
Mac OS X Assembler Guide

2005-04-29

Apple Computer, Inc.
© 2003, 2005 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval system, or
transmitted, in any form or by any means,
mechanical, electronic, photocopying,
recording, or otherwise, without prior
written permission of Apple Computer, Inc.,
with the following exceptions: Any person
is hereby authorized to store documentation
on a single computer for personal use only
and to print copies of documentation for
personal use provided that the
documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple
Computer, Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple
may constitute trademark infringement and
unfair competition in violation of federal
and state laws.

No licenses, express or implied, are granted
with respect to any of the technology
described in this document. Apple retains
all intellectual property rights associated
with the technology described in this
document. This document is intended to
assist application developers to develop
applications only for Apple-labeled or
Apple-licensed computers.

Every effort has been made to ensure that
the information in this document is
accurate. Apple is not responsible for
typographical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Logic, Mac, Mac OS,
and Xcode are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.

Objective-C is a registered trademark of
NeXT Software, Inc.

Intel and Pentium are registered trademarks
of Intel Corportation or its subsidiaries in
the United States and other countries.

MMX is a trademark of Intel Corporation
or its subsidiaries in the United States and
other countries.

PowerPC and and the PowerPC logo are
trademarks of International Business
Machines Corporation, used under license
therefrom.

Simultaneously published in the United
States and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS
DOCUMENT IS PROVIDED “AS IS,” AND
YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if
advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple dealer, agent,
or employee is authorized to make any
modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability for
incidental or consequential damages, so the
above limitation or exclusion may not apply to
you. This warranty gives you specific legal
rights, and you may also have other rights which
vary from state to state.

Contents

Introduction Introduction to Mac OS X Assembler Guide 9

Organization of This Document 9

Chapter 1 Using the Assembler 11

Command Syntax 11
Assembler Options 11

-o 11
-- 12
-f 12
-g 12
-v 12
-n 13
-I 13
-L 13
-V 13
-W 13
-dynamic 13
-static 13

Architecture Options 14
-arch 14
-force_cpusubtype_ALL 14
-arch_multiple 14

PowerPC-Specific Options 14
-no_ppc601 14
-static_branch_prediction_Y_bit 15
-static_branch_prediction_AT_bits 15

Chapter 2 Assembly Language Syntax 17

Elements of Assembly Language 17
Characters 17
Identifiers 17
Labels 18
Constants 18
Assembly Location Counter 20

Expression Syntax 20

3
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Operators 20
Terms 22
Expressions 22

Chapter 3 Assembly Language Statements 25

Label Field 25
Operation Code Field 26

Intel i386 Architecture–Specific Caveats 26
Operand Field 27

Intel 386 Architecture–Specific Caveats 28
Comment Field 28
Direct Assignment Statements 29

Chapter 4 Assembler Directives 31

Directives for Designating the Current Section 31
.section 31
.zerofill 32
Section Types and Attributes 32
Built-in Directives 37

Directives for Moving the Location Counter 43
.align 43
.org 44

Directives for Generating Data 44
.ascii and .asciz 45
.byte, .short, .long, and .quad 45
.comm 46
.fill 46
.lcomm 46
.single and .double 47
.space 47

Directives for Dealing With Symbols 48
.globl 48
.indirect_symbol 48
.reference 48
.weak_reference 49
.lazy_reference 49
.weak_definition 49
.private_extern 49
.stabs, .stabn, and .stabd 50
.desc 50
.set 51
.lsym 51

Directives for Dead-Code Stripping 51
.subsections_via_symbols 51

4
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C O N T E N T S

.no_dead_strip 52
Miscellaneous Directives 52

.abort 52

.abs 53

.dump and .load 53

.file and .line 54

.if, .elseif, .else, and .endif 54

.include 55

.machine 55

.macro, .endmacro, .macros_on, and .macros_off 55
PowerPC-Specific Directives 56

.flag_reg 56

.greg 56

.no_ppc601 57

.noflag_reg 57
Additional Processor-Specific Directives 57

Chapter 5 PowerPC Addressing Modes and Assembler Instructions 59

PowerPC Registers and Addressing Modes 59
Registers 59
Operands and Addressing Modes 60

Extended Instruction Mnemonics & Operands 61
Branch Mnemonics 61

Branch Prediction 64
Trap Mnemonics 65
PowerPC Assembler Instructions 67

A 67
B 69
C 82
D 85
E 87
F 89
I 92
J 92
L 93
M 96
N 101
O 102
P 103
R 103
S 105
T 113
V 115
X 124

5
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C O N T E N T S

Chapter 6 i386 Addressing Modes and Assembler Instructions 125

i386 Registers and Addressing Modes 125
Instruction Mnemonics 125
Registers 126

Operands and Addressing Modes 127
Register Operands 128
Immediate Operands 128
Direct Memory Operands 128
Indirect Memory Operands 129

i386 Assembler Instructions 129
A 130
B 131
C 133
D 135
E 135
F 136
H 143
I 143
J 145
L 148
M 150
N 152
O 152
P 153
R 155
S 157
T 163
V 163
W 163
X 163

Appendix A Mode-Independent Macros 167

Document Revision History 169

Index 171

6
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C O N T E N T S

Figures

Chapter 6 i386 Addressing Modes and Assembler Instructions 125

Figure 6-1 Register Names in the 32-bit i386 architecture 126

7
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

8
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

F I G U R E S

The Mac OS X assembler serves a dual purpose. It assembles the output of gcc, Xcode’s default
compiler, for use by the Mac OS X linker. It also provides the means to assemble custom assembly
language code written for its supported platforms.

This document provides a reference for the use of the assembler, including basic syntax and statement
layout. It also contains a list of the specific directives recognized by the assembler and complete
instruction sets for the PowerPC and i386 processor architectures.

Important: The “i386 Addressing Modes and Assembler Instructions” (page 125) section is considered
preliminary. It has not been updated with the latest revisions to the i386 addressing modes and
instructions. While most of the information is technically accurate, the document is incomplete and
is subject to change. For more information, please see the section itself.

Organization of This Document

This document contains the following chapters:

 ■ “Using the Assembler” (page 11) describes how to run the assembler and its relevant input/output
files. It also discusses specific options that can be passed to the assembler on the command line.

 ■ “Assembly Language Syntax” (page 17) describes the basic syntax of assembly language elements
and expressions.

 ■ “Assembly Language Statements” (page 25) describes in greater detail the assembly language
statements that make up an assembly language program.

 ■ “Assembler Directives” (page 31) describes assembler directives specific to the Mac OS X assembler
and how to use them in your assembly code.

 ■ “PowerPC Addressing Modes and Assembler Instructions” (page 59) contains information specific
to the PowerPC processor architecture and provides a complete list of addressing modes and
instructions relevant to it.

 ■ “i386 Addressing Modes and Assembler Instructions” (page 125) contains information specific to
the i386 processor architecture and provides a complete list of addressing modes and instructions
relevant to it.

Organization of This Document 9
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to Mac OS X Assembler
Guide

 ■ “Mode-Independent Macros” (page 167) introduces the macros included in the Mac OS X v10.4
SDK to facilitate the development of assembly code that runs in 32-bit PowerPC and 64-bit
PowerPC environments.

This document also contains a revision history, and an index.

10 Organization of This Document
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to Mac OS X Assembler Guide

This chapter describes how to run the as assembler, which produces an object file from one or more
files of assembly language source code.

Note: Although a.out is the default file name that as gives to the object file that’s created (as is
conventional with many compilers), the format of the object file is not standard 4.4BSD a.out format.
Object files produced by the assembler are in Mach-O (Mach object) file format. See Mac OS X ABI
Mach-O File Format Reference for more information.

Command Syntax

To run the assembler, type the following command in a shell:

as [option] ... [file] ...

You can specify one or more command-line options. These assembler options are described in
“Assembler Options” (page 11).

You can specify one or more files containing assembly language source code. If no files are specified,
as uses the standard input (stdin) for the assembly source input.

Note: By convention, files containing assembly language source code should have the .s extension.

Assembler Options

The following command-line options are recognized by the assembler:

-o

-o name

The name argument after -o is used as the name of the as output file, instead of a.out.

Command Syntax 11
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Using the Assembler

--

--

Use the standard input (stdin) for the assembly source input.

-f

-f

Fast; no need to run app (the assembler preprocessor). This option is intended for use by compilers
that produce assembly code in a strict “clean” format that specifies exactly where whitespace can go.
The app preprocessor needs to be run on handwritten assembly files and on files that have been
preprocessed by cpp (the C preprocessor). This typically is needed when assembler files are assembled
through the use of the cc(1) command, which automatically runs the C preprocessor on assembly
source files. The assembler preprocessor strips out excess spaces, turns each character surrounded
by single quotation marks into a decimal constant, and turns occurrences of:

number filename level

into:

.line number;.file filename

The assembler preprocessor can also be turned off by starting the assembly file with #NO_APP\n. When
the assembler preprocessor has been turned off in this way, it can be turned on and off with pairs of
#APP\n and #NO_APP\n at the beginning of lines. This is used by the compiler to wrap assembly
statements produced from asm() statements.

-g

-g

Produce debugging information for the symbolic debugger gdb(1) so the assembly source can be
debugged symbolically. For include files (included by the C preprocessor’s #include or by the
assembler directive .include) that produce instructions in the (__TEXT,__text) section, the include
file must be included while a .text directive is in effect (that is, there must be a .text directive before
the include) and end with the a .text directive in effect (at the end of the include file). Otherwise the
debugger will have trouble dealing with that assembly file.

-v

-v

Print the version of the assembler (both the Mac OS X version and the GNU version that it is based
on).

12 Assembler Options
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Using the Assembler

-n

-n

Don’t assume that the assembly file starts with a .text directive.

-I

-Idir

Add dir to the list of directories to search for files included with the .include directive. The default
place to search is the current directory.

-L

-L

Save defined labels beginning with an L (the compiler generates these temporary labels). Temporary
labels are normally discarded to save space in the resulting symbol table.

-V

-V

Print the path and the command-line invocation of the assembler that the assembler driver is using.

-W

-W

Suppress warnings.

-dynamic

-dynamic

Enables dynamic linking features. This is the default.

-static

-static

Causes the assembler to treat any dynamic linking features as an error. This also causes the .text
directive to not include the pure_instructions section attribute.

Assembler Options 13
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Using the Assembler

Architecture Options

The program /usr/bin/as is a driver that executes assemblers for specific target architectures. If no
target architecture is specified, it defaults to the architecture of the host it is running on.

-arch

-arch arch_type

Specifies the target architecture, arch_type, the assembler to be executed and the architecture of the
resulting object file. The target assemblers for each architecture are in
/usr/libexec/gcc/darwin/arch_type/as or /usr/local/libexec/gcc/darwin/arch_type/as. The
specified target architecture can be processor specific, in which case the resulting object file is marked
for the specific processor. See then man page arch(3) for the current list of specific processor names
for the -arch option.

-force_cpusubtype_ALL

-force_cpusubtype_ALL

Set the architecture of the resulting object file to the ALL type regardless of the instructions in the
assembly input.

-arch_multiple

-arch_multiple

This is used by the cc(1) driver program when it is run with multiple -archarch_type flags and
instructs programs like as(1) that, if it prints any messages, to precede them with one line stating
the program name—in this case as—and the architecture (from the -archarch_type flag) to distinguish
which architecture the error messages refer to. This flag is accepted only by the actual assemblers (in
/lib/arch_type/as) and not by the assembler driver, /bin/as.

PowerPC-Specific Options

The following sections describe the options specific to the PowerPC architecture.

-no_ppc601

-no_ppc601

Treat any PowerPC 601 instructions as an error.

14 Architecture Options
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Using the Assembler

-static_branch_prediction_Y_bit

-static_branch_prediction_Y_bit

Treat a single trailing + or - after a conditional PowerPC branch instruction as a static branch prediction
that sets the Y bit in the opcode. Pairs of trailing ++ or -- always set the AT bits. This is the default
for Mac OS X.

-static_branch_prediction_AT_bits

-static_branch_prediction_AT_bits

Treat a single trailing + or - after a conditional Power PC branch instruction as a static branch prediction
sets the AT bits in the opcode. Pairs of trailing ++ or -- always set the AT bits, but with this option a
warning is issued if that syntax is used. With this flag the assembler behaves like the IBM tools.

PowerPC-Specific Options 15
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Using the Assembler

16 PowerPC-Specific Options
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Using the Assembler

This chapter describes the basic lexical elements of assembly language programming, and explains
how those elements combine to form complete assembly language expressions.

This chapter goes on to explain how sequences of expressions are put together to form the statements
that make up an assembly language program.

Elements of Assembly Language

This section describes the basic building blocks of an assembly language program—these are characters,
symbols, labels, and constants.

Characters

The following characters are used in assembly language programs:

 ■ Alphanumeric characters—A through Z, a through z, and 0 through 9

 ■ Other printable ASCII characters (such as #, $, :, ., +, -, *, /, !, and |)

 ■ Nonprinting ASCII characters (such as space, tab, return, and newline)

Some of these characters have special meanings, which are described in “Expression Syntax” (page 20)
and in “Assembly Language Statements” (page 25).

Identifiers

An identifier (also known as a symbol) can be used for several purposes:

 ■ As the label for an assembler statement (see “Labels” (page 18))

 ■ As a location tag for data

 ■ As the symbolic name of a constant

Elements of Assembly Language 17
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Assembly Language Syntax

Each identifier consists of a sequence of alphanumeric characters (which may include other printable
ASCII characters such as ., _, and $). The first character must not be numeric. Identifiers may be of
any length, and all characters are significant. The case of letters is significant—for example, the
identifier var is different from the identifier Var.

It is also possible to define an identifier by enclosing multiple identifiers within a pair of double
quotation marks. For example:

"Object +new:":
.long "Object +new:"

Labels

A label is written as an identifier immediately followed by a colon (:). The label represents the current
value of the current location counter; it can be used in assembler instructions as an operand.

Note: You may not use a single identifier to represent two different locations.

Numeric Labels

Local numeric labels allow compilers and programmers to use names temporarily. A numeric label
consists of a digit (between 0 and 9) followed by a colon. These 10 local symbol names can be reused
any number of times throughout the program. As with alphanumeric labels, a numeric label assigns
the current value of the location counter to the symbol.

Although multiple numeric labels with the same digit may be used within the same program, only
the next definition and the most recent previous definition of a label can be referenced:

 ■ To refer to the most recent previous definition of a local numeric label, write digitb, (using the
same digit as when you defined the label).

 ■ To refer to the next definition of a numeric label, write digitf.

The Scope of a Label

The scope of a label is the distance over which it is visible to (and referenceable by) other parts of the
program. Normally, a label that tags a location or data is visible only within the current assembly
unit.

The .globl directive (described in “.globl” (page 48)) may be used to make a label external. In this
case, the symbol is visible to other assembly units at link time.

Constants

Four types of constants are available: Numeric, character, string, and floating point. All constants are
interpreted as absolute quantities when they appear in an expression.

18 Elements of Assembly Language
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Assembly Language Syntax

Numeric Constants

A numeric constant is a token that starts with a digit. Numeric constants can be decimal, hexadecimal,
or octal. The following restrictions apply:

 ■ Decimal constants contain only digits between 0 and 9, and normally aren’t longer than 32
bits—having a value between -2,147,483,648 and 2,147,483,647 (values that don’t fit in 32
bits are bignums, which are legal but which should fit within the designated format). Decimal
constants cannot contain leading zeros or commas.

 ■ Hexadecimal constants start with 0x (or 0X), followed by between one and eight decimal or
hexadecimal digits (0 through 9, a through f, and A through F). Values that don’t fit in 32 bits are
bignums.

 ■ Octal constants start with 0, followed by from one to eleven octal digits (0 through 7). Values that
don’t fit in 32 bits are bignums.

Character Constants

A single-character constant consists of a single quotation mark (') followed by any ASCII character.
The constant’s value is the code for the given character.

String Constants

A string constant is a sequence of zero or more ASCII characters surrounded by quotation marks (for
example, "a string").

Floating-Point Constants

The general lexical form of a floating-point number is:

0flt_char[{+–}]dec...[.][dec...][exp_char[{+–}][dec...]]

where:

DescriptionItem

A required type specification character (see the following table).flt_char

The optional occurrence of either + or –, but not both.[{+-}]

A required sequence of one or more decimal digits.dec...

