 4 (for example, 3, 5, 6, 7, 9, and so on).
The called function obtains such parameters from the registers instead of the stack. If the called
function needs to have parameters in the parameter area that are not passed there, it must place them
there itself.

The compiler uses the following rules when passing arguments to subroutines:

 ■ Parameters whose type is known at compile time are processed as follows:

Function Calls 19
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

32-bit PowerPC Function Calling Conventions

1. Scalar, non–floating-point elements are placed in the general-purpose registers GPR3 through
GPR10. As each register is used, the caller allocates the register’s corresponding section in
the parameter area, as described in "Stack Structure" (page 13). When general-purpose registers
are exhausted, the caller places scalar, non–floating-point elements in the parameter area.

2. The caller places floating-point parameters in the floating-point registers FPR1 through FPR13.
As each floating-point register is used, the caller skips one or more general-purpose registers,
based on the size of the parameter. (For example, a float element causes one (4-byte)
general-purpose register to be skipped. A double element causes two general-purpose registers
to be skipped.) When floating-point registers are exhausted, the caller places floating-point
elements in the parameter area.

3. The caller places structures (struct elements) with only one noncomposite member in
general-purpose or floating-point registers, depending on whether the member is an integer
or a floating-point value. For example, the caller places a structure comprised of a float
member in a floating-point register, not a general-purpose register. When registers of the
required type are exhausted, the caller places structures in the parameter area.

4. The caller places vector parameters in vector registers V2 through V13. For procedures with
a fixed number of parameters, the presence of vectors doesn’t affect the allocation of
general-purpose registers and floating-point registers. The caller doesn’t allocate space for
vector elements in the parameter area of its stack frame unless the number of vector elements
exceeds the number of usable vector registers.

5. When the number of parameters exceeds the number of usable registers, the caller places the
excess parameters in the parameter area.

 ■ Parameters whose type is not known at compile time (functions with variable-argument lists or
using pre–ANSI C prototypes) are processed as follows:

1. The caller places nonvector elements both in general-purpose registers and in floating-point
registers.

Because the compiler doesn’t know the type of the parameter, it cannot determine whether
the argument should be passed in a general-purpose register or in a floating-point register.
Therefore, callers place each argument in a floating-point register and the corresponding
general-purpose registers based on the argument’s size.

2. The caller places vector elements in vector registers and general-purpose registers (each
vector element requires four general-purpose registers. The caller also allocates space in the
parameter area that corresponds to the general-purpose registers used.

Important: When the return type of the called function is a composite value (for example, struct or
union), the caller passes a pointer in GPR3 as an implicit first parameter of the called function.
Therefore, the functions’ declared parameters start at GPR4. The pointer points to a section of memory
large enough to hold the return value. See "Returning Results" (page 22) for more information.

For example, consider the foo function, declared like this:

void foo(SInt32 i1, float f1, double d1, SInt16 s1, double d2,
 UInt8 c1, UInt16 s2, float f2, SInt32 i2);

20 Function Calls
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

32-bit PowerPC Function Calling Conventions

The caller places each argument to foo in a general-purpose register, a floating-point register, or the
parameter area, depending on the parameter’s data type and register availability. Table 5 describes
this process.

Table 5 Assigning parameters to registers and the parameter area

ReasonPlaced inTypeParameter

Noncomposite, non–floating-point element.GPR3SInt32i1

Floating-point element. GPR4 is skipped.FPR1floatf1

Double-precision, floating-point element. GPR5 and
GPR6 are skipped.

FPR2doubled1

Noncomposite, non–floating-point element.GPR7SInt16s1

Double-precision, floating-point element. GPR8 and
GPR9 are skipped.

FPR3doubled2

Noncomposite, non–floating-point element.GPR10UInt8c1

No general-purpose registers available.SP+56, low half of
word

UInt16s2

Floating-point element.FPR4floatf2

No general-purpose registers available.SP+60SInt32i2

Note: In this case, the caller doesn’t place any arguments that it places in general-purpose registers
or floating-point registers in the parameter area.

Figure 3 illustrates the assignment of the foo parameters to registers and the parameter area. Keep
in mind that the only parameters placed in the parameter area are f2 and i2.

Function Calls 21
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

32-bit PowerPC Function Calling Conventions

Figure 3 Assignment of parameters to registers and the parameter area

+44

+40

+36

+32
+28

+20

+16

+8

+4

0
Stack grows

down

f2 FPR4

FPR3

FPR2

FPR1

GPR10

GPR9

GPR8
GPR7

GPR6

GPR5

GPR4

GPR3

x..............x

x.......................x

i2

d2

s2

c1

x..............x s1

d1

i1

f1

The called function can access the fixed parameters as usual. But it copies the general-purpose registers
to the parameter area and accesses the values from there. Listing 4 shows a routine that accesses
undefined parameters by walking through the stack.

Listing 4 A variable-argument procedure

#include <stdarg.h>
double dsum(int count, ...) {
 double sum = 0.0;
 double val;
 va_list arg;
 va_start(arg, count);
 while (count > 0) {
 val = va_arg(arg, double);
 sum += val;
 count--;
 }
 va_end(arg);
 return sum;
}

Returning Results

The following list describes where a function’s return value is passed to the caller.

 ■ Scalars smaller than 4 bytes (such as char and short) are placed in the low word of GPR3. The
register’s high word is undefined.

 ■ Scalars 4 bytes in size (such as long, int, and pointers, including array pointers) are placed in
GPR3.

22 Function Calls
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

32-bit PowerPC Function Calling Conventions

 ■ Values of type long long are returned in the high word of GPR3 and the low word of GPR4.

 ■ Floating-point values are placed in FPR1.

 ■ Composite values (such as struct and union) and values larger than 4 bytes are placed at the
location pointed to by GPR3. See "Passing Arguments" (page 18) for more information.

Register Preservation

Table 6 lists the 32-bit PowerPC architecture registers used in this environment and their volatility
in function calls. Registers that must preserve their value after a function call are called nonvolatile.

Table 6 Processor registers in the 32-bit PowerPC architecture

NotesPreservedNameType

NoGPR0General-purpose
register

Used as the stack pointer to store parameters and
other temporary data items.

YesGPR1

Available for general use.NoGPR2

The caller passes parameter values to the called
procedure in GPR3 through GPR10. The caller
may also pass the address to storage where the
callee places its return value in this register.

NoGPR3

Used by callers to pass parameter values to called
functions (see notes for GPR3).

NoGPR4–GPR10

In nested functions, the caller passes its stack
frame to the nested function in this register. In
leaf functions, the register is available. For details
on nested functions, see the GCC documentation.
This register is also used by lazy stubs in dynamic
code generation to point to the lazy pointer.

Yes in
nested
functions.
No in leaf
functions.

GPR11

Set to the address of the branch target before an
indirect call for dynamic code generation. This
register is not set for a function that has been
called directly; therefore, functions that may be
called directly should not depend on this register
being set up correctly. See Mach-O Programming
Topics for more information.

NoGPR12

YesGPR13–GPR31

NoFPR0Floating-point
register

Function Calls 23
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

32-bit PowerPC Function Calling Conventions

NotesPreservedNameType

Used to pass floating-point parameters in
function calls.

NoFPR1–FPR13

YesFPR14–FPR31

The caller passes vector parameters in V2 to V13
during a function call.

NoV0–V19Vector register

YesV20–V31

32-bit special-purpose register. Each bit in this
register indicates whether the corresponding
vector register must be saved during a thread or
process context switch.

YesVRSAVESpecial-purpose
vector register

Stores the return address of the calling routine
that called the current subroutine.

NoLRLink register

NoCTRCount register

NoXERFixed-point
exception
register

NoCR0, CR1Condition
register fields

YesCR2–CR4

NoCR5–CR7

24 Function Calls
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

32-bit PowerPC Function Calling Conventions

When functions (routines) call other functions (subroutines), they may need to pass arguments to
them. These subroutines access those arguments as parameters. Conversely, some functions pass a
result or return value to their callers. Both arguments and results can be passed using the 64-bit
PowerPC architecture registers or the runtime stack, depending on the data type of the values involved.
For the successful and efficient passing of values between routines and subroutines, GCC follows
strict rules when it generates a program’s object code.

This article describes the data types that can be used to manipulate the arguments and results of
function calls, how routines pass arguments to the subroutines they call, and how functions pass
results to their callers. It also lists the registers available in the 64-bit PowerPC architecture and whether
their value is preserved after a function call.

Data Types and Data Alignment

Using the correct data types for your variables and setting the appropriate data alignment for your
data can maximize the performance and portability of your programs. Data alignment specifies how
data is laid out in memory.

Table 1 lists the ANSI C scalar data types and their sizes and natural alignment in this environment.

Table 1 Size and natural alignment of the scalar data types

Size and natural alignment (in bytes)Data type

1_Bool, bool

1unsigned char

1char, signed char

2unsigned short

2signed short

4unsigned int

4signed int

Data Types and Data Alignment 25
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

64-bit PowerPC Function Calling
Conventions

Size and natural alignment (in bytes)Data type

8unsigned long

8signed long

8unsigned long long

8signed long long

4float

8double

16long double

8pointer

These are some important details about the 64-bit PowerPC environment:

 ■ A byte is 8 bits long.

 ■ A null pointer has a value of 0.

 ■ This environment uses the big-endian byte ordering scheme to store numeric and pointer data
types. That is, the most significant bytes go first, followed by the least significant bytes.

 ■ This environment uses the two’s-complement binary representation for signed integer data types.

 ■ The float and double data types conform to the IEEE-754 standard representation. For the value
range and precise format of floating-point data types, see PowerPC Numerics in Performance
Documentation.

This environment supports multiple data alignment modes. Alignment of data types falls into two
categories:

 ■ Natural alignment. The alignment of a data type when allocated in memory or assigned a memory
address.

The natural alignment of a data type is its size. Table 1 (page 25) shows the natural alignment of
each data type supported by this environment.

 ■ Embedding alignment. The alignment of a data type within a composite data structure.

For example, the alignment of an unsigned short variable on the stack may differ from that of an
unsigned short data item embedded in a data structure.

The embedding alignment for data structures varies depending on the alignment mode selected.
Generally, you can set the alignment mode using compiler options or #pragma statements. You should
consider the compatibility and performance issues described later in this section when choosing a
particular alignment mode.

These are the embedding alignment modes available in the 64-bit PowerPC environment:

26 Data Types and Data Alignment
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

64-bit PowerPC Function Calling Conventions

 ■ Power alignment mode is derived from the alignment rules used by the IBM XLC compiler for
the AIX operating system. It is the default alignment mode for the PowerPC-architecture version
of GCC used on AIX and Mac OS X. Because this mode is most likely to be compatible between
PowerPC-architecture compilers from different vendors, it’s typically used with data structures
that are shared between different programs.

The rules for power alignment are:

 ❏ The embedding alignment of the first element in a data structure is equal to the element’s
natural alignment.

 ❏ For subsequent elements with a natural alignment less than 4 bytes, the embedding alignment
of each element is equal to its natural alignment.

 ❏ For subsequent elements that have a natural alignment greater than 4 bytes, the embedding
alignment is 4, unless the element is a vector.

 ❏ The embedding alignment for vector elements is always 16 bytes.

 ❏ The embedding alignment of a composite data type (array or data structure) is determined
by the largest embedding alignment of its members.

 ❏ The total size of a composite type is rounded up to a multiple of its embedding alignment,
and is padded with null bytes.

Because the natural alignment of double and long long data types is greater than 4 bytes, they
may not be appropriately aligned in power-alignment mode. Any misalignment impairs
performance when such data members are accessed. When you use these data types for any
element after the first element, the compiler pads the structure to align the elements to their
natural alignment.

 ■ Natural alignment mode uses the natural alignment of each data type as its embedding alignment.
Use this alignment mode to obtain the highest performance when using double, long, and long
double data types.

 ■ Packed alignment mode contains no alignment padding between elements (the alignment for
all data types is 1 byte). Use this alignment mode when you need a data structure to use as little
memory as possible. Note, however, that packed alignment can significantly lower the performance
of your application.

Note: Data items passed as parameters in a subroutine call have special alignment rules. See "Stack
Structure" (page 28) for more information.

Table 2 lists the alignment for structure fields of the fundamental data types and composite data types
in the supported alignment modes.

Table 2 Alignment for structure fields

Packed alignmentPower alignmentNatural alignmentData type

111_Bool, bool

111char

122short

Data Types and Data Alignment 27
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

64-bit PowerPC Function Calling Conventions

Packed alignmentPower alignmentNatural alignmentData type

144int

148long

148long long

144float

14 or 88double

188long double

11616vector

14, 8, or 161, 2, 4, 8, or 16Composite (data structure or array)

With GCC you can control data-structure alignment by adding #pragma statements to your source
code or by using command-line options. The power alignment mode is used if you do not specify
otherwise.

To set the alignment mode, use the gcc flags -malign-power and -malign-natural. To use a specific
alignment mode in a data structure, add this statement just before the data-structure declaration:

#pragma option align=<mode>

Replace <mode> with power, natural, or packed. To restore the previous alignment mode, use reset
as the alignment mode in a #pragma statement:

#pragma option align=reset

Function Calls

This section details the process of calling a subroutine and passing arguments to it, and how functions
return values to their callers.

Note: These parameter-passing conventions are part of the Apple standard for procedural programming
interfaces. Object-oriented languages may use different rules for their own method calls. For example,
the conventions for C++ virtual function calls may be different from those for C functions.

Stack Structure

This environment uses a stack that grows downward and contains linkage information, local variables,
and a subroutine’s parameter information, as shown in Figure 1.

28 Function Calls
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

64-bit PowerPC Function Calling Conventions

Figure 1 Stack layout

Stack grows
down

Local variables

Linkage area

Saved registers

Parameter area

Stack after
calling a function

Stack before
calling a function

SP

Parameter area

Linkage area

Parameter area

Linkage area
SP

Callee

Caller

Stack grows
down

Caller

The stack pointer (SP) points to the bottom of the stack. The stack has a fixed frame size, which is
known at compile time.