A single optional period.[.]

An optional sequence of one or more decimal digits.[dec...]

An optional exponent delimiter character (see the following table).[exp_char]

The type specification character, flt_char, specifies the type and representation of the constructed
number; the set of legal type specification characters with the processor architecture, as shown here:

Elements of Assembly Language 19
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Assembly Language Syntax

exp_charflt_charArchitecture

{eE}{dDfF}ppc

{eE}{fFdDxX}i386

When floating-point constants are used as arguments to the .single and .doubledirectives, the type
specification character isn’t actually used in determining the type of the number. For convenience, r
or R can be used consistently to specify all types of floating-point numbers.

Collectively, all floating-point numbers, together with quad and octal scalars, are called bignums.
When as requires a bignum, a 32-bit scalar quantity may also be used.

Floating-point constants are internally represented as flonums in a machine-independent,
precision-independent floating-point format (for accurate cross-assembly).

Assembly Location Counter

A single period (.), usually referred to as “dot,” is used to represent the current location counter.
There is no way to explicitly reference any other location counters besides the current location counter.

Even if it occurs in the operand field of a statement, dot refers to the address of the first byte of that
statement; the value of dot isn’t updated until the next machine instruction or assembler directive.

Expression Syntax

Expressions are combinations of operand terms (which can be numeric constants or symbolic identifiers
) and operators. This section lists the available operators, and describes the rules for combining these
operators with operands in order to produce legal expressions.

Operators

Identifiers and numeric constants can be combined, through the use of operators, to form expressions.
Each operator operates on 32-bit values. If the value of a term occupies 8 or 16 bits, it is sign-extended
to a 32-bit value.

The assembler provides both unary and binary operators. A unary operator precedes its operand; a
binary operator follows its first operand, and precedes its second operand. For example:

!var | unary expression
var+5 | binary expression

The assembler recognizes the following unary operators:

DescriptionOperator

Unary minus: The result is the two’s complement of the operand.–

20 Expression Syntax
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Assembly Language Syntax

DescriptionOperator

One’s complement: The result is the one’s complement of the operand.~

Logical negation: The result is zero if the operand is nonzero, and 1 if the operand is zero.!

The assembler recognizes the following binary operators:

DescriptionOperator

Addition: The result is the arithmetic addition of the two operands.+

Subtraction: The result is the arithmetic subtraction of the two operands.–

Multiplication: The result is the arithmetic multiplication of the two operands.*

Division: The result is the arithmetic division of the two operands; this is integer division,
which truncates towards zero.

/

Modulus: The result is the remainder that’s produced when the first operand is divided
by the second (this operator applies only to integral operands).

%

Right shift: The result is the value of the first operand shifted to the right, where the
second operand specifies the number of bit positions by which the first operand is to be
shifted (this operator applies only to integral operands). This is always an arithmetic shift
since all operators operate on signed operands.

>>

Left shift: The result is the value of the first operand shifted to the left, where the second
operand specifies the number of bit positions by which the first operand is to be shifted
(this operator applies only to integral operands).

<<

Bitwise AND: The result is the bitwise AND function of the two operands (this operator
applies only to integral operands).

&

Bitwise exclusive OR: The result is the bitwise exclusive OR function of the two operands
(this operator applies only to integral operands).

^

Bitwise inclusive OR: The result is the bitwise inclusive OR function of the two operands
(this operator applies only to integral operands).

|

Less than: The result is 1 if the first operand is less than the second operand, and zero
otherwise.

<

Greater than: The result is 1 if the first operand is greater than the second operand, and
zero otherwise.

>

Less than or equal: The result is 1 if the first operand is less than or equal to the second
operand, and zero otherwise.

<=

Greater than or equal: The result is 1 if the first operand is greater than or equal to the
second operand, and zero otherwise.

>=

Equal: The result is 1 if the two operands are equal, and zero otherwise.==

Expression Syntax 21
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Assembly Language Syntax

DescriptionOperator

Not equal (same as <>): The result is zero if the two operands are equal, and 1 otherwise.!=

Terms

A term is a part of an expression; it may be:

 ■ An identifier.

 ■ A numeric constant (its 32-bit value is used). The assembly location counter (.), for example, is
a valid numeric constant.

 ■ An expression or term enclosed in parentheses. Any quantity enclosed in parentheses is evaluated
before the rest of the expression. This can be used to alter the normal evaluation of expressions—for
example, to differentiate between x * y + z and x * (y + z) or to apply a unary operator to
an entire expression—for example, –(x * y + z).

 ■ A term preceded by a unary operator (for example, ~var). Multiple unary operators may be used
in a term (for example, !~var).

Expressions

Expressions are combinations of terms joined together by binary operators. An expression is always
evaluated to a 32-bit value, but in some situations a different value is used:

 ■ If the operand requires a 1-byte value (a .byte directive, for example), the low-order 8 bits of the
expression are used.

 ■ If the operand requires a 16-bit value (a .short directive or a movem instruction, for example),
the low-order 16 bits of the expression are used.

All expressions are evaluated using the same operator precedence rules that are used by the C
programming language.

When an expression is evaluated, its value is absolute, relocatable, or external, as described below.

Absolute Expressions

An expression is absolute if its value is fixed. The following are examples of absolute expressions:

 ■ An expression whose terms are constants

 ■ An identifier whose value is a constant via a direct assignment statement

 ■ Values to which the .set directive is applied

22 Expression Syntax
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Assembly Language Syntax

Relocatable Expressions

An expression (or term) is relocatable if its value is fixed relative to a base address but has an offset
value when it is linked or loaded into memory. For example, all labels of a program defined in
relocatable sections are relocatable.

Expressions that contain relocatable terms must add or subtract only constants to their value. For
example, assuming the identifiers var and dat are defined in a relocatable section of the program,
the following examples demonstrate the use of relocatable expressions:

DescriptionExpression

Simple relocatable term. Its value is an offset from the base address of the current
control section.

var

Simple relocatable expression. Since the value of var is an offset from the base address
of the current control section, adding a constant to it doesn’t change its relocatable
status.

var+5

Not relocatable. Multiplying a relocatable term by a constant invalidates the relocatable
status of the expression.

var*2

Not relocatable. The expression can’t be linked by adding var’s offset to it.2–var

Relocatable expression if both var and dat are defined in the same section—that is, if
neither is undefined. This form of relocatable expression is used for
position-independent code.

var-dat+5

External Expressions

An expression is external (or global) if it contains an external identifier not defined in the current
program. In general, the same restrictions on expressions containing relocatable identifiers apply to
expressions containing external identifiers. An exception is that the expression var–dat is incorrect
when both var and dat are external identifiers (that is, you cannot subtract two external relocatable
expressions). Also, you cannot multiply or divide any relocatable expression.

Expression Syntax 23
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Assembly Language Syntax

24 Expression Syntax
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Assembly Language Syntax

This chapter describes the assembly language statements that make up an assembly language program.

This is the general format of an assembly language statement:

[label_field] [opcode_field [operand_field]] [comment_field]

Each of the depicted fields is described in detail in one of the following sections.

A line may contain multiple statements separated by the @ character for the PowerPC assembler (and
a semicolon for the i386 assembler), which may then be followed by a single comment preceded by
a semicolon for the PowerPC assembler (and a # character for the i386 assembler):

[statement [@ statement ...]] [; comment_field]

The following rules apply to the use of whitespace within a statement:

 ■ Spaces or tabs are used to separate fields.

 ■ At least one space or tab must occur between the opcode field and the operand field.

 ■ Spaces may appear within the operand field.

 ■ Spaces and tabs are significant when they appear in a character string.

Label Field

Labels are identifiers that you use to tag the locations of program and data objects. Each label is
composed of an identifier and a terminating colon. The format of the label field is:

identifier: [identifier:] ...

The optional label field may occur only at the beginning of a statement. The following example shows
a label field containing two labels, followed by a (PowerPC-style) comment:

var: VAR: ; two labels defined here

As shown here, letters in identifiers are case sensitive, and both uppercase and lowercase letters may
be used.

Label Field 25
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Assembly Language Statements

Operation Code Field

The operation code field of an assembly language statement identifies the statement as a machine
instruction, an assembler directive, or a macro defined by the programmer:

 ■ A machine instruction is indicated by an instruction mnemonic. An assembly language statement
that contains an instruction mnemonic is intended to produce a single executable machine
instruction. The operation and use of each instruction is described in the manufacturer’s user
manual.

 ■ An assembler directive (or pseudo-op) performs some function during the assembly process. It
doesn’t produce any executable code, but it may assign space for data in the program.

 ■ Macros are defined with the .macro directive (see “.macro, .endmacro, .macros_on, and
.macros_off” (page 55) for more information).

One or more spaces or tabs must separate the operation code field from the following operand field
in a statement. Spaces or tabs are optional between the label and operation code fields, but they help
to improve the readability of the program.

Intel i386 Architecture–Specific Caveats

 ■ i386 instructions can operate on byte, word, or long word data (the last is called “double word”
by Intel). The desired size is indicated as part of the instruction mnemonic by adding a trailing
b, w, or l:

DescriptionMnemonic

Byte (8-bit) data.b

Word (16-bit) data.w

Long word (32-bit) data.l

For instance, a movb instruction moves a byte of data, but a movw instruction moves a 16-bit word
of data.

If no size is specified, the assembler attempts to determine the size from the operands. For example,
if the 16-bit names for registers are used as operands, a 16-bit operation is performed. When both
a size specifier and a size-specific register name are given, the size specifier is used. Thus, the
following are all correct and result in the same operation:

 movw %bx,%cx
 mov %bx,%cx
 movw %ebx,%ecx

 ■ An i386 operation code can also contain optional prefixes, which are separated from the operation
code by a slash (/) character. The prefix mnemonics are:

26 Operation Code Field
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Assembly Language Statements

DescriptionPrefix

Operation uses 16-bit data.data16

Operation uses 16-bit addresses.addr16

Exclusive memory lock.lock

Wait for pending numeric exceptions.wait

Segment register override.cs, ds, es, fs, gs, ss

Repeat prefixes for string instructions.rep, repe, repne

More than one prefix may be specified for some operation codes. For example:

lock/fs/xchgl %ebx,4(%ebp)

Segment register overrides and the 16-bit data specifications are usually given as part of the
operation code itself or of its operands. For example, the following two lines of assembly generate
the same instructions:

movw %bx,%fs:4(%ebp)
data16/fs/movl %bx,4(%ebp)

Not all prefixes are allowed with all instructions. The assembler does check that the repeat prefixes
for strings instructions are used correctly but doesn’t otherwise check for correct usage.

Operand Field

The operand field of an assembly language statement supplies the arguments to the machine
instruction, assembler directive, or macro.

The operand field may contain one or more operands, depending on the requirements of the preceding
machine instruction or assembler directive. Some machine instructions and assembler directives don’t
take any operand, and some take two or more. If the operand field contains more than one operand,
the operands are generally separated by commas, as shown here:

[operand [, operand] ...]

The following types of objects can be operands:

 ■ Register operands

 ■ Register pairs

 ■ Address operands

 ■ String constants

 ■ Floating-point constants

 ■ Register lists

Operand Field 27
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Assembly Language Statements

 ■ Expressions

Register operands in a machine instruction refer to the machine registers of the processor or
coprocessor. Register names may appear in mixed case.

Intel 386 Architecture–Specific Caveats

The Mac OS X assembler orders operand fields for i386 instructions in the reverse order from Intel’s
conventions. Intel’s convention is destination first, source second; Mac OS X assembler’s convention
is source first, destination second. Where Intel documentation would describe the Compare and
Exchange instruction for 32-bit operands as follows:

CMPXCHG r/m32,r32 # Intel processor manual convention

The Mac OS X assembler syntax for this same instruction is:

cmpxchg r32,r/m32 # Mac OS X assembler syntax

So, an example of actual assembly code for the Mac OS X assembler would be:

cmpxchg %ebx,(%eax) # Mac OS X assembly code

Comment Field

The assembler recognizes two types of comments in source code:

 ■ A line whose first nonwhitespace character is the hash character (#) is a comment. This style of
comment is useful for passing C preprocessor output through the assembler. Note that comments
of the form:

line_number file_name level

get turned into:

.line line_number; .file file_name

This can cause problems when comments of this form that aren’t intended to specify line numbers
precede assembly errors, since the error is reported as occurring on a line relative to that specified
in the comment. Suppose a program contains these two lines of assembly source:

500
 .var

If .var hasn’t been defined, this fragment results in the following error message:

var.s:500:Unknown pseudo-op: .var

 ■ A comment field, appearing on a line after one or more statements. The comment field consists
of the appropriate comment character and all the characters that follow it on the line:

28 Comment Field
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Assembly Language Statements

DescriptionCharacter

Comment character for PowerPC processors;

Comment character for i386 architecture processors#

An assembly language source line can consist of just the comment field; in this case, it’s equivalent
to using the hash character comment style:

This is a comment.
; This is a comment.

Note the warning given above for hash character comments beginning with a number.

Direct Assignment Statements

This section describes direct assignment statements, which don’t conform to the normal statement
syntax described earlier in this chapter. A direct assignment statement can be used to assign the value
of an expression to an identifier. The format of a direct assignment statement is:

identifier = expression

If expression in a direct assignment is absolute, identifier is also absolute, and it may be treated as a
constant in subsequent expressions. If expression is relocatable, identifier is also relocatable, and it is
considered to be declared in the same program section as the expression.

The use of an assignment statement is analogous to using the .set directive (described in
“.set” (page 51)), except that the .set directive makes the value of the expression absolute. This is
used when an assembly time constant is wanted for what would otherwise generate a relocatable
expression using the position independent expression of symbol1 - symbol2. For example, the size
of the function is needed as one of the fields of the C++ exception information and is set with:

.set L_foo_size, L_foo_end - _foo

.long L_foo_size ; size of function _foo

where a position independent pointer to the function is another field of the C++ exception information
and is set with:

.long _foo - . ; position independent pointer to _foo

where the runtime adds the address of the pointer to its contents to get a pointer to the function.

Once an identifier has been defined by a direct assignment statement, it may be redefined—its value
is then the result of the last assignment statement. There are a few restrictions, however, concerning
the redefinition of identifiers:

 ■ Register identifiers may not be redefined.

 ■ An identifier that has already been used as a label should not be redefined, since this would
amount to redefining the address of a place in the program. Moreover, an identifier that has been
defined in a direct assignment statement cannot later be used as a label. Only the second situation
produces an assembler error message.

Direct Assignment Statements 29
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Assembly Language Statements

30 Direct Assignment Statements
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Assembly Language Statements

This chapter describes assembler directives (also known as pseudo operations, or pseudo-ops), which
allow control over the actions of the assembler.

Directives for Designating the Current Section

The assembler supports designation of arbitrary sections with the .section and .zerofill directives
(descriptions appear below). Only those sections specified by a directive in the assembly file appear
in the resulting object file (including implicit .text directives—see “Built-in Directives” (page 37).
Sections appear in the object file in the order their directives first appear in the assembly file. When
object files are linked by the link editor, the output objects have their sections in the order the sections
first appear in the object files that are linked. See the ld(1) Mac OS X man page for more details.

Associated with each section in each segment is an implicit location counter, which begins at zero
and is incremented by 1 for each byte assembled into the section. There is no way to explicitly reference
a particular location counter, but the directives described here can be used to “activate” the location
counter for a section, making it the current location counter. As a result, the assembler begins assembling
into the section associated with that location counter.

Note: If the -n command-line option isn’t used, the (__TEXT,__text) section is used by default at the
beginning of each file being assembled, just as if each file began with the .text directive.

.section

SYNOPSIS

.section segname , sectname [[[, type] , attribute] , sizeof_stub]

The .section directive causes the assembler to begin assembling into the section given by segname
and sectname. A section created with this directive contains initialized data or instructions and is
referred to as a content section. type and attribute may be specified as described under “Section Types
and Attributes” (page 32). If type is symbol_stubs, then the sizeof_stub field must be given as the size
in bytes of the symbol stubs contained in the section.