The calling routine’s stack frame includes a parameter area and some linkage information. The
parameter area has the arguments the caller passes to the called subroutine or space for them,
depending on the type of each parameter and the availability of registers (see "Passing
Arguments" (page 34) for details). Since the calling routine may call several subroutines, the parameter
area must be large enough to accommodate the largest argument list of all the subroutines the caller
calls. It is the calling routine’s responsibility to set up the parameter area before each function call.
The called function is responsible for accessing the arguments placed in the parameter area.

Bytes 48 through 112 of the parameter area correspond to the general-purpose registers GPR3 through
GPR10. When data is placed in a general-purpose register and not duplicated in the parameter area,
the corresponding section in the parameter area is reserved in case the called subroutine needs to
copy the value in the register to the stack. Table 3 shows the correspondence of parameter-area
locations to the general-purpose registers that can be used to pass parameters.

Table 3 Parameter area to general-purpose register mapping

RegisterStack frame location

GPR3SP+48

GPR4SP+56

GPR5SP+64

GPR6SP+72

GPR7SP+80

Function Calls 29
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

64-bit PowerPC Function Calling Conventions

RegisterStack frame location

GPR8SP+88

GPR9SP+96

GPR10SP+104

When space is allocated for a parameter in the parameter area, the space allocated may be larger than
the parameter’s type. In this case, the parameter is “promoted” to a larger data type. Each parameter’s
address is the address of the previous parameter plus the size of the previous parameter’s promoted
type.

These are the promotion and alignment rules followed when parameters are placed in the parameter
area or in general-purpose registers:

1. Integers are promoted to long. For example, short elements are sign-extended to 64-bits, and
unsigned int elements are zero-padded on the left to 64-bits.

2. Floating-point elements are not promoted.

3. Composite arguments (arrays and structures) 1 or 2 bytes in size are preceded by padding to 4
bytes.

4. Composite arguments 3 bytes or larger in size are followed by padding to make them multiples
of 4 bytes, with the padding bytes being undefined. (GCC pads with 0.)

5. Structures and unions passed by value are bit-copied (no promotion) preceded with undefined
padding to round up the size to an 8-byte multiple.

6. Parameters with a 16-byte natural alignment (for example, vectors or structures containing a
vector), are 16-byte aligned.

For example, assume the function foo is declared like this:

int foo(int i, float f, long l, vector int v,
 double d, void* p, char c, short s);

The layout of the parameter area would be as shown in Table 4.

Table 4 Parameter area layout for the foo call

LocationPromoted typeDeclared typeParameter

SP+48: Start of the parameter area.longinti

SP+56: 56 = 48 + sizeof(long)doublefloatf

SP+64: 64 = 56 + sizeof(double)longlongl

SP+80: 80 = align16(64 + sizeof(long))vectorvectorv

SP+96: 96 = 80 + sizeof(vector)doubledoubled

30 Function Calls
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

64-bit PowerPC Function Calling Conventions

LocationPromoted typeDeclared typeParameter

SP+104: 104 = 96 + sizeof(double)void*void*p

SP+112: 112 = 104 + sizeof(void*)longcharc

SP+120: 120 = 112 + sizeof(long)longshorts

The calling routine’s linkage area holds a number of values, some of which are saved by the calling
routine and some by the called subroutine. The elements within the linkage area are:

 ■ The link register (LR). It’s value is saved at 16(SP) by the called function if it chooses to do so.
The link register holds the return address of the instruction that follows a branch and link
instruction.

 ■ The condition register (CR). It’s value may be saved at 8(SP) by the called function. The condition
register holds the results of comparison operations. As with the link register, the called subroutine
is not required to save this value. Because the condition register is a 32-bit register, bytes 12
through 15 of the stack frame are unused but reserved.

 ■ The stack pointer (SP). It’s value may be saved at 0(SP) by the called function as part of its stack
frame. Leaf subroutines are not required to save the the stack pointer. A leaf function is a routine
that does not call any other function.

Note: The space in the linkage area from 24(SP) to 47(SP) is reserved.

The linkage area is at the top of the stack, adjacent to the stack pointer. This positioning is necessary
so the calling routine can find and restore the values stored there and also allow the called subroutine
to find the caller’s parameter area. This placement means that a routine cannot push and pop
parameters from the stack once the stack frame is set up.

The stack frame also includes space for the called function’s local variables. However, some registers
are available for use by the called function; see "Register Preservation" (page 40) for details. If the
subroutine contains more local variables than would fit in the registers, it uses additional space on
the stack. The size of the local-variable area is determined at compile time. Once a stack frame is
allocated, the size of the local-variable area cannot change.

Prologs and Epilogs

The called function is responsible for allocating its own stack frame, making sure to preserve 16-byte
alignment in the stack. This operation is accomplished by a section of code called the prolog, which
the compiler places before the body of the subroutine. After the body of the subroutine, the compiler
places an epilog to restore the processor to the state it was prior to the subroutine call.

The compiler-generated prolog code does the following:

1. Decrements the stack pointer to account for the new stack frame and writes the previous value
of the stack pointer into its own linkage area, which ensures the stack can be restored to its original
state after returning from the call.

Function Calls 31
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

64-bit PowerPC Function Calling Conventions

It is important that the decrement and update tasks happen atomically (for example, with stwu,
stwux, stdu, or stdux) so that the stack pointer and back-link are in a consistent state. Otherwise,
asynchronous signals or interrupts could corrupt the stack.

2. Saves all nonvolatile general-purpose and floating-point registers into the saved-registers area.
Note that if the called function does not change a particular nonvolatile register, it does not save
it.

3. Saves the link-register and condition-register values in the caller’s linkage area, if needed.

These actions don’t need to be executed in any particular order. Listing 1 shows an example of a
routine prolog. Notice that the order of these actions differs from the order previously described.

Listing 1 Example prolog

linkageArea = 48 ; size in 64-bit
PowerPC ABI
params = 64 ; callee parameter
area
localVars = 0 ; callee local
variables
numGPRs = 0 ; volatile GPRs used
 by callee
numFPRs = 0 ; volatile FPRs used
 by callee

spaceToSave = linkageArea + params + localVars + 8*numGPRs + 8*numFPRs
spaceToSaveAligned = ((spaceToSave+15) & (-16)) ; 16-byte-aligned
stack

_functionName: ; PROLOG
 mflr r0 ; extract return
address
 std r0, 16(SP) ; save the return
address
 stdu SP, -spaceToSaveAligned(SP) ; skip over caller
save area

At the end of the function, the compiler-generated epilog does the following:

1. Restores the nonvolatile general-purpose and floating-point registers that were saved in the stack
frame.

Nonvolatile registers are saved in the new stack frame before the stack pointer is updated only
when they fit within the space beneath the stack pointer, where a new stack frame would normally
be allocated, also known as the red zone. The red zone is by definition large enough to hold all
nonvolatile general-purpose and floating-point registers but not the nonvolatile vector registers.
See "The Red Zone" (page 33) for details.

2. Restores the condition-register and link-register values that were stored in the linkage area.

3. Restores the stack pointer to its previous value.

4. Returns control to the calling routine using the address stored in the link register.

32 Function Calls
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

64-bit PowerPC Function Calling Conventions

Again, these actions do not need to be executed in any particular order. Listing 2 shows an example
epilog.

Listing 2 Example epilog

 ; EPILOG
ld r0, spaceToSaveAligned + 16(SP) ; get the return address
mtlr r0 ; into the link register
addi SP, SP, spaceToSaveAligned ; restore stack pointer
blr ; and branch to the return
 address

The VRSAVE register is used to specify which vector registers must be saved during a thread or
process context switch.Listing 3 shows an example prolog that sets up VRSAVE so that vector registers
V0 through V2 are saved. Listing 3 also includes the epilog that restores VRSAVE to its previous state.

Listing 3 Example usage of the VRSAVE register

#define VRSAVE 256 // VRSAVE IS SPR# 256

 _functionName:
 mfspr r2, VRSAVE ; get vector of live VRs
 oris r0, r2, 0xE000 ; set bits 0-2 since we use V0..V2
 mtspr VRSAVE, r0 ; update live VR vector before
using any VRs

 ; Now, V0..V2 can be safely used.
 ; Function body goes here.

 mtspr VRSAVE, r2 ; restore VRSAVE
 blr ; return to caller

The Red Zone

The space beneath the stack pointer, where a new stack frame would normally be allocated by a
subroutine, is called the red zone. The red zone, shown in Figure 2, is considered part of the topmost
(current) stack frame. This area is not modified by asynchronous pushes, such as signals or interrupt
handlers. Therefore, the red zone may be used for any purpose as long as a new stack frame does not
need to be added to the stack. However, the contents of the red zone are assumed to be destroyed by
any synchronous call.

Figure 2 The red zone

Linkage area

Parameter area

Red Zone

SP

Function Calls 33
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

64-bit PowerPC Function Calling Conventions

For example, because a leaf function does not call any other functions—and, therefore, does not
allocate a parameter area on the stack—it can use the red zone. Furthermore, such a function does
not need to use the stack to store local variables; it needs to save only the nonvolatile registers that it
uses for local variables. Since by definition no more than one leaf function is active at any time within
a thread, there is no possibility of multiple leaf functions competing for the same red zone space.

A leaf function may or may not allocate a stack frame and decrement the stack pointer. When it doesn’t
allocate a stack frame, a leaf function stores the link register and condition register values in the
linkage area of the routine that calls it (if necessary) and stores the values of any nonvolatile registers
it uses in the red zone. This streamlining means that a leaf function’s prolog and epilog do minimal
work; they do not have to set up and take down a stack frame.

The size of the red zone is 288 bytes, which is enough space to store the values of nineteen 64-bit
general-purpose registers and eighteen 64-bit floating-point registers, rounded up to the nearest
16-byte boundary. If a leaf function’s red zone usage would exceed the red zone size, it must set up
a stack frame, just as functions that call other functions do.

Passing Arguments

In the C language, functions can declare their parameters using one of three conventions:

 ■ The types of all parameters is specified in the function’s prototype. For example:

int foo(int, short);

In this case, the type of all the function’s parameters is known at compile time.

 ■ The function’s prototype declares some fixed parameters and some nonfixed parameters. The
group of nonfixed parameters is also called a variable argument list. For example:

int foo(int, ...);

In this case, the type of one of the function’s parameters in known at compile time. The type of
the nonfixed parameters is not known.

 ■ The function has no prototype or uses a pre–ANSI C declaration. For example:

int foo();

In this case, the type of all the function’s parameters is unknown at compile time.

When the compiler generates the prolog for a function call, it uses the information from the function’s
declaration to decide how to pass arguments to the function. When the compiler knows the type of
a parameter, it passes it in the most efficient way possible. But when the type is unknown, it passes
the parameter using the safest approach, which may involve placing data both in registers and in the
parameter area. For called functions to access their parameters correctly, it’s important that they know
when parameters are passed in the stack or in registers.

Arguments are passed in the stack or in registers depending on their types and the availability of
registers. There are three types of registers: general purpose, floating point, and vector. General-purpose
registers (GPRs) are 64-bit registers that can manipulate integral values and pointers. Floating-point
registers (FPRs) are 64-bit registers that can manipulate single-precision and double-precision
floating-point values. Vector registers are 128-bit registers that can manipulate 4 through 16 chunks
of data in parallel.

34 Function Calls
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

64-bit PowerPC Function Calling Conventions

The registers that can be used to pass arguments to called functions are the general-purpose registers
GPR3 through GPR10, the floating-point registers FPR1 through FPR13, and the vector registers V2
through V13 (see "Register Preservation" (page 40) for details). These registers are also known as
parameter registers.

The compiler uses the following rules when passing arguments to subroutines:

 ■ Parameters whose promoted type is known at compile time are processed using these rules (see
"Stack Structure" (page 28) for details on a parameter’s promoted type):

1. The caller places floating-point elements (except long double elements) in floating-point
registers FPR1 through FPR13. As each floating-point register is used, the caller skips the
next available general-purpose register. When floating-point registers are exhausted, the
caller places these elements in the parameter area.

2. The caller places long double elements—which use a pair of float elements—in two
floating-point registers. As each pair of floating-point registers is used, the caller skips the
next two available general-purpose registers. When floating-point registers are exhausted,
the caller places these elements in the parameter area.

3. The caller places vector elements in vector registers V2 through V13. Vector-register usage
doesn’t affect the availability of general-purpose registers. That is, no general-purpose registers
are skipped as a result of using a vector register. When vector registers are exhausted, the
caller places these elements in the parameter area.

4. The caller places elements of all other data types—including complex (defined in
complex.h)—in general-purpose registers GPR3 through GPR10, when available. When
general-purpose registers are exhausted, the caller places these elements in the parameter
area.

Structures that are 16 bytes in size are handled as if they were a pair of 64-bit integers.
Therefore, they are placed in two general-purpose registers. Examples of structures that meet
this criterion include a structure containing four float fields and a structure containing two
double fields. Structures that contain three float fields, for example, are be processed using
rule 5.

5. The caller recursively processes the members of structures passed by value and containing
no unions:

 ❏ Floating-point fields are processed using rule 1 or rule 2, depending on their type.

 ❏ Vector fields are processed using rule 3.

 ❏ Fields of all other types—including arrays—are processed using rule 4.

 ■ Arguments to a pre–ANSI C–declared function are processed as follows:

1. The caller places floating-point elements in floating-point registers and general-purpose
registers, when available. Otherwise, the caller places them in the parameter area.

2. The caller places vector elements in vector registers and general-purpose registers, when
available. Otherwise, the caller places them in the parameter area.

3. The caller places elements of all other types in general-purpose registers, when available.
Otherwise, the caller places them in the parameter area.

Function Calls 35
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

64-bit PowerPC Function Calling Conventions

 ■ Arguments that are part of a variable argument list are placed in general-purpose registers, when
available. Otherwise, the caller places them in the parameter area.

Important: When the return value of the called function would not be passed in registers, if it were
passed as a parameter in a function call, the caller passes a pointer in GPR3 as an implicit first parameter
of the called function. Therefore, the function’s declared parameters start at GPR4. The pointer points
to a section of memory large enough to hold the return value. See "Returning Results" (page 40) for
more information.