Directives for Designating the Current Section 31
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Assembler Directives

.zerofill

SYNOPSIS

.zerofill segname , sectname [, symbolname , size [, align_expression]]

The .zerofill directive causes symbolname to be created as uninitialized data in the section given
by segname and sectname, with a size in bytes given by size. A power of 2 between 0 and 15 may be
given for align_expression to indicate what alignment should be forced on symbolname, which is placed
on the next expression boundary having the given alignment. See “.align” (page 43) for details.

Section Types and Attributes

A content section has a type, which informs the link editor about special processing needed for the
items in that section. The most common form of special processing is for sections containing literals
(strings, constants, and so on) where only one copy of the literal is needed in the output file and the
same literal can be used by all references in the input files.

A section’s attributes record supplemental information about the section that the link editor may use
in processing that section. For example, the pure_instructions attribute indicates that a section
contains only valid machine instructions.

A section’s type and attribute are recorded in a Mach-O file as the flags field in the section header,
using constants defined in the header file mach-o/loader.h. The following sections describe the
various types and attributes by the names used to identify them in a .section directive. The name
of the related constant is also given in parentheses following the identifier.

Type Identifiers

The following sections describe section type identifiers.

regular (S_REGULAR)

A regular section may contain any kind of data and gets no special processing from the link editor.
This is the default section type. Examples of regular sections include program instructions or
initialized data.

cstring_literals (S_CSTRING_LITERALS)

A cstring_literals section contains null-terminated literal C language character strings. The link
editor places only one copy of each literal into the output file’s section and relocates references to
different copies of the same literal to the one copy in the output file. There can be no relocation entries
for a section of this type, and all references to literals in this section must be inside the address range
for the specific literal being referenced. The last byte in a section of this type must be a null byte, and
the strings can’t contain null bytes in their bodies. An example of a cstring_literals section is one
for the literal strings that appear in the body of an ANSI C function where the compiler chooses to
make such strings read only.

32 Directives for Designating the Current Section
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Assembler Directives

4byte_literals (S_4BYTE_LITERALS)

A 4byte_literals section contains 4-byte literal constants. The link editor places only one copy of
each literal into the output file’s section and relocates references to different copies of the same literal
to the one copy in the output file. There can be no relocation entries for a section of this type, and all
references to literals in this section must be inside the address range for the specific literal being
referenced. An example of a 4byte_literals section is one in which single-precision floating-point
constants are stored for a RISC machine (these would normally be stored as immediates in CISC
machine code).

8byte_literals (S_8BYTE_LITERALS)

An 8byte_literals section contains 8-byte literal constants. The link editor places only one copy of
each literal into the output file’s section and relocates references to different copies of the same literal
to the one copy in the output file. There can be no relocation entries for a section of this type, and all
references to literals in this section must be inside the address range for the specific literal being
referenced. An example of a 8byte_literals section is one in which double-precision floating-point
constants are stored for a RISC machine (these would normally be stored as immediates in CISC
machine code).

literal_pointers (S_LITERAL_POINTERS)

A literal_pointers section contains 4-byte pointers to literals in a literal section. The link editor
places only one copy of a pointer into the output file’s section for each pointer to a literal with the
same contents. The link editor also relocates references to each literal pointer to the one copy in the
output file. There must be exactly one relocation entry for each literal pointer in this section, and all
references to literals in this section must be inside the address range for the specific literal being
referenced. The relocation entries can be external relocation entries referring to undefined symbols
if those symbols identify literals in another object file. An example of a literal_pointers section is
one containing selector references generated by the Objective-C compiler.

symbol_stubs (S_SYMBOL_STUBS)

A symbol_stubs section contains symbol stubs, which are sequences of machine instructions (all the
same size) used for lazily binding undefined function calls at runtime. If a call to an undefined function
is made, the compiler outputs a call to a symbol stub instead, and tags the stub with an indirect symbol
that indicates what symbol the stub is for. On transfer to a symbol stub, a program executes instructions
that eventually reach the code for the indirect symbol associated with that stub. Here’s a sample of
assembly code based on a function func() containing only a call to the undefined function foo():

 .text
 .align 2
 .globl _func
 _func:
 b L_foo$stub
 .symbol_stub
 L_foo$stub: ;
 .indirect_symbol _foo ;
 lis r11,ha16(L_foo$lazy_ptr) ;
 lwz r12,lo16(L_foo$lazy_ptr)(r11) ; the symbol stub
 mtctr r12 ;
 addi r11,r11,lo16(L_foo$lazy_ptr) ;
 bctr ;
 .lazy_symbol_pointer

Directives for Designating the Current Section 33
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Assembler Directives

 L_foo$lazy_ptr: ;
 .indirect_symbol _foo ; the symbol pointer
 .long dyld_stub_binding_helper ; to be replaced by _foo's address

In the assembly code, _func branches to L_foo$stub, which is responsible for finding the definition
of the function foo(). L_foo$stub jumps to the contents of L_foo$lazy_ptr. This value is initially
the address of the dyld_stub_binding_helper code, which after executing causes it to overwrite
the contents of L_foo$lazy_ptr with the address of the real function, _foo, and jump to _foo.

The indirect symbol entries for _fooprovide information to the static and dynamic linkers for binding
the symbol stub. Each symbol stub and lazy pointer entry must have exactly one such indirect symbol,
associated with the first address in the stub or pointer entry. See “.indirect_symbol” (page 48) for
more information.

The static link editor places only one copy of each stub into the output file’s section for a particular
indirect symbol, and relocates all references to the stubs with the same indirect symbol to the stub in
the output file. Further, the static link editor eliminates a stub if a definition of the indirect symbol
for that stub is present in the output file and that output file isn't a multi-module dynamically linked
shared library file. The stub can refer only to itself, one lazy symbol pointer (referring to the same
indirect symbol as the stub), and the dyld_stub_binding_helper() function. No global symbols
can be defined in this type of section.

lazy_symbol_pointers (S_LAZY_SYMBOL_POINTERS)

A lazy_symbol_pointers section contains 4-byte symbol pointers that eventually contain the value
of the indirect symbol associated with the pointer. These pointers are used by symbol stubs to lazily
bind undefined function calls at runtime. A lazy symbol pointer initially contains an address in the
symbol stub of instructions that cause the symbol pointer to be bound to the function definition (in
the example in “symbol_stubs (S_SYMBOL_STUBS)” (page 33), the lazy pointer L_foo$lazy_ptr
initially contains the address for dyld_stub_binding_helper but gets overwritten with the address
for _foo). The dynamic link editor binds the indirect symbol associated with the lazy symbol pointer
by overwriting it with the value of the symbol.

The static link editor places a copy of a lazy pointer in the output file only if the corresponding symbol
stub is in the output file. Only the corresponding symbol stub can make a reference to a lazy symbol
pointer, and no global symbols can be defined in this type of section. There must be one indirect
symbol associated with each lazy symbol pointer. An example of a lazy_symbol_pointers section
is one in which the compiler has generated calls to undefined functions, each of which can be bound
lazily at the time of the first call to the function.

non_lazy_symbol_pointers (S_NON_LAZY_SYMBOL_POINTERS)

A non_lazy_symbol_pointers section contains 4-byte symbol pointers that contain the value of the
indirect symbol associated with a pointer that may be set at any time before any code makes a reference
to it. These pointers are used by the code to reference undefined symbols. Initially these pointers have
no interesting value but get overwritten by the dynamic link editor with the value of the symbol for
the associated indirect symbol before any code can make a reference to it.

The static link editor places only one copy of each non-lazy pointer for its indirect symbol into the
output file and relocates all references to the pointer with the same indirect symbol to the pointer in
the output file. The static link editor futher can fill in the pointer with the value of the symbol if a
definition of the indirect symbol for that pointer is present in the output file. No global symbols can
be defined in this type of section. There must be one indirect symbol assocated with each non-lazy
symbol pointer. An example of a non_lazy_symbol_pointers section is one in which the compiler

34 Directives for Designating the Current Section
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Assembler Directives

has generated code to indirectly reference undefined symbols to be bound at runtime—this preserves
the sharing of the machine instructions by allowing the dynamic link editor to update references
without writing on the instructions.

Here's an example of assembly code referencing an element in the undefined structure. The
corresponding C code would be:

struct s {
 int member1, member2;
 };
 extern struct s bar;
 int func()
 {
 return(bar.member2);
 }

The PowerPC assembly code might look like this:

 .text
 .align 2
 .globl _func
 _func:
 lis r3,ha16(L_bar$non_lazy_ptr)
 lwz r2,lo16(L_bar$non_lazy_ptr)(r3)
 lwz r3,4(r2)
 blr
 .non_lazy_symbol_pointer
 L_bar$non_lazy_ptr:
 .indirect_symbol _bar
 .long 0

mod_init_funcs (S_MOD_INIT_FUNC_POINTERS)

A mod_init_funcs section contains 4-byte pointers to functions that are to be called just after the
module containing the pointer is bound into the program by the dynamic link editor. The static link
editor does no special processing for this section type except for disallowing section ordering. This
is done to maintain the order the functions are called (which is the order their pointers appear in the
original module). There must be exactly one relocation entry for each pointer in this section. An
example of a mod_init_funcs section is one in which the compiler has generated code to call C++
constructors for modules that get dynamicly bound at runtime.

mod_term_funcs (S_MOD_TERM_FUNC_POINTERS)

A mod_term_funcs section contains 4-byte pointers to functions that are to be called just before the
module containing the pointer is unloaded by the dynamic link editor or the program is terminated.
The static link editor does no special processing for this section type except for disallowing section
ordering. This is done to maintain the order the functions are called (which is the order their pointers
appear in the original module). There must be exactly one relocation entry for each pointer in this
section. An example of a mod_term_funcs section is one in which the compiler has generated code
to call C++ deconstructors for modules that get dynamically bound at runtime.

Directives for Designating the Current Section 35
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Assembler Directives

coalesced (S_COALESCED)

A coalesced section can contain any instructions or data and is used when more than one definition
of a symbol could be defined in multiple object files being linked together. The static link editor keeps
the data associated with the coalesced symbol from the first object file it links and silently discards
the data from other object files. An example of a coalesced section is one in which the compiler has
generated code for implicit instantiations of C++ templates.

Attribute Identifiers

The following sections describe attribute identifiers.

none (0)

No attributes for this section. This is the default section attribute.

S_ATTR_SOME_INSTRUCTIONS

This attribute is set by the assembler whenever it assembles a machine instruction in a section. There
is no directive associated with it, since you cannot set it yourself. It is used by the dynamic link editor
together with S_ATTR_EXT_RELOC and S_ATTR_LOC_RELOC, set by the static link editor, to know it
must flush the cache and other processor-related functions when it relocates instructions by writing
on them.

no_dead_strip (S_ATTR_NO_DEAD_STRIP)

The no_dead_strip section attribute specifies that a particular section must not be dead-stripped.
See “Directives for Dead-Code Stripping” (page 51) for more information.

no_toc (S_ATTR_NO_TOC)

The no_toc section attribute means that the global symbols in this section are not to be used in the
table of contents of a static library as produced by the program ranlib(1). This is normally used
with a coalesced section when it is expected that each object file has a definition of the symbols that
it uses.

live_support (S_ATTR_LIVE_SUPPORT)

The live_support section attribute specifies that a section’s blocks must not be dead-stripped if they
reference code that is live, but the reference is undetectable. See “Directives for Dead-Code
Stripping” (page 51) for more information.

pure_instructions (S_ATTR_PURE_INSTRUCTIONS)

The pure_instructions attribute means that this section contains nothing but machine instructions.
This attribute would be used for the (__TEXT,__text) section of Mac OS X compilers and sections
that have a section type of symbol_stubs.

36 Directives for Designating the Current Section
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Assembler Directives

strip_static_syms (S_ATTR_STRIP_STATIC_SYMS)

The strip_static_syms section attribute means that the static symbols in this section can be stripped
from linked images that are used with the dynamic linker when debugging symbols are also stripped.
This is normally used with a coalesced section that has private extern symbols, so that after linking
and the private extern symbols have been turned into static symbols they can be stripped to save
space in the linked image.

Built-in Directives

The directives described here are simply built-in equivalents for .section directives with specific
arguments.

Designating Sections in the __TEXT Segment

The directives listed below cause the assembler to begin assembling into the indicated section of the
__TEXT segment. Note that the underscore before __TEXT, __text, and the rest of the segment names
is actually two underscore characters.

SectionDirective

(__TEXT,__text).text

(__TEXT,__const).const

(__TEXT,__static_const).static_const

(__TEXT,__cstring).cstring

(__TEXT,__literal4).literal4

(__TEXT,__literal8).literal8

(__TEXT,__constructor).constructor

(__TEXT,__destructor).destructor

(__TEXT,__fvmlib_init0).fvmlib_init0

(__TEXT,__fvmlib_init1).fvmlib_init1

(__TEXT,__symbol_stub).symbol_stub

(__TEXT, __picsymbol_stub).picsymbol_stub

The following sections describe the sections in the __TEXT segment and the types of information that
should be assembled into each of them.

Directives for Designating the Current Section 37
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Assembler Directives

.text

This is equivalent to .section __TEXT,__text,regular,pure_instructions when the default
-dynamic flag is in effect and equivalent to .section __TEXT,__text,regular when the -static
flag is specified.

The compiler places only machine instructions in the (__TEXT,__text) section (no read-only data,
jump tables or anything else). With this, the entire (__TEXT,__text) section is pure instructions and
tools that operate on object files. The runtime can take advantage of this to locate the instructions of
the program and not get confused with data that could have been mixed in. To make this work, all
runtime support code linked into the program must also obey this rule (all Mac OS X library code
follows this rule).

.const

This is equivalent to .section __TEXT,__const

The compiler places all data declared const and all jump tables it generates for switch statements in
this section.

.static_const

This is equivalent to .section __TEXT,__static_const

This is not currently used by the compiler. It was added to the assembler so that the compiler may
separate global and static const data into separate sections if it wished to.

.cstring

This is equivalent to .section __TEXT,__cstring, cstring_literals

This section is marked with the section type cstring_literals, which the link editor recognizes.
The link editor merges the like literal C strings in all the input object files to one unique C string in
the output file. Therefore this section must contain only C strings (a C string in a sequence of bytes
that ends in a null byte, \0, and does not contain any other null bytes except its terminator). The
compiler places literal C strings found in the code that are not initializers and do not contain any
embedded nulls in this section.

.literal4

This is equivalent to .section __TEXT,__literal4,4byte_literals

This section is marked with the section type 4byte_literals, which the link editor recognizes. The
link editor can then merge the like 4 byte literals in all the input object files to one unique 4 byte literal
in the output file. Therefore, this section must contain only 4 byte literals. This is typically intended
for single precision floating-point constants and the compiler uses this section for that purpose. On
some machines it is more efficient to place these constants in line as immediates as part of the
instruction.

.literal8

This is equivalent to .section __TEXT,__literal8,8byte_literals

38 Directives for Designating the Current Section
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Assembler Directives

This section is marked with the section type 8byte_literals, which the link editor recognizes. The
link editor then can merge the like 8 byte literals in all the input object files to one unique 8 byte literal
in the output file. Therefore, this section must only contain 8 byte literals. This is typically intended
for double precision floating-point constants and the compiler uses this section for that purpose. On
some machines it is more efficient to place these constants in line as immediates as part of the
instruction.

.constructor

This is equivalent to .section __TEXT,__constructor

.destructor

This is equivalent to .section __TEXT,__destructor

The .constructor and .destructor sections are used by the C++ runtime system, and are reserved
exclusively for the C++ compiler.

.fvmlib_init0

This is equivalent to .section __TEXT,__fvmlib_init0

.fvmlib_init1

This is equivalent to .section __TEXT,__fvmlib_init1

The .fvmlib_init0 and .fvmlib_init1 sections are used by the obsolete fixed virtual memory
shared library initialization. The compiler doesn't place anything in these sections, as they are reserved
exclusively for the obsolete shared library mechanism.