Note: Floating-point and vector elements passed by value are placed in floating-point registers and
vector registers, respectively, which may differ from how they are passed in other binary interfaces.

Using ANSI C Prototypes

When the types of all the parameters of a subroutine are known at compile time, placing arguments
into registers is straightforward.

For example, assume a routine calls the function foo_ansi declared like this:

int foo_ansi(int i, float f, long l, vector int v,
 double d, void* p, char c, short s);

The caller places the arguments to the function as shown in Table 5.

Table 5 Passing arguments to a function that declares all the types of its parameters

ReasonPlaced inTypeArgument

Not a floating-point or vector element.GPR3inti

First floating-point element, so it goes in the first floating-point
register. GPR4 is skipped.

FPR1floatf

Not a floating-point or vector element.GPR5longl

First vector element, so it goes in the first vector register. No
general-purpose register is skipped.

V2vector intv

Second floating-point element, so it goes in the next
floating-point register available. GPR6 is skipped.

FPR2doubled

Not a floating-point or vector element.GPR7void*p

Not a floating-point or vector element.GPR8charc

Not a floating-point or vector element.GPR9shorts

Figure 3 illustrates the placement of arguments in registers and the parameter area.

36 Function Calls
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

64-bit PowerPC Function Calling Conventions

Figure 3 Argument assignment when all parameter types are known

V2

V3

V4

V5

V6

V7

V8

V9

V10

V11

V12

V13

void* p

char c

short s

vector int i

double d

int i

float f

long l

SP+144

SP+48

SP+56

SP+64

SP+72

SP+80

SP+88

SP+96

SP+104

SP+112

SP+120

SP+128

SP+136

FPR13

FPR1

FPR2

FPR3

FPR4

FPR5

FPR6

FPR7

FPR8

FPR9

FPR10

FPR11

FPR12

GPR3

GPR4

GPR5

GPR6

GPR7

GPR8

GPR9

GPR10

Using Structures

Assume the structure data and the function bar are declared like this:

struct data {
 float f;
 int i;
 double d;
 vector float v;
};
int bar(int a, struct data b, void* c);

Table 6 shows the register assignment when a routine calls bar.

Table 6 Passing arguments to a function with a struct parameter

ReasonPlaced inTypeArgument

Not a floating-point or vector element.GPR3inta

First floating-point element, so it goes in the first
floating-point register. GPR4 is skipped. Because the
b structure contains a vector, the entire struct needs
16-byte alignment in the parameter area.

FPR1floatb.f

Not a floating-point or vector element.GPR5 (low half)intb.i

Second floating-point element, so it goes in the next
floating-point register available.

FPR2doubleb.d

Function Calls 37
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

64-bit PowerPC Function Calling Conventions

ReasonPlaced inTypeArgument

First vector element, so it goes in the first vector
register.

V2vector floatb.v

Not a floating-point or vector element.GPR9void*c

Using Variable Argument Lists

Assume the structure numbers and the function var are declared like this:

struct numbers {
 float f;
 int i;
};
extern void var(int a, float b, vector float c, struct numbers n, ...);

Also assume a routine contains the following code:

int i1, i2;
float f1, f2;
vector float v1, v2;
struct numbers n1, n2;
...
var(i1, f1, v1, n1, i2, f2, v2, n2);

The caller assigns the arguments to var as shown in Table 7.

Table 7 Passing arguments to a function with a variable argument list

ReasonPlaced inTypeArgument

Not a floating-point or vector element.GPR3inti1

First floating-point element, so it goes in
the first floating-point register.

FPR1floatf1

First vector element, so it goes in the first
vector register.

V2vector floatv1

Second floating-point element, so it goes in
the next floating-point register available.

FPR2floatn1.f

Not a floating-point or vector element.GPR7 (low half)intn1.i

A variable argument list element.GPR8int (unknown at
compile time)

i2

A variable argument list element.GPR9float (unknown at
compile time)

f2

A variable argument list element and a
vector. Must be 16-byte aligned; cannot use
GPR10.

SP+112 (16
bytes)

vector float
(unknown at compile
time)

v2

38 Function Calls
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

64-bit PowerPC Function Calling Conventions

ReasonPlaced inTypeArgument

A variable argument list element. No
general-purpose registers available.

SP+128 (4 bytes)float (unknown at
compile time)

n2.f

A variable argument list element. No
general-purpose registers available.

SP+132 (4 bytes)int (unknown at
compile time)

n2.i

Using pre–ANSI C Prototypes

Assume the structure numbers and the function foo_pre_ansi are declared like this:

struct numbers {
 float f;
 int i;
};
void foo_pre_ansi();

Also assume a routine contains the following code:

...
int i;
float f;
vector float v;
struct numbers n;
...
foo_pre_ansi(i, f, v, n);

The caller assigns the arguments to foo_pre_ansi as shown in Table 8.

Table 8 Passing arguments to a function with a pre–ANSI C prototype

ReasonPlaced inTypeArgument

Not a floating-point or vector element.GPR3int (unknown at
compile time)

i

First floating-point element, so it goes in
the first floating-point register and the next
available general-purpose register.

FPR1, GPR4float (unknown at
compile time)

f

First vector element, so it goes in the first
vector register and next two
general-purpose registers available.

V2, GPR5–GPR6vector float
(unknown at compile
time)

v

Second floating-point element, so it goes in
the next floating-point register available
and the next general-purpose register
available.

FPR2, GPR7
(high half)

float (unknown at
compile time)

n.f

Not a floating-point or vector element, so
it goes in the next general-purpose register
available.

GPR7 (low half)int (unknown at
compile time)

n.i

Function Calls 39
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

64-bit PowerPC Function Calling Conventions

Returning Results

A function result can be returned in registers or in memory, depending on the data type of the
function’s return value. When the return value of the called function would be passed in registers, if
it were passed as a parameter in a function call, the called function places its return value in the same
registers. Otherwise, the function places its result at the location pointed to by GPR3. See "Passing
Arguments" (page 34) for more information.

Table 9 lists some examples of how return values can be passed to a calling routine.

Table 9 Examples of passing results to callers

Returned inReturn type

GPR3 (sign extended).int

GPR3 (zero filled).unsigned short

GPR3.long

GPR3.long long

FPR1.float

FPR1.double

FPR1–FPR2.long double

FPR1, FPR2.struct { float, float }

FPR1, FPR2.struct { double, double }

GPR3, GPR4.struct { long, long }

GPR3, GPR4, ... GPR10.struct { long[8] }

Memory location pointed to by GPR3, which is made up of 80 bytes
of storage.

struct { long[10] }

V2.vector float

FPR1 (real number), FPR2 (imaginary number).complex float

FPR1 (real number), FPR2 (imaginary number).complex double

FPR1–FPR2 (real number), FPR3–FPR4 (imaginary number).complex long double

Register Preservation

Table 10 lists the 64-bit PowerPC architecture registers used in this environment and their volatility
in subroutine calls. Registers that must preserve their value after a function call are called nonvolatile.