.symbol_stub

This is equivalent to .section __TEXT,__symbol_stub, symbol_stubs,
pure_instructions,NBYTES

This section is of type symbol_stubs and has the attribute pure_instructions. The compiler places
symbol stubs in this section for undefined functions that are called in the module. This is the standard
symbol stub section for nonposition-independent code. The value NBYTES is dependent on the target
architecture. The standard symbol stub for the PowerPC is 20 bytes and has an alignment of 4 bytes
(.align 2) . For example, a stub for the symbol _foo would be (using a lazy symbol pointer
L_foo$lazy_ptr):

 symbol_stub
L_foo$stub:
 .indirect_symbol _foo
 lis r11,ha16(L_foo$lazy_ptr)
 lwz r12,lo16(L_foo$lazy_ptr)(r11)
 mtctr r12
 addi r11,r11,lo16(L_foo$lazy_ptr)
 bctr

 .lazy_symbol_pointer
L_foo$lazy_ptr:

Directives for Designating the Current Section 39
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Assembler Directives

 .indirect_symbol _foo
 .long dyld_stub_binding_helper

The standard symbol stub for the i386 is 16 bytes and has an alignment of 1 byte (.align 0). For
example, a stub for the symbol _foo would be (using a lazy symbol pointer L_foo$lazy_ptr):

 .symbol_stub
L_foo$stub:
 .indirect_symbol _foo
 ljmp L_foo$lazy_ptr
L_foo$stub_binder:
 pushl L_foolazy_ptr
 jmp dyld_stub_binding_helper

 .lazy_symbol_pointer
L_foo$lazy_ptr:
 .indirect_symbol _foo
 .long Lfoo$stub_binder

.picsymbol_stub

This is equivalent to .section __TEXT, __picsymbol_stub, symbol_stubs, pure_instructions,
NBYTES

This section is of type symbol_stubs and has the attribute pure_instructions. The compiler
places symbol stubs in this section for undefined functions that are called in the module. This is the
standard symbol stub section for position-independent code. The value of NBYTES is dependent on
the target architecture.

The standard position-independent symbol stub for the PowerPC is 36 bytes and has an alignment
of 4 bytes (.align 2). For example, a stub for thesymbol _foo would be (using a lazy symbol pointer
L_foo$lazy_ptr):

 .picsymbol_stub
 L_foo$stub:
 .indirect_symbol _foo
 mflr r0
 bcl 20,31,L0$_foo
 L0$_foo:
 mflr r11
 addis r11,r11,ha16(L_foo$lazy_ptr - L0$_foo)
 mtlr r0
 lwz r12,lo16(L_foo$lazy_ptr - L0$_foo)(r11)
 mtctr r12
 addi r11,r11,lo16(L_foo$lazy_ptr - L0$_foo)
 bctr

The standard position-independent symbol stub for the i386 is 26 bytes and has an alignment of 1
byte (.align 0). For example, a stub for the symbol _foo would be (using a lazy symbol pointer
L1$lz):

 .picsymbol_stub
 L_foo$stub:
 .indirect_symbol _foo
 call LPC$1
 LPC$1:
 popl %eax

40 Directives for Designating the Current Section
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Assembler Directives

 movl L1$lz - LPC$1(%eax),%edx
 jmp %edx
 L_foo$stub_binder:
 lea L1$lz - LPC$1(%eax),%eax
 pushl %eax
 jmp dyld_stub_binding_helper
 .lazy_symbol_pointer
 L1$lz:
 .indirect_symbol _foo
 .long L_foo$stub_binder

Designating Sections in the __DATA Segment

These directives cause the assembler to begin assembling into the indicated section of the __DATA
segment:

SectionDirective

(__DATA,__data).data

(__DATA,__static_data).static_data

(__DATA,__nl_symbol_pointer).non_lazy_symbol_pointer

(__DATA,__la_symbol_pointer).lazy_symbol_pointer

(__DATA,__dyld).dyld

(__DATA,__mod_init_func).mod_init_func

(__DATA,__mod_term_func).mod_term_func

(__DATA,__const).const_data

The following sections describe the sections in the __DATA segment and the types of information that
should be assembled into each of them.

.data

This is equivalent to .section __DATA, __data

The compiler places all non-const initialized data (even initialized to zero) in this section.

.static_data

This is equivalent to .section __DATA, __static_data

This is not currently used by the compiler. It was added to the assembler so that the compiler could
separate global and static data symbol into separate sections if it wished to.

.const_data

This is equivalent to .section __DATA, __const, regular.

Directives for Designating the Current Section 41
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Assembler Directives

This section is of type regular and has no attributes. This section is used when dynamic code is being
compiled for const data that must be initialized.

.lazy_symbol_ptr

This is equivalent to .section __DATA, __la_symbol_ptr,lazy_symbol_pointers

This section is of type lazy_symbol_pointers and has no attributes. The compiler places a lazy
symbol pointer in this section for each symbol stub it creates for undefined functions that are called
in the module. (See “.symbol_stub” (page 39) for examples.) This section has an alignment of 4 bytes
(.align 2).

.non_lazy_symbol_ptr

This is equivalent to .section __DATA, __nl_symbol_ptr,non_lazy_symbol_pointers

This section is of type non_lazy_symbol_pointers and has no attributes. The compiler places a
non-lazy symbol pointer in this section for each undefined symbol referenced by the module (except
for function calls). This section has an alignment of 4 bytes (.align 2).

.mod_init_func

This is equivalent to .section __DATA, __mod_init_func, mod_init_funcs

This section is of type mod_init_funcs and has no attributes. The C++ compiler places a pointer to
a function in this section for each function it creates to call the deconstructors (if the module has them).

.mod_term_func

This is equivalent to .section __DATA, __mod_term_func, mod_term_funcs

This section is of type mod_term_funcs and has no attributes. The C++ compiler places a pointer to
a function in this section for each function it creates to call the deconstructors (if the module has them).

.dyld

This is equivalent to .section __DATA, __dyld,regular

This section is of type regular and has no attributes. This section is used by the dynamic link editor.
The compiler doesn’t place anything in this section, as it is reserved exclusively for the dynamic link
editor.

Designating Sections in the __OBJC Segment

These directives cause the assembler to begin assembling into the indicated section of the __OBJC
segment (or the __TEXT segment):

SectionDirective

(__OBJC,__class).objc_class

(__OBJC,__meta_class).objc_meta_class

42 Directives for Designating the Current Section
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Assembler Directives

SectionDirective

(__OBJC,__cat_cls_meth).objc_cat_cls_meth

(__OBJC,__cat_inst_meth).objc_cat_inst_meth

(__OBJC,__protocol).objc_protocol

(__OBJC,__string_object).objc_string_object

(__OBJC,__cls_meth).objc_cls_meth

(__OBJC,__inst_meth).objc_inst_meth

(__OBJC,__cls_refs).objc_cls_refs

(__OBJC,__message_refs).objc_message_refs

(__OBJC,__symbols).objc_symbols

(__OBJC,__category).objc_category

(__OBJC,__class_vars).objc_class_vars

(__OBJC,__instance_vars).objc_instance_vars

(__OBJC,__module_info).objc_module_info

(__TEXT,__cstring).objc_class_names

(__TEXT,__cstring).objc_meth_var_types

(__TEXT,__cstring).objc_meth_var_names

(__OBJC,__selector_strs).objc_selector_strs

All sections in the __OBJC segment, including old sections that are no longer used and future sections
that may be added, are exclusively reserved for the Objective-C compiler’s use.

Directives for Moving the Location Counter

This section describes directives that advance the location counter to a location higher in memory.
They have the additional effect of setting the intervening memory to some value.

.align

SYNOPSIS

.align align_expression [, 1byte_fill_expression [,max_bytes_to_fill]]

.p2align align_expression [, 1byte_fill_expression [,max_bytes_to_fill]]

.p2alignw align_expression [, 2byte_fill_expression [,max_bytes_to_fill]]

Directives for Moving the Location Counter 43
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Assembler Directives

.p2alignl align_expression [, 4byte_fill_expression [,max_bytes_to_fill]]

.align32 align_expression [, 4byte_fill_expression [,max_bytes_to_fill]]

The align directives advance the location counter to the next align_expression boundary, if it isn't
currently on such a boundary. align_expression is a power of 2 between 0 and 15 (for example, the
argument of .align 3 means 2 ^ 3 (8)–byte alignment). The fill expression, if specified, must be
absolute. The space between the current value of the location counter and the desired value is filled
with the fill expression (or with zeros, if fill_expression isn't specified). The space between the current
value of the location counter to the alignment of the fill expression width is filled with zeros first.
Then the fill expression is used until the desired alignment is reached. max_bytes_to_fill is the maximum
number of bytes that are allowed to be filled for the align directive. If the align directive can't be done
in max_bytes_to_fill or less, it has no effect. If there is no fill_expression and the section has the
pure_instructions attribute, or contains some instructions, the nop opcode is used as the fill
expression.

Note: The assembler enforces no alignment for any bytes created in the object file (data or machine
instructions). You must supply the desired alignment before any directive or instruction.

EXAMPLE

.align 3
one: .double 0r1.0

.org

SYNOPSIS

.org expression [, fill_expression]

The .org directive sets the location counter to expression, which must be a currently known absolute
expression. This directive can only move the location counter up in address. The fill expression, if
specified, must be absolute. The space between the current value of the location counter and the
desired value is filled with the low-order byte of the fill expression (or with zeros, if fill_expression
isn’t specified).

Note: If the output file is later link-edited, the .org directive isn’t preserved.

EXAMPLE

.org 0x100,0xff

Directives for Generating Data

The directives described in this section generate data. (Unless specified otherwise, the data goes into
the current section.) In some respects, they are similar to the directives explained in “Directives for
Moving the Location Counter” (page 43)—they do have the effect of moving the location counter—but
this isn’t their primary purpose.

44 Directives for Generating Data
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Assembler Directives

.ascii and .asciz

SYNOPSIS

.ascii [“string”] [, “string”] ...

.asciz [“string”] [, “string”] ...

These directives translate character strings into their ASCII equivalents for use in the source program.
Each directive takes zero or more comma-separated strings surrounded by quotation marks. Each
string can contain any character or escape sequence that can appear in a character string; the newline
character cannot appear, but it can be represented by the escape sequence \012 or \n:

 ■ The .ascii directive generates a sequence of ASCII characters.

 ■ The .asciz directive is similar to the .ascii directive, except that it automatically terminates
the sequence of ASCII characters with the null character (\0), necessary when generating strings
usable by C programs.

If no strings are specified, the directive is ignored.

EXAMPLE

.ascii "Can't open the DSP.\0"

.asciz "%s has changes.\tSave them?"

.byte, .short, .long, and .quad

SYNOPSIS

.byte [expression] [, expression] ...

.short [expression] [, expression] ...

.long [expression] [, expression] ...

.quad [expression] [, expression] ...

These directives reserve storage locations in the current section and initialize them with specified
values. Each directive takes zero or more comma-separated absolute expressions and generates a
sequence of bytes for each expression. The expressions are truncated to the size generated by the
directive:

 ■ .byte generates 1 byte per expression.

 ■ .short generates 2 bytes per expression.

 ■ .long generates 4 bytes per expression.

 ■ .quad generates 8 bytes per expression.

EXAMPLE

.byte 74,0112,0x4A,0x4a,'J | the same byte

.short 64206,0175316,0xface | the same short

.long -1234,037777775456,0xfffffb2e | the same long

.quad -1234,01777777777777777775456,0xfffffffffffffb2e | the same quad

Directives for Generating Data 45
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Assembler Directives

Note: The .quad directive doesn’t handle a relocatable expression of the form .quad foo - bar
when the values of foo or bar are more than 32 bits.

.comm

SYNOPSIS

.comm name, size

The .comm directive creates a common symbol named name of size bytes. If the symbol isn’t defined
elsewhere, its type is “common.”

The link editor allocates storage for common symbols that aren’t otherwise defined. Enough space is
left after the symbol to hold the maximum size (in bytes) seen for each symbol in the
(__DATA,__common) section.

The link editor aligns each such symbol (based on its size aligned to the next greater power of two)
to the maximum alignment of the (__DATA,__common) section. For information about how to change
the maximum alignment, see the description of -sectalign in the ld(1) Mac OS X man page.

EXAMPLE

.comm _global_uninitialized,4

.fill

SYNOPSIS

.fill repeat_expression , fill_size , fill_expression

The .fill directive advances the location counter by repeat_expression times fill_size bytes:

 ■ fill_size is in bytes, and must have the value 1, 2, or 4

 ■ repeat_expression must be an absolute expression greater than zero

 ■ fill_expression may be any absolute expression (it gets truncated to the fill size)

EXAMPLE

.fill 69,4,0xfeadface | put out 69 0xfeadface’s

.lcomm

SYNOPSIS

.lcomm name, size [, align]

The .lcomm directive creates a symbol named name of size bytes in the (__DATA,__bss) section. It
contains zeros at execution. The name isn’t declared as global, and hence is unknown outside the
object module.

46 Directives for Generating Data
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Assembler Directives

The optional align expression, if specified, causes the location counter to be rounded up to an align
power-of-two boundary before assigning the location counter to the value of name.

EXAMPLE

.lcomm abyte,1 | or: .lcomm abyte,1,0

.lcomm padding,7

.lcomm adouble,8 | or: .lcomm adouble,8,3

These are the same as:

.zerofill __DATA,__bss,abyte,1

.lcomm __DATA,__bss,padding,7

.lcomm __DATA,__bss,adouble,8

.single and .double

SYNOPSIS

.single [number] [, number] ...

.double [number] [, number] ...

These directives reserve storage locations in the current section and initialize them with specified
values. Each directive takes zero or more comma-separated decimal floating-point numbers:

 ■ .single takes IEEE single-precision floating point numbers. It reserves 4 bytes for each number
and initializes them to the value of the corresponding number.

 ■ .double takes IEEE double-precision floating point numbers. It reserves 8 bytes for each number
and initializes them to the value of the corresponding number.

EXAMPLE

.single 3.33333333333333310000e-01

.double 0.00000000000000000000e+00

.single +Infinity

.double -Infinity

.single NaN

.space

SYNOPSIS

.space num_bytes [, fill_expression]

The .space directive advances the location counter by num_bytes, where num_bytes is an absolute
expression greater than zero. The fill expression, if specified, must be absolute. The space between
the current value of the location counter and the desired value is filled with the low-order byte of the
fill expression (or with zeros, if fill_expression isn’t specified).

EXAMPLE

ten_ones:
 .space 10,1

Directives for Generating Data 47
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Assembler Directives

Directives for Dealing With Symbols

This section describes directives that have an effect on symbols and the symbol table.

.globl

SYNOPSIS

.globl symbol_name

The .globl directive makes symbol_name external. If symbol_name is otherwise defined (by .set or
by appearance as a label), it acts within the assembly exactly as if the .globl statement was not given;
however, the link editor may be used to combine this object module with other modules referring to
this symbol.

EXAMPLE

.globl abs
 .set abs,1

 .globl var
var: .long 2

.indirect_symbol

SYNOPSIS:

.indirect_symbol symbol_name

The .indirect_symbol directive creates an indirect symbol withsymbol_name and associates the
current location with the indirect symbol. An indirect symbol must be defined immediately before
each item in a symbol_stub, lazy_symbol_pointers, and non_lazy_symbol_pointers section.
The static and dynamic linkers usesymbol_name to identify the symbol associated with the item
following the directive.

.reference

SYNOPSIS

.reference symbol_name

The .reference directive causes symbol_name to be an undefined symbol present in the output file’s
symbol table. This is useful in referencing a symbol without generating any bytes to do it (used, for
example, by the Objective-C runtime system to reference superclass objects).

EXAMPLE

.reference .objc_class_name_Object

48 Directives for Dealing With Symbols
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Assembler Directives

.weak_reference

SYNOPSIS

.weak_reference symbol_name

The .weak_reference directive causes symbol_name to be a weak undefined symbol present in the
output file’s symbol table. This is used by the compiler when referencing a symbol with the
weak_import attribute.

EXAMPLE

.weak_reference .objc_class_name_Object

.lazy_reference

SYNOPSIS

.lazy_reference symbol_name

The .lazy_reference directive causes symbol_name to be a lazy undefined symbol present in the
output file’s symbol table. This is useful when referencing a symbol without generating any bytes to
do it (used, for example, by the Objective-C runtime system with the dynamic linker to reference
superclass objects but allow the runtime to bind them on first use).

EXAMPLE

.lazy_reference .objc_class_name_Object

.weak_definition

SYNOPSIS

.weak_definition symbol_name

The .weak_definition directive causes symbol_name to be a weak definition. symbol_name can be
defined only in a coalesced section. This is used by the C++ compiler to support template instantiation.
The compiler uses a coalesced section with the .weak_definitiondirective for implicitly instantiated
templates. And it uses a regular section (.text, .data, a so on) for an explicit template instantiation.

.private_extern

SYNOPSIS:

.private_extern symbol_name

Directives for Dealing With Symbols 49
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Assembler Directives

The .private_extern directive makes symbol_name a private external symbol. When the link editor
combines this module with other modules (and the -keep_private_externs command-line option
is not specified) the symbol turns it from global to static. If both .private_extern and .globl
assembler directives are used on the same symbol, the effect is as if only the .private_externdirective
was used.

.stabs, .stabn, and .stabd

SYNOPSIS

.stabs n_name , n_type , n_other , n_desc , n_value

.stabn n_type , n_other , n_desc , n_value

.stabd n_type , n_other , n_desc

These directives are used to place symbols in the symbol table for the symbolic debugger (a “stab”
is a symbol table entry).

 ■ .stabs specifies all the fields in a symbol table entry. n_name is the name of a symbol; if the
symbol name is null, the .stabn directive may be used instead.

 ■ .stabn is similar to .stabs, except that it uses a NULL ("") name.

 ■ .stabd is similar to .stabn, except that it uses the value of the location counter (.) as the n_value
field.

Note: The n_other field of a .stabs directive is ignored, and the value of the n_sect field (what was
the n_other field) is set based on the symbol used for the n_value parameter.

In each case, the n_type field is assumed to contain a 4.3BSD-like value for the N_TYPE bits (defined
in mach-o/stab.h). For .stabs and .stabn, the n_sect field of the Mach-O file’s nlist is set to the
section number of the symbol for the specified n_value parameter. For .stabd, the n_sect field is set
to the current section number for the location counter. The nlist structure is defined in
mach-o/nlist.h.

EXAMPLE

.stabs "hello.c",100,0,0,Ltext

.stabn 192,0,0,LBB2

.stabd 68,0,15

.desc

SYNOPSIS

.desc symbol_name , absolute_expression

The .desc directive sets the n_desc field of the specified symbol to absolute_expression.

EXAMPLE

.desc _environ, 0x10 ; set the REFERENCED_DYNAMICALLY bit

50 Directives for Dealing With Symbols
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Assembler Directives

.set

SYNOPSIS

.set symbol_name , absolute_expression

The .set directive creates the symbol symbol_name and sets its value to absolute_expression. This is the
same as using symbol_name=absolute_expression.

EXAMPLE

.set one,1
two = 2

.lsym

SYNOPSIS

.lsym symbol_name , expression

A unique and otherwise unreferenceable symbol of the symbol_name, expression pair is created in the
symbol table. The symbol created is a static symbol with a type of absolute (N_ABS). Some Fortran 77
compilers use this mechanism to communicate with the debugger.

Directives for Dead-Code Stripping

Dead-code stripping is the process by which the static link editor removes unused code and data
blocks from executable files. This process helps reduce the overall size of executables, which in turn
improves performance by reducing the memory footprint of the executable. It also allows programs
to link successfully in the situation where unused code refers to an undefined symbol, something
that would normally result in a link error. For more information on dead-code stripping, see "Linking"
in Xcode 2.2 User Guide.

The following sections describe the dead-code stripping directives.

.subsections_via_symbols

SYNOPSIS

.subsections_via_symbols

The .subsections_via_symbols directive tells the static link editor that the sections of the object
file can be divided into individual blocks. These blocks are then stripped if they are not used by other
code. This directive applies to all section declarations in the assembly file and should be placed outside
any section declarations, as shown here:

.subsections_via_symbols

; Section declarations...

Directives for Dead-Code Stripping 51
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Assembler Directives

When using this directive, ensure that each symbol in the section is at the beginning of a block of
code. Implicit dependencies between blocks of code may result in the removal of needed code from
the executable. For example, the following section contains three symbols, but execution of the code
at _plus_three ends at the blr statement at the bottom of the code block:

.text
 .globl _plus_three
 _plus_three:
 addi r3, r3, 1
 .globl _plus_two
 _plus_two:
 addi r3, r3, 1
 .globl _plus_one
 _plus_one:
 addi r3, r3, 1
 blr

If you use the .subsections_via_symbols directive on this code and _plus_two and _plus_three
are not called by any other code, the static link editor would not add _plus_two and _plus_one to
the executable. In that case, _plus_three would not return the correct value because part of its
implementation would be missing. In addition, if _plus_one is dead-stripped, the program may crash
when _plus_three is executed, as it would continue executing into the following block.

.no_dead_strip

SYNOPSIS

.no_dead_strip symbol_name

The .no_dead_strip directive tells the assembler that the symbol specified by symbol_name must
not be dead-stripped. For example, the following code prevents _my_version_string from being
dead-stripped:

.no_dead_strip _my_version_string

.cstring
_my_version_string:
.ascii "Version 1.1"

Miscellaneous Directives

This section describes additional directives that don’t fit into any of the previous sections.

.abort

SYNOPSIS

.abort ["abort_string"]

52 Miscellaneous Directives
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Assembler Directives

The .abort directive causes the assembler to ignore further input and quit processing. No files are
created. The directive could be used, for example, in a pipe-interconnected version of a compiler—the
first major syntax error would cause the compiler to issue this directive, saving unnecessary work in
assembling code that would have to be discarded anyway.

The optional abort_string is printed as part of the error message when the .abort directive is
encountered.

EXAMPLE

#ifndef VAR
 .abort "You must define VAR to assemble this file."
#endif

.abs

SYNOPSIS

.abs symbol_name , expression

This directive sets the value of symbol_name to 1 if expression is an absolute expression; otherwise, it
sets the value to zero.

EXAMPLE

.macro var

.abs is_abs,$0

.if is_abs==1

.abort "must be absolute"

.endif

.endmacro

.dump and .load

SYNOPSIS

.dump filename

.load filename

These directives let you dump and load the absolute symbols and macro definitions for faster loading
and faster assembly.

These work like this:

.include "big_file_1"

.include "big_file_2"

.include "big_file_3"

...

.include "big_file_N"

.dump "symbols.dump"

The .dump directive writes out all the N_ABS symbols and macros. You can later use the .load
directive to load all the N_ABS symbols and macros faster than you could with .include:

Miscellaneous Directives 53
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Assembler Directives

.load "symbols.dump"

One useful side effect of loading symbols this way is that they aren’t written out to the object file.

.file and .line

SYNOPSIS

.file file_name

.line line_number

The .file directive causes the assembler to report error messages as if it were processing the file
file_name.

The .line directive causes the assembler to report error messages as if it were processing the line
line_number. The next line after the .line directive is assumed to be line_number.

The assembler turns C preprocessor comments of the form:

line_number file_name level

into:

.line line_number; .file file_name

EXAMPLE

.line 6
nop | this is line 6

.if, .elseif, .else, and .endif

SYNOPSIS

.if expression

.elseif expression

.else

.endif

These directives are used to delimit blocks of code that are to be assembled conditionally, depending
on the value of an expression. A block of conditional code may be nested within another block of
conditional code. expression must be an absolute expression.

For each .if directive:

 ■ there must be a matching .endif

 ■ there may be as many intervening .elseif’s as desired

 ■ there may be no more than one intervening .else before the tailing .endif

Labels or multiple statements must not be placed on the same line as any of these directives; otherwise,
statements including these directives are not recognized and produce errors or incorrect conditional
assembly.

54 Miscellaneous Directives
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Assembler Directives

EXAMPLE

.if a==1

.long 1

.elseif a==2

.long 2

.else

.long 3

.endif

.include

SYNOPSIS

.include "filename"

The .include directive causes the named file to be included at the current point in the assembly. The
-Idir option to the assembler specifies alternative paths to be used in searching for the file if it isn’t
found in the current directory.

EXAMPLE

.include "macros.h"

.machine

SYNOPSIS

.machine arch_type

The .machine directive specifies the target architecture of the assembly file. arch_type can be any
architecture type you can specify in the -arch option of the assembler driver. See “Assembler
Options” (page 11) for more information.

.macro, .endmacro, .macros_on, and .macros_off

SYNOPSIS

.macro

.endmacro

.macros_on

.macros_off

These directives allow you to define simple macros (once a macro is defined, however, you can’t
redefine it). For example:

.macro var
instruction_1 $0,$1
instruction_2 $2
 . . .
instruction_N
.long $n

Miscellaneous Directives 55
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Assembler Directives

.endmacro

$d (where d is a single decimal digit, 0 through 9) represents each argument—there can be at most
10 arguments. $n is replaced by the actual number of arguments the macro is invoked with.

When you use a macro, arguments are separated by a comma (except inside matching parentheses—for
example, xxx(1,3,4),yyy contains only two arguments). You could use the macro defined above as
follows:

var #0,@sp,4

This would be expanded to:

instruction_1 #0,@sp
instruction_2 4
 . . .
instruction_N
.long 3

The directives .macros_on and .macros_off allow macros to be written that override an instruction
or directive while still using the instruction or directive. For example:

.macro .long

.macros_off

.long $0,$0

.macros_on

.endmacro

If you don’t specify an argument, the macro substitutes nothing (see “.abs” (page 53)).

PowerPC-Specific Directives

The following directives are specific to the PowerPC architecture.

.flag_reg

SYNOPSIS

.flag_reg reg_number

This causes the uses of the reg_number general register to get flagged as warnings. This is intended
for use in macros.

.greg

SYNOPSIS

.greg symbol_name, expression...

56 PowerPC-Specific Directives
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Assembler Directives

This directive sets symbol_name to 1 when expression is a general register or zero otherwise. It is
intended for use in macros.

.no_ppc601

SYNOPSIS

This causes PowerPC 601 instructions to be flagged as errors. This is the same as if the -no_ppc601
option is specified.

.noflag_reg

SYNOPSIS

.noflag_reg reg_number

This turns off the flagging of the uses of the reg_number general register so they don’t get flagged as
warnings. This is intended for use in macros.

Additional Processor-Specific Directives

The following processor-specific directives are synonyms for other standard directives described
earlier in this chapter; although they are listed here for completeness, their use isn’t recommended.
Wherever possible, you should use the standard directive instead.

The following are i386-specific directives:

Standard Directivei386 Directive

.single.ffloat

.double.dfloat

[expression] ¨ 80-bit IEEE extended precision floating-point.tfloat

.short.word

.short.value

(ignored).ident

(ignored).def

(ignored).optim

(ignored).version

(ignored).ln

Additional Processor-Specific Directives 57
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Assembler Directives

58 Additional Processor-Specific Directives
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Assembler Directives

This chapter contains information specific to the PowerPC processor architecture.

PowerPC Registers and Addressing Modes

This section describes the conventions used to specify addressing modes and instruction mnemonics
for the PowerPC series processor architecture. The instructions themselves are detailed in the next
section, “PowerPC Assembler Instructions” (page 67).

Registers

Many instructions accept register names as operands. The available register names are listed in this
section. These are the user registers:

DescriptionRegister

General Purpose Registersr0-r31

Floating-Point Registersf0-f31

Fixed-Point Exception Registerxer

Floating-Point Status and Control Registerfpscr

Condition Registercr

Link Registerlr

Count Registerctr

Vector Registers (AltiVec specific)v0–v31

For instructions that take either 0 or a general purpose register as an operand, r0 may not be used as
either a zero or a register operand; the literal value 0 must be used instead.

These are the special registers

PowerPC Registers and Addressing Modes 59
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and
Assembler Instructions

DescriptionRegisters

Segment Registerssr0-sr15

Operands and Addressing Modes

The PowerPC processor architecture has only one addressing mode for load and store instructions:
register plus displacement. The general form for address operands is:

displacement(register)

If there is no displacement, the parentheses around the register name must still be used. For example,
the first two of the following statements are legal, but the last isn't:

lwz r12,4(r1)
lwz r12,(r1) ; same as displacement of 0
lwz r12,r1 ; INCORRECT

To specify an arbitrary 32-bit address, two instructions must be used, since all instructions are 32 bits
long and can't contain both an opcode and a full address. A pair of instructions used to load or store
data at an address falls into one of a small set of idioms, using the assembler operators lo16(), hi16(),
and ha16() to isolate the required portion of the 32-bit address expression. The idioms themselves
are discussed below

 ■ lo16(expression) evaluates to the low (least significant) 16 bits of expression, with a relocation type
of PPC_RELOC_LO16, PPC_RELOC_LO14, PPC_RELOC_LO16_SECTDIFF, or
PPC_RELOC_LO14_SECTDIFF depending on the instruction and the expression it is used with.

 ■ hi16(expression) evaluates to the high (most significant) 16 bits of expression shifted right 16 bits,
with a relocation type of PPC_RELOC_HI16 or PPC_RELOC_HI16_SECTDIFF depending on the
expression it is used with.

 ■ ha16(expression) evaluates to the high (most significant) 16 bits of expression shifted right 16 bits,
increased by one if bit 15 of expression is set (that is, if the value given by lo16(expression) is
negative). This allows the address to be properly reconstituted when the low 16 bit quantity of
expression is sign-extended by some operators. It has a relocation type of PPC_RELOC_HA16 or
PPC_RELOC_HA16_SECTDIFF depending on the expression it is used with.

In specifying a 32-bit address, the desired result is that the 32-bit quantity be in a register. To do this,
the high and low 16 bits of the address are entered separately with instructions suited to this task.
Generally, the high 16 bits can be entered into a register with the addis (Add Immediate Shifted)
instruction and the hi16() operator. For example, this instruction:

addis r2,0,hi16(expr)

adds the high 16 bits of expr to 0, and enters the result into the high 16 bits of register 2. The instruction
that immediately follows can then combine the low 16 bits with the high 16 bits in the register and
perform whatever other operation it does (if any).

For example, to load the address of the global variable spot into general register 2, the instructions
below would be used. The ori instruction doesn't sign-extend the displacement, so the high 16 bits
of the address needn't be adjusted, and the hi16() assembler operator is used.

60 PowerPC Registers and Addressing Modes
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

addis r2,0,hi16(spot) ; ori doesn't sign-extend
ori r2,r2,lo16(spot)

In loading the data stored at spot the lwz operator is used, which does sign-extend the displacement,
the adjusted high 16 bits must be given, with the ha16() assembler operator:

addis r2,0,ha16(spot) ; lwz sign-extends
lwz r3,lo16(spot)(r2)

lwz treats the sign-extended low 16 bits as a displacement, adding it to the contents of register 2 to
get a 32-bit address, and then loads the word at that address into register 3.

Extended Instruction Mnemonics & Operands

Branch Mnemonics

The PowerPC processor family supports a rich variety of extended mnemonics for its three conditional
branch operators: bc, bclr, and bcctr. Normally, the condition and the nature of the branch are
specified by numeric operands, but with the extended mnemonics, these numeric operands are
determined by the assembler from the mnemonic used.

Conditional branches can alter the contents of the Count Register (ctr), and can take effect based on
the resulting value in the Count Register, and on whether a specified condition is true or false. The
first table below summarizes the extended mnemonics for branches that affect the Count Register,
while the second summarizes additional mnemonics for branches on true and false conditions that
don't affect the Count Register. The effect of the branch is given on the left. The first four columns of
each table are for branches where the Link Register bit in the instruction is clear (not set); the remaining
columns are for branches where the Link Register bit in the instruction is set. Each set of four columns
gives mnemonics for relative and absolute branches, and for branches to the Link Register or the
Count Register.

LR set
LR not
set

Branch Type

bcctrlbclrlbclabclbcctrbclrbcabc

to
CTR

to LRAbs.Rel.
to
CTR

to LRAbs.Rel.

bctrlblrlblablbctrblrbabunconditional

btctrlbtlrlbtlabtlbtctrbtlrbtabtif condition true

bfctrlbflrlbflabflbfctrbflrbfabfif condition false

–bdnzlrlbdnzlabdnzl–bdnzlrbdnzabdnzdecrement CTR, branch if
CTR non-zero

–bdnztlrlbdnztlabdnztl–bdnztlrbdnztabdnztDecrement CTR, branch if
CTR non-zero and
condition true

Extended Instruction Mnemonics & Operands 61
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

LR set
LR not
set

Branch Type

bcctrlbclrlbclabclbcctrbclrbcabc

to
CTR

to LRAbs.Rel.
to
CTR

to LRAbs.Rel.