40 Function Calls
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

64-bit PowerPC Function Calling Conventions

Table 10 Processor registers in the 64-bit PowerPC architecture

NotesPreservedNameType

NoGPR0General-purpose
register

Used as the stack pointer to store parameters and
other temporary data items.

YesGPR1

Available for general use.NoGPR2

The caller passes arguments to the called
subroutine in GPR3 through GPR10. The caller
may also pass the address to storage where the
callee places its return value in this register.

NoGPR3

Used by callers to pass arguments to the called
subroutine (see notes for GPR3).

NoGPR4–GPR10

In nested functions, the caller passes its stack
frame to the nested function in this register. In
leaf subroutines, the register is available. For
details on nested functions, see the GCC
documentation. This register is also used by lazy
stubs in dynamic code generation to point to the
lazy pointer.

Yes in
nested
functions.
No in leaf
functions.

GPR11

Set to the address of the branch target before an
indirect call for dynamic code generation. This
register is not set for a subroutine that has been
called directly, so subroutines that may be called
directly should not depend on this register being
set up correctly. See Mach-O Programming Topics
for more information.

NoGPR12

Reserved for thread-specific storage.YesGPR13

YesGPR14–GPR31

NoFPR0Floating-point
register

Used by callers to pass floating-point arguments
to the called subroutine. Floating-point results
are passed in FPR1.

NoFPR1–FPR13

YesFPR14–FPR31

Callers use V2 through V13 to pass vector
arguments to the called subroutine. Vector results
are passed in V2.

NoV0–V19Vector register

YesV20–V31

Function Calls 41
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

64-bit PowerPC Function Calling Conventions

NotesPreservedNameType

32-bit special-purpose register. Each bit in this
register indicates whether the corresponding
vector register must be saved during a thread or
process context switch.

YesVRSAVESpecial-purpose
vector register

Stores the return address of the calling routine
that called the current subroutine.

NoLRLink register

NoCTRCount register

NoXERFixed-point
exception
register

NoCR0, CR1Condition
register fields

YesCR2–CR4

NoCR5–CR7

42 Function Calls
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

64-bit PowerPC Function Calling Conventions

When functions (routines) call other functions (subroutines), they may need to pass arguments to
them. The called subroutines access these arguments as parameters. Conversely, some subroutines
pass a result or return value to their callers. In the IA-32 environment most arguments are passed on
the runtime stack; some vector arguments are passed in registers. Results are returned in registers or
in memory. To efficiently pass values between callers and callees, GCC follows strict rules when it
generates a program’s object code.

This article describes the data types that can be used to manipulate the arguments and results of
subroutine calls, how routines pass arguments to the subroutines they call, and how subroutines that
provide a return value pass the result to their callers. This article also lists the registers available in
the IA-32 architecture and whether their value is preserved after a subroutine call.

The function calling conventions used in the IA-32 environment are the same as those used in the
System V IA-32 ABI, with the following exceptions:

 ■ Structures 8 bytes or smaller in size are returned in registers

 ■ The stack is 16-byte aligned

 ■ Large data types (larger than 4 bytes) are kept at their natural alignment

The content of this article is largely based in System V Application Binary Interface: Intel386 Architecture
Processor Supplement, available at http://www.caldera.com/developers/devspecs/abi386-4.pdf.

Data Types and Data Alignment

Using the correct data types for your variables helps to maximize the performance and portability of
your programs. Data alignment specifies how data is laid out in memory. A data type’s natural
alignment specifies the default alignment of values of that that type.

Table 1 lists the ANSI C scalar data types and their sizes and natural alignment in this environment.

Table 1 Size and natural alignment of the scalar data types

Natural alignment (in bytes)Size (in bytes)Data type

11_Bool, bool

Data Types and Data Alignment 43
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

IA-32 Function Calling Conventions

http://www.caldera.com/developers/devspecs/abi386-4.pdf

Natural alignment (in bytes)Size (in bytes)Data type

11unsigned char

11char, signed char

22unsigned short

22signed short

44unsigned int

44signed int

44unsigned long

44signed long

48unsigned long long

48signed long long

44float

48double

1616long double

44pointer

Table 2 shows the vector types available in this environment.

Table 2 Size and alignment of the vector types

Alignment (in bytes)Size (in bytes)Element data typeVector type

88int__m64

1616int__m128i

1616float__m128

1616double__m128d

These are some important details about this environment:

 ■ A byte is 8 bits long.

 ■ A null pointer has a value of 0.

 ■ This environment doesn’t require 8-byte alignment for double-precision values.

 ■ This environment requires 16-byte alignment for 128-bit vector elements.

These are the alignment rules followed in this environment:

44 Data Types and Data Alignment
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

IA-32 Function Calling Conventions

1. Scalar data types use their natural alignment.

2. Composite data types (arrays, structures, and unions) take on the alignment of the member with
the highest alignment. An array assumes the same alignment as its elements. The size of a
composite data type is a multiple of its alignment (padding may be required).

Function Calls

This section details the process of calling a subroutine and passing parameters to it, and how
subroutines return values to their callers.

Note: These parameter-passing conventions are part of the Apple standard for procedural programming
interfaces. Object-oriented languages may use different rules for their own method calls. For example,
the conventions for C++ virtual function calls may be different from those for C functions.

Stack Structure

The IA-32 environment uses a 16-byte aligned stack that grows downward and contains local variables
and a function’s parameters. Each routine may add linkage information to its stack frame, but it’s not
required to do so. Figure 1 shows the stack before and during a subroutine call.

Figure 1 Stack layout

Stack grows
down

Linkage area

Saved registers

Parameter area

Stack after
calling a function

Stack before
calling a function

SP

Parameter area

Local storage

SP

Callee

Caller

Stack grows
down

Caller

Saved frame pointer

The stack pointer (SP) points to the bottom of the stack. Stack frames contain the following areas:

 ■ The parameter area stores the arguments the caller passes to the called subroutine. This area
resides in the caller’s stack frame.

Function Calls 45
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

IA-32 Function Calling Conventions

 ■ The linkage area contains the address of the caller’s next instruction.

 ■ The saved frame pointer (optional) contains the base address of the caller’s stack frame.

You can use the gcc -fomit-frame-pointer option to make the compiler not save, set up, and
restore the frame pointer in function calls that don’t need one, making the EBP register available
for general use. However, doing so may impair debugging.

 ■ The general storage area contains the subroutine’s local variables and the values of the registers
that must be restored before the called function returns. See "Register Preservation" (page 50) for
details.

 ■ The saved registers area contains the values of the registers that must be restored before the called
function returns. See "Register Preservation" (page 50) for details.

In this environment, the stack frame size is not fixed.

Prologs and Epilogs

The called subroutine is responsible for allocating its own stack frame, making sure to preserve 16-byte
alignment in the stack. This operation is accomplished by a section of code called the prolog, which
the compiler places before the body of the function. After the body of the function, the compiler places
an epilog to restore the process to the state it was prior to the subroutine call.