–bdnzflrlbdnzflabdnzfl–bdnzflrbdnzfabdnzfDecrement CTR, branch if
CTR non-zero and
condition false

–bdzlrlbdzlabdzl–bdzlrbdzabdzDecrement CTR, branch if
CTR zero

–bdztlrlbdztlabdztl–bdztlrbdztabdztDecrement CTR, branch if
CTR zero and condition
true

–bdzflrlbdzflabdzfl–bdzflrbdzfabdzfDecrement CTR, branch if
CTR zero and condition
false

The mnemonics in the table above encode specific values for the BO field of the non-extended operators.
The BO field controls the effect on the Count Register and on what type of condition the branch is to
be taken. The BI field, which controls the specific condition to consider, must still be given, as the
first operand. The value of this operand indicates which field of the Condition Register to use, and
which bit within that field to consider.

The Condition Register has 8 fields, numbered 0 to 7, each of which contains a bit for conditions less
than, greater than, equal, and summary overflow or unordered. The numeric value for field n of the Condition
Register is 4*n, and the numeric values for the conditions are 0, 1, 2, and 3, respectively. The following
symbols may be used instead of numbers:

MeaningValueSymbol

Less than0lt

Greater than1gt

Equal2eq

Summary overflow3so

Unordered (after floating-point comparison)3un

Condition Register field 00cr0

Condition Register field 14cr1

Condition Register field 28cr2

Condition Register field 312cr3

Condition Register field 416cr4

62 Extended Instruction Mnemonics & Operands
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

MeaningValueSymbol

Condition Register field 520cr5

Condition Register field 624cr6

Condition Register field 728cr7

For example, a branch if condition true for the condition greater than in Condition Register field 3 could
be written in any of these ways:

bt cr3+gt,target
bt 12+1,target
bt 13,target

Omitting the symbol for either the Condition Register field or the condition is permitted, as long as
the result of the expression is a number from 0-31:

bt gt,target ; uses field 0
bt cr3,target ; branches on less than in field 3
bt 13,target ; branches on less than in field 3

Another way to specify these conditions is to use the extended mnemonics in the second table, below.
These mnemonics encode the actual condition on which to take a branch. The second and third letters
of the mnemonic indicate that condition:

MeaningCode

Less thanlt

Less than or equalle

Equaleq

Greater than or equalge

Greater thangt

Not less thannl

Not equalne

Not greater thanng

Summary overflowso

Not summary overflowns

Unordered (after floating-point comparison)uo

Not unordered (after floating-point comparison)nu

Some condition codes, such as le, are actually more compact codes for a false result on the opposite
condition in the set of conditions given previously (for example, le is equivalent to if condition false
on condition greater than).

Extended Instruction Mnemonics & Operands 63
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

By default, the extended mnemonics in the table below used Condition Register field 0. An optional
first operand can be given to specify another field, in either numeric form or as a symbol of the form
crn. For example:

bgt target ; branch if cr0 shows "greater than"
bgt cr3,target ; branch if cr3 shows "greater than"

LR setLR not setBranch Type

bcctrlbclrlbclabclbcctrbclrbcabc

to CTRto LRAbs.Rel.to CTRto LRAbs.Rel.

bltctrlbltlrlbltlabltlbltctrbltlrbltabltless than

blectrlblelrlblelablelblectrblelrbleableless than or equal

beqctrlbeqlrlbeqlabeqlbeqctrbeqlrbeqabeqequal

bgectrlbgerlbgelabgelbgectrbgelrbgeabgegreater than or equal

bgtctrlbgtlrlbglabgttlbgtctrbgtlrbgtabgtgreater than

bnlctrlbnllrlbnllabnllbnlctrbnllrbnlabnlnot less than

bnectrlbnelrlbnelabnelbnectrbnelrbneabnenot equal

bngctrlbnglrlbnglabnglbngctrbnglrbngabngnot greater than

bsoctrlbsolrlbsolabsolbsoctrbsolrbsoabsosummary overflow

bnsctrlbnslrlbnslabnslbnsctrbnslrbnsabnsnot summary overflow

bunctrlbunlrlbunlabunlbunctrbunlrbunabununordered

bnuctrlbnulrlbnulabnulbnuctrbnulrbnuabnunot unordered

Branch Prediction

PowerPC processors attempt to determine whether a conditional branch is likely to be taken or not.
By default, they assume the following about conditional branches:

 ■ A conditional branch with a negative displacement (that is, a branch to a lower address) is predicted
to be taken. This type of branch may, for example, lead to the beginning of a loop that's repeated
many times.

 ■ A conditional branch with a non-negative displacement is predicted not to be taken (that is, it
falls through).

 ■ A conditional branch to an address in the Link or Count Registers is predicted not to be taken
(that is, it falls through).

64 Branch Prediction
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

If the assembly language programmer knows the likely outcome of a conditional branch, a suffix can
be added to the mnemonic that indicates which way the branch should be predicted to go: a ‘+’
instructs the processor to predict that the branch will be taken, while a ‘-’ instructs it to predict that
the branch will not be taken. The branch prediction in for the 64-bit PowerPC AS architecture uses a
different encoding for static branch prediction than the classic PowerPC architecture. This is encoded
in the AT bits instead of the Y-bit of the conditional branch. The assembler takes ‘++’ and ‘--’
suffixes to encode branch prediction using the AT bits. The ‘+’ and ‘-’ suffixes encode the branch
prediction using the Y-bit by default. The flag -static_branch_prediction_AT_bits changes this
so that the ‘+’ and ‘-’ suffixes encode the AT bits. Where an operator allows a prediction suffix, a
‘±’ symbol appears after it in the table in “PowerPC Assembler Instructions” (page 67).

Use the jbsr pseudo instruction when you may not be able to reach the target of a branch and link
instruction with a bl instruction. The jbsr instruction uses a sequence of code called a long branch
stub which will always be able to reach the target.

jbsr _foo,L1
 ...
L1: lis r12,hi16(_foo) ; long branch stub
 ori r12,r12,lo16(_foo)
 mtctr r12
 bctr

The jbsr pseudo instruction assembles to a bl instruction targeted at L1. It also generates a
PPC_RELOC_JBSR relocation entry for the symbol _foo. Then when the linker creates a non-relocatable
output file it will change the target of the bl instruction to _foo if the bl instruction's displacement
will reach. Else it will leave the bl instruction targeted at L1.

Trap Mnemonics

Like the branch-on-condition mnemonics above, the trap operator also has extended mnemonics
which encode the numeric TO field as follows:

TO encodingMeaningCode

16Less thanlt

20Less than or equalle

4Equaleq

12Greater than or equalge

8Greater thangt

12Not less thannl

24Not equalne

20Not greater thanng

2Logically less thanllt

Trap Mnemonics 65
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

TO encodingMeaningCode

6Logically less than or equallle

5Logically greater than or equallge

1Logically greater thanlgt

5Logically not less thanlnl

6Logically not greater thanlng

31Unconditional(none)

The condition is indicated from the third letter of the extended mnemonics in the table below:

32-bit-comparison64-bit comparisonTrap Type

twtwitdtdi

RegisterImmediateRegisterImmediate

trap–––unconditional

twlttwltitdlttdltiif less than

twletwleitdletdleiif less than or equal

tweqtweqitdeqtdeqiif equal

twgetwgeitdgetdgeiif greater than or equal

twgttwgtitdgttdgtiif greater than

twnltwnlitdnltdnliif not less than

twnetwneitdnetdneiif not equal

twngtwngitdngtdngiif not greater than

twllttwlltitdllttdlltiif logically less than

twlletwlleitdlletdlleiif logically less than or equal

twlgetwlgeitdlgetdlgeiif logically greater than or equal

twlgttwlgtitdlgttdlgtiif logically greater than

twlnltwlnlitdlnltdlnliif logically not less than

twlngtwlngitdlngtdlngiif logically not greater than

66 Trap Mnemonics
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

PowerPC Assembler Instructions

Note the following points about the information contained in this section:

 ■ Operation Name is the name that appears in the PowerPC manuals, or the effect of the operator
for an extended mnemonic.

 ■ The form of operands is that used in PowerPC Microprocessor Family: The Programming Environments.

 ■ The order of operands is destination <- source.

A

Operation NameOperandsOperator

Absolute (601 specific)RT,RAabs

RT,RAabs.

RT,RAabso

RT,RAabso.

AddRT,RA,RBadd

RT,RA,RBadd.

RT,RA,RBaddo

RT,RA,RBaddo.

Add CarryingRT,RA,RBaddc

RT,RA,RBaddc.

RT,RA,RBaddco

RT,RA,RBaddco.

Add ExtendedRT,RA,RBadde

RT,RA,RBadde.

RT,RA,RBaddeo

RT,RA,RBaddeo.

PowerPC Assembler Instructions 67
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Add ImmediateRT,RA,SIaddi

Add Immediate CarryingRT,RA,SIaddic

Add Immediate Carrying and RecordRT,RA,SIaddic.

Add Immediate ShiftedRT,RA,UIaddis

Add To Minus One ExtendedRT,RAaddme

RT,RAaddme.

RT,RAaddmeo

RT,RAaddmeo.

Add To Zero ExtendedRT,RAaddze

RT,RAaddze.

RT,RAaddzeo

RT,RAaddzeo.

ANDRA,RT,RBand

RA,RT,RBand.

AND with ComplementRA,RT,RBandc

RA,RT,RBandc.

AND ImmediateRA,RT,UIandi.

AND Immediate ShiftedRA,RT,UIandis.

68 PowerPC Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Support Processor AttentionUIattn

B

Operation NameOperandsOperator

Branchtarget_addrb

target_addrba

target_addrbl

target_addrbla

Branch ConditionalBO,BD,target_addrbc±

BO,BD,target_addrbca±

BO,BD,target_addrbcl±

BO,BD,target_addrbcla±

Branch Conditional to Link RegisterBO,BDbclr±

BO,BD, BHbclr

BO,BD, BHbclr±

BO,BDbclrl±

BO,BD,BHbclrl±

Branch Conditional to Count RegisterBO,BDbcctr±

BO,BD, BHbcctr±

BO,BDbcctrl±

BO,BD,BHbcctrl±

Branch unconditionally to CTRbctr

bctrl

BHbctrl

PowerPC Assembler Instructions 69
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Equiv. to bcctr± BO,BDBO,BDbctr±

Equiv. to bcctrl± BO,BDBO,BDbctrl±

Decrement CTR, branch if CTR non-zerotarget_addrbdnz±

target_addrbdnza±

target_addrbdnzl±

target_addrbdnzla±

...to LRbdnzlr±

BHbdnzlr±

bdnzlrl±

BHbdnzlrl±

Decrement CTR, branch if CTR non-zero and condition falseCRF+COND,target_addrbdnzf±

CRF+COND,target_addrbdnzfa±

CRF+COND,target_addrbdnzfl±

CRF+COND,target_addrbdnzfla±

...to LRCRF+CONDbdnzflr±

.CRF+COND, BHbdnzflr±

CRF+CONDbdnzflrl±

CRF+COND, BHbdnzflrl±

Decrement CTR, branch if CTR non-zero and condition trueCRF+COND,target_addrbdnzt±

CRF+COND,target_addrbdnzta±

CRF+COND,target_addrbdnztl±

CRF+COND,target_addrbdnztla±

...to LRCRF+CONDbdnztlr±

CRF+COND,BHbdnztlr±

CRF+CONDbdnztlrl±

70 PowerPC Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

CRF+COND,BHbdnztlrl±

Decrement CTR, branch if CTR zerotarget_addrbdz±

target_addrbdza±

target_addrbdzl±

target_addrbdzla±

Decrement CTR, branch if CTR zero and condition falseCRF+COND,target_addrbdzf±

CRF+COND,target_addrbdzfa±

CRF+COND,target_addrbdzfl±

CRF+COND,target_addrbdzfla±

...to LRCRF+CONDbdzflr±

.CRF+COND,BHbdzflr±

CRF+CONDbdzflrl±

CRF+COND,BHbdzflrl±

bdzlr±

BHbdzlr±

bdzlrl±

BHbdzlrl±

Decrement CTR, branch if CTR zero and condition falseCRF+COND,target_addrbdzt±

CRF+COND,target_addrbdzta±

CRF+COND,target_addrbdztl±

CRF+COND,target_addrbdztla±

...to LRCRF+CONDbdztlr±

CRF+COND,BHbdztlr±

CRF+CONDbdztlrl±

PowerPC Assembler Instructions 71
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

CRF+COND,BHbdztlrl±

Branch if equalCRF,target_addrbeq±

target_addrbeq±

CRF,target_addrbeqa±

target_addrbeqa±

CRF,target_addrbeql±

target_addrbeql±

CRF,target_addrbeqla±

target_addrbeqla±

...to CTRCRFbeqctr±

CRF,BHbeqctr±

beqctr±

CRFbeqctrl±

CRF,BHbeqctrl±

beqctrl±

...to LRCRFbeqlr±

CRF,BHbeqlr±

beqlr±

CRFbeqlrl±

CRF,BHbeqlrl±

beqlrl±

Branch if condition falseCRF+COND,target_addrbf±

CRF+COND,target_addrbfa±

CRF+COND,target_addrbfl±

CRF+COND,target_addrbfla±

...to CTRCRF+CONDbfctr±

72 PowerPC Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

CRF+COND,BHbfctr±

CRF+CONDbfctrl±

CRF+COND,BHbfctrl±

...to LRCRF+CONDbflr±

CRF+COND,BHbflr±

CRF+CONDbflrl±

CRF+COND,BHbflrl±

Branch if greater than or equalCRF,target_addrbge±

target_addrbge±

CRF,target_addrbgea±

target_addrbgea±

CRF,target_addrbgel±

target_addrbgel±

CRF,target_addrbgela±

target_addrbgela±

...to CTRCRFbgectr±

CRF,BHbgectr±

bgectr±

CRFbgectrl±

CRF,BHbgectrl±

bgectrl±

...to LRCRFbgelr±

CRF,BHbgelr±

bgelr±

CRFbgelrl±

CRF,BHbgelrl±

bgelrl±

PowerPC Assembler Instructions 73
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Branch if greater thanCRF,target_addrbgt±

target_addrbgt±

CRF,target_addrbgta±

target_addrbgta±

CRF,target_addrbgtl±

target_addrbgtl±

CRF,target_addrbgtla±

target_addrbgtla±

...to CTRCRFbgtctr±

CRF,BHbgtctr±

bgtctr±

CRFbgtctrl±

CRF,BHbgtctrl±

bgtctrl±

...to LRCRFbgtlr±

CRF,BHbgtlr±

bgtlr±

CRFbgtlrl±

CRF,BHbgtlrl±

bgtlrl±

Branch if less than or equalCRF,target_addrble±

target_addrble±

CRF,target_addrblea±

target_addrblea±

CRF,target_addrblel±

target_addrblel±

CRF,target_addrblela+±

74 PowerPC Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

target_addrblela±

...to CTRCRFblectr±

CRF,BHblectr±

blectr±

CRFblectrl±

CRF,BHblectrl±

blectrl±

...to LRCRFblelr±

CRF,BHblelr±

blelr±

CRFblelrl±

CRF,BHblelrl±

blelrl±

Branch unconditionally to LRblr

BHblr

blrl

BHblrl

Branch if less thanCRF,target_addrblt±

target_addrblt±

CRF,target_addrblta±

target_addrblta±

CRF,target_addrbltl±

target_addrbltl±

CRF,target_addrbltla±

target_addrbltla±

...to CTRCRFbltctr±

PowerPC Assembler Instructions 75
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

CRF,BHbltctr±

bltctr±

CRFbltctrl±

CRF,BHbltctrl±

bltctrl±

...to LRCRFbltlr±

CRF,BHbltlr±

bltlr±

CRFbltlrl±

CRF,BHbltlrl±

bltlrl±

Branch if not equalCRF,target_addrbne±

target_addrbne±

CRF,target_addrbnea±

target_addrbnea±

CRF,target_addrbnel±

target_addrbnel±

CRF,target_addrbnela±

target_addrbnela±

...to CTRCRFbnectr±

CRF,BHbnectr±

bnectr±

CRFbnectrl±

CRF,BHbnectrl±

bnectrl±

...to LRCRFbnelr±

CRF,BHbnelr±

76 PowerPC Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

bnelr±

CRFbnelrl±

CRF,BHbnelrl±

bnelrl±

Branch if not greater thanCRF,target_addrbng±

target_addrbng±

CRF,target_addrbnga±

target_addrbnga±

CRF,target_addrbngl±

target_addrbngl±

CRF,target_addrbngla±

target_addrbngla±

...to CTRCRFbngctr±

CRF,BHbngctr±

bngctr±

CRFbngctrl±

CRF,BHbngctrl±

bngctrl±

...to LRCRFbnglr±

CRF,BHbnglr±

bnglr±

CRFbnglrl±

CRF,BHbnglrl±

bnglrl±

Branch if not less thanCRF,target_addrbnl±

target_addrbnl±

PowerPC Assembler Instructions 77
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

CRF,target_addrbnla±

target_addrbnla±

CRF,target_addrbnll±

target_addrbnll±

CRF,target_addrbnlla±

target_addrbnlla±

...to CTRCRFbnlctr±

CRF,BHbnlctr±

bnlctr±

CRFbnlctrl±

CRF,BHbnlctrl±

bnlctrl±

...to LRCRFbnllr±

CRF,BHbnllr±

bnllr±

CRFbnllrl±

CRF,BHbnllrl±

bnllrl±

Branch if not summary overflowCRF,target_addrbns±

target_addrbns±

CRF,target_addrbnsa±

target_addrbnsa±

CRF,target_addrbnsl±

target_addrbnsl±

CRF,target_addrbnsla±

target_addrbnsla±

...to CTRCRFbnsctr±

78 PowerPC Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

CRF,BHbnsctr±

bnsctr±

CRFbnsctrl±

CRF,BHbnsctrl±

bnsctrl±

...to LRCRFbnslr±

CRF,BHbnslr±

bnslr±

CRFbnslrl±

CRF,BHbnslrl±

bnslrl±

Branch if not unorderedCRF,target_addrbnu±

target_addrbnu±

CRF,target_addrbnua±

target_addrbnua±

CRF,target_addrbnul±

target_addrbnul±

CRF,target_addrbnula±

target_addrbnula±

...to CTRCRFbnuctr±

CRF,BHbnuctr±

bnuctr±

CRFbnuctrl±

CRF,BHbnuctrl±

bnuctrl±

...to LRCRFbnulr±

CRF,BHbnulr±

PowerPC Assembler Instructions 79
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

bnulr±

CRFbnulrl±

CRF,BHbnulrl±

bnulrl±

Branch if summary overflowCRF,target_addrbso±

target_addrbso±

CRF,target_addrbsoa±

target_addrbsoa±

CRF,target_addrbsol±

target_addrbsol±

CRF,target_addrbsola±

target_addrbsola±

...to CTRCRFbsoctr±

CRF,BHbsoctr±

bsoctr±

CRFbsoctrl±

CRF,BHbsoctrl±

bsoctrl±

...to LRCRFbsolr±

CRF,BHbsolr±

bsolr±

CRFbsolrl±

CRF,BHbsolrl±

bsolrl±

Branch if condition trueCRF+COND,target_addrbt±

CRF+COND,target_addrbta±

80 PowerPC Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

CRF+COND,target_addrbtl±

CRF+COND,target_addrbtla±

...to CTRCRF+CONDbtctr±

CRF+COND,BHbtctr±

CRF+CONDbtctrl±

...to LRCRF+CONDbtlr±

CRF+COND,BHbtlr±

CRF+CONDbtlrl±

CRF+COND,BHbtlrl±

Branch if unorderedCRF,target_addrbun±

target_addrbun±

CRF,target_addrbuna±

target_addrbuna±

CRF,target_addrbunl±

target_addrbunl±

CRF,target_addrbunla±

target_addrbunla±

...to CTRCRFbunctr±

CRF,BHbunctr±

bunctr±

CRFbunctrl±

CRF,BHbunctrl±

bunctrl±

...to LRCRFbunlr±

CRF,BHbunlr±

bunlr±

CRFbunlrl±

PowerPC Assembler Instructions 81
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

CRF,BHbunlrl±

bunlrl±

C

Operation NameOperandsOperator

Cache Line Compute Size (601 specific)RD,RAclcs

Macro: rldicl ra,rs,0,nra,rs,nclrldi

Macro: rldicl. ra,rs,0,nra,rs,nclrldi.

Macro: rldic ra,rs,n,b-nra,rs,b,nclrlsldi

Macro: rldic. ra,rs,n,b-nra,rs,b,nclrlsldi.

Macro: rlwinm ra,rs,n,b-n,31-nra,rs,b,nclrlslwi

Macro: rlwinm. ra,rs,n,b-n,31-nra,rs,b,nclrlslwi.

Macro: rlwinm ra,rs,0,n,31ra,rs,nclrlwi

Macro: rlwinm. ra,rs,0,n,31ra,rs,nclrlwi.

Macro: rldicr ra,rs,0,63-nra,rs,nclrrdi

Macro: rldicr. ra,rs,0,63-nra,rs,nclrrdi.

Macro: rlwinm ra,rs,0,0,31-nra,rs,nclrrwi

Macro: rlwinm. ra,rs,0,0,31-nra,rs,nclrrwi.

CompareBF,L,RA,RBcmp

CRF,L,RA,RBcmp

Equiv to cmp BF,0,RA,RBBF,RA,RBcmp

Equiv. to cmp CRF,0,RA,RBCRF,L,RA,RBcmp

Equiv. to cmp 0,1,RA,RBRA,RBcmpd

Equiv. to cmp BF,1,RA,RBBF,RA,RBcmpd

Equiv. to cmp BF,1,RA,RBCRF,RA,RBcmpd

82 PowerPC Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Equiv. to cmp 0,0,RA,RBRA,RBcmpw

Equiv. to cmp BF,0,RA,RBBF,RA,RBcmpw

Equiv. to cmp CRF,0,RA,RBCRF,RA,RBcmpw

Compare ImmediateBF,L,RA,SIcmpi

CRF,L,RA,SIcmpi

Equiv. to cmpi BF,0,RA,SIBF,RA,SIcmpi

Equiv. to cmpi CRF,0,RA,SICRF,RA,SIcmpi

Equiv. to cmpi 0,1,RA,SIRA,SIcmpdi

Equiv. to cmp BF,1,RA,SIBF,RA,SIcmpdi

Equiv. to cmpi CRF,1,RA,SICRF,RA,SIcmpdi

Equiv. to cmpi 0,0,RA,SIRA,SIcmpwi

Equiv. to cmpi BF,0,RA,SIBF,RA,SIcmpwi

Equiv. to cmpi CRF,0,RA,SICRF,RA,SIcmpwi

Compare LogicalBF,L,RA,RBcmpl

CRF,L,RA,RBcmpl

Equiv. to cmpl BF,0,RA,RBBF,RA,RBcmpl

Equiv. to cmpl CRF,0,RA,RBCRF,RA,RBcmpl

Equiv. to cmpl 0,1,RA,RBRA,RBcmpld

Equiv. to cmpl BF,1,RA,RBBF,RA,RBcmpld

Equiv. to cmpl CRF,1,RA,RBCRF,RA,RBcmpld

Equiv. to cmpl 0,0,RA,RBRA,RBcmplw

Equiv. to cmpl BF,0,RA,RBBF,RA,RBcmplw

Equiv. to cmpl CRF,0,RA,RBCRF,RA,RBcmplw

PowerPC Assembler Instructions 83
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Compare Logical ImmediateBF,L,RA,UIcmpli

CRF,L,RA,UIcmpli

Equiv. to cmpli BF,0,RA,UIBF,RA,UIcmpli

Equiv. to cmpli CRF,0,RA,UICRF,RA,UIcmpli

Equiv. to cmpi 0,1,RA,UIRA,UIcmpldi

Equiv. to cmpi BF,1,RA,UIBF,RA,UIcmpldi

Equiv. to cmpi CRF,1,RA,UICRF,RA,UIcmpldi

Equiv. to cmpi BF,0,RA,UIBF,RA,UIcmplwi

Equiv. to cmpi CRF,0,RA,UICRF,RA,UIcmplwi

Equiv. to cmpi CRF,0,RA,UIRA,UIcmplwi

Count Leading Zeros DoublewordRA,RTcntlzd

RA,RTcntlzd.

Count Leading Zeros WordRA,RTcntlzw

RA,RTcntlzw.

Condition Register ANDBT,BA,BBcrand

Condition Register AND with ComplementBT,BA,BBcrandc

Condition Register EquivalentBT,BA,BBcreqv

Condition Register Move (Equiv. to cror BT,BA,BA)BT,BAcrmove

Condition Register NANDBT,BA,BBcrnand

84 PowerPC Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Condition Register NORBT,BA,BBcrnor

Condition Register NOT (Equiv. to crnor BT,BA,BA)BT,BAcrnot

Condition Register ORBT,BA,BBcror

Condition Register OR with ComplementBT,BA,BBcrorc

Condition Register XORBT,BA,BBcrxor

D

Operation NameOperandsOperator

Data Cache Block AllocateRA,RBdcba

Data Cache Block FlushRA,RBdcbf

Data Cache Block InvalidateRA,RBdcbi

Data Cache Block StoreRA,RBdcbst

Data Cache Block TouchRA,RBdcbt

Data Cache Block Touch X-formRA,RB,THdcbt

(same as above)RA,RB,THdcbt128

Data Cache Block Touch LineRA,RBdcbtl

Data Cache Block Touch Line X-formRA,RB,THdcbtl

(same as above)RA,RB,THdcbtl128

PowerPC Assembler Instructions 85
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Data Cache Block Touch for StoreRA,RBdcbtst

Data Cache Block Set to ZeroRA,RBdcbz

Data Cache Block Set to Zero LineRA,RBdcbzl

(same as above)RA,RBdcbzl128

Divide (601 specific)RT,RA,RBdiv

RT,RA,RBdiv.

RT,RA,RBdivo

RT,RA,RBdivo.

Divide DoublewordRT,RA,RBdivd

RT,RA,RBdivd.

RT,RA,RBdivdo

RT,RA,RBdivdo.

Divide Doubleword UnsignedRT,RA,RBdivdu

RT,RA,RBdivdu.

RT,RA,RBdivduo

RT,RA,RBdivduo.

Divide Short (601 specific)RT,RA,RBdivs

RT,RA,RBdivs.

RT,RA,RBdivso

RT,RA,RBdivso.

Divide WordRT,RA,RBdivw

86 PowerPC Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

RT,RA,RBdivw.

RT,RA,RBdivwo

RT,RA,RBdivwo.

Divide Word UnsignedRT,RA,RBdivwu

RT,RA,RBdivwu.

RT,RA,RBdivwuo

RT,RA,RBdivwuo.

Difference or Zero (601 specific)RT,RA,RBdoz

RT,RA,RBdoz.

RT,RA,RBdozo

RT,RA,RBdozo.

Difference or Zero Immediate (601 specific)RT,RA,SIdozi

Data Stream Stop (AltiVec specific)tagdss

Data Stream Stop All (AltiVec specific)dssall

Data Stream Touch (AltiVec specific)RA,RB,tagdst

Data Stream Touch for Store (AltiVec specific)RA,RB,tagdstst

Data Stream Touch for Store Transient (AltiVec specific)RA,RB,tagdststt

Data Stream Touch Transient (AltiVec specific)RA,RB,tagdstt

E

Operation NameOperandsOperator

External Control In Word IndexedRT,RA,RBeciwx

PowerPC Assembler Instructions 87
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

External Control Out Word IndexedRT,RA,RBecowx

Enforce In-order Execution of I/Oeieio

EquivalentRA,RT,RBeqv

RA,RT,RBeqv.

Macro: rldicr ra,rs,b,n-1ra,rs,n,bextldi

Macro: rldicr. ra,rs,b,n-1ra,rs,n,bextldi.

Macro: rlwinm ra,rs,b,0,n-1ra,rs,n,bextlwi

Macro: rlwinm. ra,rs,b,0,n-1ra,rs,n,bextlwi.

Macro: rldicl ra,rs,b+n,64-nra,rs,n,bextrdi

Macro: rldicl. ra,rs,b+n,64-nra,rs,n,bextrdi.

Macro: rlwinm ra,rs,b+n,32-n,31ra,rs,n,bextrwi

Macro: rlwinm. ra,rs,b+n,32-n,31ra,rs,n,bextrwi.

Extend Sign ByteRA,RTextsb

RA,RTextsb.

Extend Sign HalfwordRA,RTextsh

RA,RTextsh.

Extend Sign WordRA,RTextsw

RA,RTextsw.

88 PowerPC Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

F

Operation NameOperandsOperator

Floating Absolute ValueFRT, FRBfabs

FRT, FRBfabs.

Floating AddFRT,FRA,FRBfadd

FRT,FRA,FRBfadd.

FRT,FRA,FRBfadds

FRT,FRA,FRBfadds.

Floating Convert From Integer DoublewordFRT,FRBfcfid

FRT,FRBfcfid.

Floating Compare OrderedBF,FRA,FRBfcmpo

CBF,FRA,FRBfcmpo

Floating Compare UnorderedBF,FRA,FRBfcmpu

CBF,FRA,FRBfcmpu

Floating Convert to Integer DoublewordFRT,FRBfctid

FRT,FRBfctid.

Floating Convert to Integer Doubleword with Round toward ZeroFRT,FRBfctidz

FRT,FRBfctidz.

Floating Convert to Integer WordFRT,FRBfctiw

FRT,FRBfctiw.

PowerPC Assembler Instructions 89
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Floating Convert to Integer Word with Round toward ZeroFRT,FRBfctiwz

FRT,FRBfctiwz.

Floating DivideFRT,FRA,FRBfdiv

FRT,FRA,FRBfdiv.

FRT,FRA,FRBfdivs

FRT,FRA,FRBfdivs.

Floating Multiply-Add [Single]FRT,FRA,FRC,FRBfmadd

FRT,FRA,FRC,FRBfmadd.

FRT,FRA,FRC,FRBfmadds

FRT,FRA,FRC,FRBfmadds.

Floating Move RegisterFRT,FRBfmr

FRT,FRBfmr.

Floating Multiply-SubtractFRT,FRA,FRC,FRBfmsub

[Single]FRT,FRA,FRC,FRBfmsub.

FRT,FRA,FRC,FRBfmsubs

FRT,FRA,FRC,FRBfmsubs.

Floating MultiplyFRT,FRA,FRCfmul

FRT,FRA,FRCfmul.

FRT,FRA,FRCfmuls

FRT,FRA,FRCfmuls.

Floating Negative Absolute ValueFRT,FRBfnabs

FRT,FRBfnabs.

90 PowerPC Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Floating NegateFRT,FRBfneg

FRT,FRBfneg.

Floating Negative Multiply-Add [Single]FRT,FRA,FRC,FRBfnmadd

FRT,FRA,FRC,FRBfnmadd.

FRT,FRA,FRC,FRBfnmadds

FRT,FRA,FRC,FRBfnmadds.

Floating Negative Multiply-Subtract [Single]FRT,FRA,FRC,FRBfnmsub

FRT,FRA,FRC,FRBfnmsub.

FRT,FRA,FRC,FRBfnmsubs

FRT,FRA,FRC,FRBfnmsubs.

Floating Reciprocal Estimate SingleFRT,FRBfres

FRT,FRBfres.

Floating Round to Single-PrecisionFRT,FRBfrsp

FRT,FRBfrsp.

Floating Reciprocal Square Root EstimateFRT,FRBfrsqrte

FRT,FRBfrsqrte.

Floating SelectFRT,FRA,FRC,FRBfsel

FRT,FRA,FRC,FRBfsel.

Floating Square Root (Double-Precision)FRT,FRBfsqrt

FRT,FRBfsqrt.

PowerPC Assembler Instructions 91
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Floating Square Root SingleFRT,FRBfsqrts

FRT,FRBfsqrts.

Floating SubtractFRT,FRA,FRBfsub

FRT,FRA,FRBfsub.