The prolog performs the following tasks:

1. Pushes the value of the stack frame pointer (EBP) onto the stack.

2. Sets the stack frame pointer to the value of the stack pointer (ESP).

3. Pushes the values of the registers that must be preserved (EDI, ESI, and EBX) onto the stack.

4. Allocates space in the stack frame for local storage.

The epilog performs these tasks:

1. Deallocates the space used for local storage in the stack.

2. Restores the preserved registers (EDI, ESI, EBX, EBP) by popping the values saved on the stack
by the prolog.

3. Returns.

Note: Functions called during signal handling have no unusual restrictions on their use of registers.
When a signal-handling function returns, the process resumes its original path with the registers
restored to their original values.

Listing 1 shows the definition of the simp function.

Listing 1 Definition of the simp function

#include <stdio.h>

46 Function Calls
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

IA-32 Function Calling Conventions

void simp(int i, short s, char c) {
 printf("Hi!\n");
}

Listing 2 shows a possible prolog for the simp function.

Listing 2 Example prolog

pushl %ebp ; save EBP
movl %esp,%ebp ; copy ESP to EBP
pushl %ebx ; save EBX
subl $0x24,%esp ; allocate space for local storage

Listing 3 shows a possible epilog for the simp function.

Listing 3 Example epilog

addl $0x24,%esp ; deallocate space for local storage
popl %ebx ; restore EBX
popl %ebp ; restore EBP
ret ; return

Passing Arguments

The compiler adheres to the following rules when passing arguments to subroutines:

1. The caller ensures that the stack is 16-byte aligned.

2. The caller aligns nonvector arguments to 4-byte (32 bits) boundaries.

The size of each argument is a multiple of 4 bytes, with tail padding when necessary. Therefore,
8-bit and 16-bit integral data types are promoted to 32-bit before they are pushed onto the stack.

3. The caller places arguments in the parameter area in reverse order, in 4-byte chunks. That is, the
rightmost argument has the highest address.

4. The caller places all the fields of structures in the parameter area. Structures are tail-padded to
32-bit multiples.

5. The caller places vectors 64-bit vectors (__m64) in registers MM0 through MM2). When the usable
MM registers are exhausted, the caller places 64-bit vectors in the parameter area. The caller aligns
64-bit vectors in the parameter area to 8-byte boundaries.

6. The caller places vectors 128-bit vectors (__m128, __m128d, and __m128i) in registers XMM0
through XMM2). When the usable XMM registers are exhausted, the caller places 128-bit vectors
in the parameter area. The caller aligns 128-bit vectors in the parameter area to 16-byte boundaries.

When a function returns a structure or union larger than 8 bytes, the caller passes a pointer to
appropriate storage as the first argument to the function. See "Returning Results" (page 49) for more
information. For example, the compiler would translate the code shown in Listing 4 to machine
language as if it were written as shown in Listing 5.

Function Calls 47
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

IA-32 Function Calling Conventions

Listing 4 Using a large structure—source code

typedef struct {
 float ary[8];
} big_struct;
big_struct callee(int a, float b) {
 big_struct callee_struct;
 ...
 return callee_struct;
}
caller() {
 big_struct caller_struct;
 caller_struct = callee(3, 42.0);
}

Listing 5 Using a large structure—compiler interpretation

typedef struct {
 float ary[8];
} big_struct;
void callee(big_struct *p, int a, float b)
{
 big_struct callee_struct;
 ...
 *p = callee_struct;
 return;
}
caller() {
 big_struct caller_struct;
 callee(&caller_struct, 3, 42.0);
}

Passing Arguments of the Fundamental Data Types

Assume the function foo is declared like this:

void foo(SInt32 i, float f, double d, SInt16 s, UInt8 c);

Figure 2 illustrates the placement of arguments in the parameter area. Note the padding added to
keep the stack 16-byte aligned.

Figure 2 Argument assignment with arguments of the fundamental data types

+28

+32

+24

+20

+16

+8

+12

+4

0

s

c

d

d

i

f

31 0

0

0

32

0

31

31

63

15

7

0

Stack alignment padding

Data type promotion

48 Function Calls
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

IA-32 Function Calling Conventions

Passing Structures and Vectors

Assume the structure data and the function bar are declared like this:

struct data {
 float f;
 long l;
 __m128 vf;
};
void bar(SInt32 i, UInt8 c, struct data b, __m128i vi, void* p);

Figure 3 illustrates the placement of arguments in the parameter area and the XMM registers.

Figure 3 Argument assignment with structure and vector arguments

Stack alignment padding

XMM2

XMM1

XMM0

Vector alignment padding

+44

+40

+36

+32

+28

+60

+64

+56

+52

+48

+20

+24

+16

+8

+12

+4

0

b.vf

b.vf

b.vf

b.vf

p

c

b.l

b.l

i

b.f

31 0

0

0

0

32

32

64

96

31

31

63

63

95

127

31

7

0

31 0

b.vi127 0

Returning Results

This is how functions pass results to their callers:

 ■ The called function places integral or pointer results in EAX.

 ■ The called function places floating-point results in ST0. The caller removes the value from this
register, even when it doesn’t use the value.

 ■ The called function places structures and unions 8 bytes or smaller in the EAX and EDX registers.
For example, the C99 data type _Complex float is 8 bytes in size; therefore, the called function
returns results of this type in the EAX and EDX registers.

Function Calls 49
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

IA-32 Function Calling Conventions

 ■ The called function places structures and unions larger than 8 bytes (including vectors) at the
address supplied by the caller before returning. The _Complex double data type is 16 bytes in
size; the called function returns results of this type in the location indicated by the caller. See
"Passing Arguments" (page 47) for more information.

Register Preservation

Table 3 lists the IA-32 architecture registers used in this environment and their volatility in procedure
calls. Registers that must preserve their value after a function call are called nonvolatile.

Table 3 Processor registers in the IA-32 architecture

NotesPreservedNameType

Used to return integral and pointer values. The
caller may also place the address to storage where
the callee places its return value in this register.

NoEAXGeneral-purpose
register

Dividend register (divide operation). Available for
general use for all other operations.

NoEDX

Count register (shift and string operations).
Available for general use for all other operations.

NoECX

Position-independent code base register. Available
for general use in non–position-independent code.

YesEBX

Stack frame pointer. Optionally holds the base
address of the current stack frame. A routine’s
parameters reside in the previous frame as positive
offsets of this register’s value. Local variables reside
at negative offsets.

YesEBP

Available for general use.YesESI

Available for general use.YesEDI

Holds the address of the bottom of the stack.YesESPStack-pointer
register

Used to return floating-point values. When the
function doesn’t return a floating-point value, this
register must be empty. This register must also be
empty on function entry.

NoST0Floating-point
register

Available for general use. These registers must be
empty on routine entry and exit.

NoST1–ST7

Used to execute single-instruction, multiple-data
(SIMD) operations on 64-bit packed byte, 2-byte,
and 4-byte integers.

NoMM0–MM764-bit register

50 Function Calls
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

IA-32 Function Calling Conventions

NotesPreservedNameType

Used to execute 32-bit and 64-bit floating-point
arithmetic. Also used to execute single-instruction,
multiple-data (SIMD) operations on 128-bit packed
single-precision and double-precision scalar and
floating-point values, and 128-bit packed byte,
2-byte, and 4-byte integers. XMM0–XMM2 are used
to pass the first three vectors in a function call.

NoXMM0–XMM7128-bit register

Contains system flags, such as the direction flag
and the carry flag. The direction flag must be set to
the “forward” direction (that is, 0) before entry to
and upon exit from a routine. Other user flags have
no specified role in the standard calling sequence
and are not preserved.

NoEFLAGSSystem-flags
register

Function Calls 51
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

IA-32 Function Calling Conventions

52 Function Calls
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

IA-32 Function Calling Conventions

This table describes the changes to Mac OS X ABI Function Call Guide.

NotesDate

Changed the alignment values and red zone limits for 64-bit programs to
their correct values.

2005-12-06

New document that describes the function-calling conventions used in the
architectures supported by Mac OS X. Replaces information previously
published in "PowerPC Runtime Architecture Guide."

2005-11-09

53
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

Document Revision History

54
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

Document Revision History

A

alignment, data. See data alignment 7
allocating stack frames. See stack frames, allocating 7
arguments, passing

in 32-bit PowerPC 18–23
composite 20
floating-point 20
scalar 20
vector 20

in 64-bit PowerPC 30, 34–40
composite 35, 37
floating-point 30, 35
scalar 30, 35
vector 35

in IA-32 47–50
composite 47–48
nonvector 47
vector 47, 49

arithmetic in 32-bit PowerPC 10
asynchronous calls

in 32-bit PowerPC 17, 19
in 64-bit PowerPC 33

B

bar function
in 64-bit PowerPC 37
in IA-32 49

byte ordering
in 32-bit PowerPC 10
in 64-bit PowerPC 26

byte, size of
in 32-bit PowerPC 10
in 64-bit PowerPC 26
in IA-32 44

C

condition register (CR)
in 32-bit PowerPC 15–17
in 64-bit PowerPC 31–32

CR. See condition register 7

D

data alignment
in 32-bit PowerPC

defined 9
embedding 10–12
for fields of structures 12
in general-purpose registers 14
in parameter area 14
natural 9–10
padding for 11
power 11

in 64-bit PowerPC
and promotion 30
defined 25
embedding 26–27
in general-purpose registers 30
in parameter area 30
natural 25–26

in IA-32
defined 43
double-precision 44
in stack 47
rules 44–45
vector 44

See also #pragma statements 7
data structures, sharing

in 32-bit PowerPC 11
in 64-bit PowerPC 27

data types, scalar
in 32-bit PowerPC 9
in 64-bit PowerPC 25
in IA-32 43

55
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

Index

E

efficiency, improving
in 32-bit PowerPC 11
in 64-bit PowerPC 27

epilogs
in 32-bit PowerPC 16–17
in 64-bit PowerPC 31–33
in IA-32 46–47
See also prologs 7

F

floating-point data type representation
in 32-bit PowerPC 10
in 64-bit PowerPC 26

foo function
in 32-bit PowerPC 14
in 64-bit PowerPC 30
in IA-32 48

foo_ansi function 36
foo_pre_ansi function 39
frame pointer in IA-32 46

I

integer data type representation
in 32-bit PowerPC 10
in 64-bit PowerPC 26

interrupts, handling
in 32-bit PowerPC 17
in 64-bit PowerPC 33

L

leaf functions
in 32-bit PowerPC 18
in 64-bit PowerPC 34

link register (LR)
in 32-bit PowerPC 15–17
in 64-bit PowerPC 31–32

linkage area
in 32-bit PowerPC 15
in 64-bit PowerPC 31
in IA-32 46

long double data type, using in 32-bit PowerPC 10
LR. See link register 7

M

mac68K alignment mode 11

N

natural alignment mode
in 32-bit PowerPC 11
in 64-bit PowerPC 27

P

packed alignment mode
in 32-bit PowerPC 11
in 64-bit PowerPC 27

parameter area
in 32-bit PowerPC 13, 19–20
in 64-bit PowerPC 29, 35
in IA-32 45, 47

parameters. See arguments 7
passing arguments. See arguments, passing 7
performance, improving

in 32-bit PowerPC 11
in 64-bit PowerPC 27

pointer, null
in 32-bit PowerPC 10
in 64-bit PowerPC 26
in IA-32 44

power alignment mode
in 32-bit PowerPC 11
in 64-bit PowerPC 27

#pragma statements
in 32-bit PowerPC 12
in 64-bit PowerPC 28

pre–ANSI C prototypes, functions with
in 32-bit PowerPC 20
in 64-bit PowerPC 35, 39

prologs
in 32-bit PowerPC 16–17
in 64-bit PowerPC 31–33
in IA-32 46–47
See also epilogs 7

promotion, data type. See data alignment 7

R

red zone
in 32-bit PowerPC 17–18

56
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

in 64-bit PowerPC 33–34
registers

in 32-bit PowerPC 23–24
floating-point 16, 19
general-purpose 14, 16, 19
vector 17, 19

in 64-bit PowerPC 40–42
floating-point 32, 34
general-purpose 29, 32, 34
vector 33–34

in IA-32 50–51
results, returning

in 32-bit PowerPC 20, 22–23
in 64-bit PowerPC 36, 40
in IA-32 47, 49–50

S

scalar data types. See data types, scalar 7
sharing data structures. See data structures, sharing

7
signals, handling in IA-32 46
signals, handling

in 32-bit PowerPC 17, 19
in 64-bit PowerPC 33

simp function 46
SP. See stack pointer 7
stack frames, allocating

in 32-bit PowerPC 16–17
in 64-bit PowerPC 31, 33
in IA-32 46

stack pointer (SP)
in 32-bit PowerPC 13, 15–17
in 64-bit PowerPC 29, 31–32
in IA-32 45–46

stack structure
in 32-bit PowerPC 13–15
in 64-bit PowerPC 28–31
in IA-32 45

synchronous calls
in 32-bit PowerPC 17
in 64-bit PowerPC 33

V

variable argument lists
in 32-bit PowerPC 18–20
in 64-bit PowerPC 34

57
2005-12-06 | © 2005 Apple Computer, Inc. All Rights Reserved.

	Mac OS X ABI Function Call Guide
	Contents
	Tables, Figures, and Listings
	Introduction
	32-bit PowerPC Function Calling Conventions
	Data Types and Data Alignment
	Function Calls
	Stack Structure
	Prologs and Epilogs
	The Red Zone
	Passing Arguments
	Returning Results
	Register Preservation

	64-bit PowerPC Function Calling Conventions
	Data Types and Data Alignment
	Function Calls
	Stack Structure
	Prologs and Epilogs
	The Red Zone
	Passing Arguments
	Using ANSI C Prototypes
	Using Structures
	Using Variable Argument Lists
	Using pre–ANSI C Prototypes

	Returning Results
	Register Preservation

	IA-32 Function Calling Conventions
	Data Types and Data Alignment
	Function Calls
	Stack Structure
	Prologs and Epilogs
	Passing Arguments
	Passing Arguments of the Fundamental Data Types
	Passing Structures and Vectors

	Returning Results
	Register Preservation

	Revision History
	Index
	A
	B
	C
	D
	E
	F
	I
	L
	M
	N
	P
	R
	S
	V