FRT,FRA,FRBfsubs

FRT,FRA,FRBfsubs.

I

Operation NameOperandsOperator

Instruction Cache Block InvalidateRA,RBicbi

Macro: rlwimi ra,rs,32-b,b,(b+n)-1ra,rs,n,binslwi

Macro: rlwimi. ra,rs,32-b,b,(b+n)-1ra,rs,n,binslwi.

Macro: rldimi ra,rs,64-(b+n),bra,rs,n,binsrdi

Macro: rldimi. ra,rs,64-(b+n),bra,rs,n,binsrdi.

Macro: rlwimi ra,rs,32-(b+n),b,(b+n)-1ra,rs,n,binsrwi

Macro: rlwimi. ra,rs,32-(b+n),b,(b+n)-1ra,rs,n,binsrwi.

Instruction Synchronizeisync

J

Operation NameOperandsOperator

Branch and Link (pseudo-instruction, see “Branch
Prediction” (page 64) for more)

Lstub, Lbranch_islandjbsr

Branch (pseudo-instruction, see “Branch Prediction” (page 64)
for more)

Lstub, Lbranch_islandjmp

92 PowerPC Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

L

Operation NameOperandsOperator

Load Address (Equiv to addi RT,RA,D)RT,D(RA)la

Load Byte and ZeroRT,D(RA)lbz

Load Byte and Zero with UpdateRT,D(RA)lbzu

Load Byte and Zero with Update IndexedRT,RA,RBlbzux

Load Byte and Zero IndexedRT,RA,RBlbzx

Load DoublewordRT,DS(RA)ld

Load Doubleword and Reserve IndexedRT,RA,RBldarx

Load Doubleword with UpdateRT,DS(RA)ldu

Load Doubleword with Update IndexedRT,RA,RBldux

Load Doubleword IndexedRT,RA,RBldx

Load Floating-Point DoubleFRT,D(RA)lfd

Load Floating-Point Double with UpdateFRT,D(RA)lfdu

PowerPC Assembler Instructions 93
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Load Floating-Point Double with Update IndexedFRT,RA,RBlfdux

Load Floating-Point Double IndexedFRT,RA,RBlfdx

Load Floating-Point SingleFRT,D(RA)lfs

Load Floating-Point Single with UpdateFRT,D(RA)lfsu

Load Floating-Point Single with Update IndexedFRT,RA,RBlfsux

Load Floating-Point Single IndexedFRT,RA,RBlfsx

Load Halfword AlgebraicRT,D(RA)lha

Load Halfword Algebraic with UpdateRT,D(RA)lhau

Load Halfword Algebraic with Update IndexedRT,RA,RBlhaux

Load Halfword Algebraic IndexedRT,RA,RBlhax

Load Halfword Byte-Reverse IndexedRT,RA,RBlhbrx

Load Halfword and ZeroRT,D(RA)lhz

Load Halfword and Zero with UpdateRT,D(RA)lhzu

Load Halfword and Zero with Update IndexedRT,RA,RBlhzux

94 PowerPC Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Load Halfword and Zero IndexedRT,RA,RBlhzx

Load ImmediateRx,valueli

Rx,valuelis

Load Multiple WordRT,D(RA)lmw

Load String and Compare Byte Indexed (601 specific)RT,RA,RBlscbx

RT,RA,RBlscbx.

Load String Word ImmediateRT,RA,NBlswi

Load String Word IndexedRT,RA,RBlswx

Load Vector Element Byte Indexed (AltiVec specific)VT,RA,RBlvebx

Load Vector Element Halfword Indexed (AltiVec specific)VT,RA,RBlvehx

Load Vector Element Word Indexed (AltiVec specific)VT,RA,RBlvewx

Load Vector for Shift Left (AltiVec specific)VT,RA,RBlvsl

Load Vector for Shift Right (AltiVec specific)VT,RA,RBlvsr

Load Vector Indexed (AltiVec specific)VT,RA,RBlvx

Load Vector Indexed LRU (AltiVec specific)VT,RA,RBlvxl

Load Word AlgebraicRT,DS(RA)lwa

Load Word and Reserve IndexedRT,RA,RBlwarx

PowerPC Assembler Instructions 95
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Load Word Algebraic with Update IndexedRT,RA,RBlwaux

Load Word Algebraic IndexedRT,RA,RBlwax

Load Word Byte-Reverse IndexedRT,RA,RBlwbrx

Light-Weight Sync Operationlwsync

Load Word and ZeroRT,D(RA)lwz

Load Word and Zero with UpdateRT,D(RA)lwzu

Load Word and Zero with Update IndexedRT,RA,RBlwzux

Load Word and Zero IndexedRT,RA,RBlwzx

M

Operation NameOperandsOperator

Mask Generate (601 specific)RA,RS,RBmaskg

RA,RS,RBmaskg.

Mask Insert From Register (601 specific)RA,RS,RBmaskir

RA,RS,RBmaskir.

Move Condition Register FieldCRF,CRFmcrf

BF,BFAmcrf

96 PowerPC Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Move to Condition Register from FPSCRBF,BFAmcrfs

CRF,BFAmcrfs

Move to Condition Register from XERBFmcrxr

CRFmcrxr

Move From Condition RegisterRTmfcr

RT,FXMmfcr

Move From Count RegisterRTmfctr

Move From FPSCRFRTmffs

FRTmffs.

Move From Machine State RegisterRTmfmsr

Move From Special Purpose RegisterRT,SPRmfspr

Fixed-Point Exception Register (equiv. to mfspr 1,Rx)Rxmfxer

Link Register (equiv. to mfspr 8,Rx)Rxmflr

Count Register (equiv. to mfspr 8,Rx)Rxmfctr

Data Storage Interrupt Status Register (macro)Rxmfdsisr

Data Address Register (macro)Rxmfdar

Decrementer (macro)Rxmfdec

Move from External Address (Equiv. to mfspr 282, Rx)Rxmfear

Storage Description Register 1 (macro)Rxmfsdr1

Save/Restore Register 0 (macro)Rxmfsrr0

Save/Restore Register 1 (macro)Rxmfsrr1

Special Purpose Register n (macro)n,Rxmfsprg

PowerPC Assembler Instructions 97
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Address Space Register (macro)Rxmfasr

Move from MQ Register (601 Only) (Equiv to mfspr 0,Rx)Rxmfmq

Real Time Clock Divisor (macro)Rxmfrtcd

Move from Real Time Clock Lower (601 Only) (Equiv. to mfspr 5, Rx)Rxmfrtcl

Move from Real Time Clock Upper (601 Only) (Equiv. to mfspr 4, Rx)Rxmfrtcu

Real Time Clock Increment (macro)Rxmfrtci

Processor Version Register (macro)Rxmfpvr

IBAT Register n, Upper (macro)n,Rxmfibatu

IBAT Register n, Lower (macro)n,Rxmfibatl

DBAT Register n, Upper (macro)n,Rxmfdbatu

DBAT Register n, Lower (macro)n,Rxmfdbatl

Move From Segment RegisterRT,SRmfsr

Move From Segment Register IndirectRT,RBmfsrin

Move from Time BaseRTmftb

RT,TBRmftb

Move from Time Base UpperRTmftbu

Move From Vector Status and Control Register (AltiVec specific)VTmfvscr

Move RegisterRx,Rymr

Rx,Rymr.

Move to Condition Register FieldsFXM,RTmtcrf

98 PowerPC Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Move to FPSCR Bit 0BTmtfsb0

BTmtfsb0.

Move to FPSCR Bit 1BTmtfsb1

BTmtfsb1.

Move to FPSCR FieldsFLM,FRBmtfsf

FLM,FRBmtfsf.

Move to FPSCR Field ImmediateBF,Umtfsfi

BF,Umtfsfi.

Equiv. to mtfsf 0xFF,RxRxmtfs

Equiv. to mtfsf. OxFF, RxRxmtfs.

Move to Machine State RegisterRTmtmsr

RAmtmsrd

RA,Lmtmsrd

Move To Special Purpose RegisterSPR,RTmtspr

Fixed-Point Exception Register (equiv. to mtspr 1,Rx)Rxmtxer

Link Register (equiv. to mtspr 8,Rx)Rxmtlr

Count Register (equiv. to mtspr 8,Rx)Rxmtctr

Data Storage Interrupt Status Register (macro)Rxmtdsisr

Data Address Register (macro)Rxmtdar

Decrementer (macro)Rxmtdec

Move to External Address Register (Equiv. to mtspr 282,Rx)Rxmtear

Storage Description Register 1 (macro)Rxmtsdr1

Save/Restore Register 0 (macro)Rxmtsrr0

PowerPC Assembler Instructions 99
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Save/Restore Register 1 (macro)Rxmtsrr1

Special Purpose Register n (macro)n,Rxmtsprg

Address Space Register (macro)Rxmtasr

Move to MQ Register (601 Only) (Equiv. to mtspr 0,Rx)Rxmtmq

Real Time Clock Divisor (macro)Rxmtrtcd

Move to Real Time Clock Lower (601 Only) (Equiv. to mtspr 21,Rx)Rxmtrtcl

Move to Real Time Clock Upper (601 Only) (Equiv. to mtspr 20,Rx)Rxmtrtcu

Real Time Clock Increment (macro)Rxmtrtci

IBAT Register n, Upper (macro)n,Rxmtibatu

IBAT Register n, Lower (macro)n,Rxmtibatl

DBAT Register n, Upper (macro)n,Rxmtdbatu

DBAT Register n, Lower (macro)n,Rxmtdbatl

Move to Segment RegisterSR,RTmtsr

Move to Segment Register IndirectRT,RBmtsrin

Move to Time Base Upper (Equiv. to mtspr 285,RB)RBmttbu

Move to Time Base Lower (Equiv. to mtspr 284,RB)RBmttrbl

Move To Vector Status and Control Register (AltiVec specific)VBmtvscr

Multiply (601 specific)RT,RA,RBmul

RT,RA,RBmul.

RT,RA,RBmulo

RT,RA,RBmulo.

Multiply High DoublewordRT,RA,RBmulhd

RT,RA,RBmulhd.

100 PowerPC Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Multiply High Doubleword UnsignedRT,RA,RBmulhdu

RT,RA,RBmulhdu.

Multiply High WordRT,RA,RBmulhw

RT,RA,RBmulhw.

Multiply High Word UnsignedRT,RA,RBmulhwu

RT,RA,RBmulhwu.

Multiply Low DoublewordRT,RA,RBmulld

RT,RA,RBmulld.

RT,RA,RBmulldo

RT,RA,RBmulldo.

Multiply LowRT,RA,RBmullw

RT,RA,RBmullw.

RT,RA,RBmullwo

RT,RA,RBmullwo.

Multiply Low ImmediateRT,RA,SImulli

N

Operation NameOperandsOperator

Negative Absolute (601 specific)RT,RAnabs

RT,RAnabs.

RT,RAnabso

RT,RAnabso.

PowerPC Assembler Instructions 101
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

NANDRA,RT,RBnand

RA,RT,RBnand.

NegateRT,RAneg

RT,RAneg.

RT,RAnego

RT,RAnego.

No-opnop

NorRA,RT,RBnor

RA,RT,RBnor.

NotRA,RTnot

RA,RTnot.

O

Operation NameOperandsOperator

ORRA,RT,RBor

RA,RT,RBor.

OR with ComplementRA,RT,RBorc

RA,RT,RBorc.

OR ImmediateRA,RT,UIori

OR Immediate ShiftedRA,RT,UIoris

102 PowerPC Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

P

Operation NameOperandsOperator

Page Table Entry Synchronizeptesync

R

Operation NameOperandsOperator

Return From Interruptrfi

Return From Interrupt Doublewordrfid

Rotate Left Doubleword then Clear LeftRA,RS,RB,mbrldcl

RA,RS,RB,mbrldcl.

Rotate Left Doubleword then Clear RightRA,RS,RB,mbrldcr

RA,RS,RB,mbrldcr.

Rotate Left Doubleword Immediate then ClearRA,RS,sh,mbrldic

RA,RS,sh,mbrldic.

Rotate Left Doubleword Immediate then Clear LeftRA,RS,sh,mbrldicl

RA,RS,sh,mbrldicl.

Rotate Left Doubleword Immediate then ClearRA,RS,sh,mbrldicr

RightRA,RS,sh,mbrldicr.

Rotate Left Doubleword then Mask InsertRA,RS,sh,mbrldimi

RA,RS,sh,mbrldimi.

PowerPC Assembler Instructions 103
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Rotate Left then Mask Insert (601 specific)RA,RS,RB,MB,MErlmi

RA,RS,RB,MB,MErlmi.

Rotate Left then Mask Insert (601 specific)RA,RS,RB,BMrlmi

RA,RS,RB,BMrlmi.

Rotate Left Word Immediate then Mask InsertRA,RS,SH,MB,MErlwimi

RA,RS,SH,MB,MErlwimi.

Rotate Left Word Immediate then Mask InsertRA,RS,SH,BMrlwimi

RA,RS,SH,BMrlwimi.

Rotate Left Word Immediate then AND with MaskRA,RS,SH,MB,MErlwinm

RA,RS,SH,MB,MErlwinm.

Rotate Left Word Immediate then AND with MaskRA,RS,SH,BMrlwinm

RA,RS,SH,BMrlwinm.

Rotate Left Word then AND with MaskRA,RS,RB,MB,MErlwnm

RA,RS,RB,MB,MErlwnm.

Rotate Left Word then AND with MaskRA,RS,SH,BMrlwnm

RA,RS,SH,BMrlwnm.

Macro: rldicl ra,rs,rb,0ra,rs,rbrotld

Macro: rldicl. ra,rs,rb,0ra,rs,rbrotld.

Macro: rldicl ra,rs,n,0ra,rs,nrotldi

104 PowerPC Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Macro: rldicl. ra,rs,n,0ra,rs,nrotldi.

Macro: rlwnm ra,rs,rb,0,31ra,rs,rbrotlw

Macro: rlwnm. ra,rs,rb,0,31ra,rs,rbrotlw.

Macro: rlwinm ra,rs,n,0,31ra,rs,nrotlwi

Macro: rlwinm. ra,rs,n,0,31ra,rs,nrotlwi.

Macro: rldicl ra,rs,64-n,0ra,rs,nrotrdi

Macro: rldicl. ra,rs,64-n,0ra,rs,nrotrdi.

Macro: rlwinm ra,rs,32-n,0,31ra,rs,nrotrwi

Macro: rlwinm. ra,rs,32-n,0,31ra,rs,nrotrwi.

Rotate Right and Insert Bit (601 specific)RA,RS,RBrrib

RA,RS,RBrrib.

S

Operation NameOperandsOperator

System Callsc

Segment Lookaside Buffer Invalidate Allslbia

Segment Lookaside Buffer Invalidate EntryRBslbie

SLB Move From Entry ESIDRS,RBslbmfee

SLB Move From Entry VSIDRS,RBslbmfev

SLB Move To EntryRS,RBslbmte

Shift Left DoublewordRA,RS,RBsld

PowerPC Assembler Instructions 105
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

RA,RS,RBsld.

Macro: rldicr ra,rs,n,63-nra,rs,nsldi

Macro: rldicr. ra,rs,n,63-nra,rs,nsldi.

Macro: rlwinm ra,rs,n,0,31-nra,rs,nslwi

Macro: rlwinm. ra,rs,n,0,31-nra,rs,nslwi.

Shift Left Extended (601 specific)RA,RS,RBsle

RA,RS,RBsle.

Shift Left Extended with MQ (601 specific)RA,RS,RBsleq

RA,RS,RBsleq.

Shift Left Immediate with MQ (601 specific)RA,RS,SHsliq

RA,RS,SHsliq.

Shift Left Long Immediate with MQ (601 specific)RA,RS,SHslliq

RA,RS,SHslliq.

Shift Left Long with MQ (601 specific)RA,RS,RBsllq

RA,RS,RBsllq.

Shift Left with MQ (601 specific)RA,RS,RBslq

RA,RS,RBslq.

Shift Left WordRA,RS,RBslw

RA,RS,RBslw.

106 PowerPC Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Shift Right Algebraic DoublewordRA,RS,RBsrad

RA,RS,RBsrad.

Shift Right Algebraic Doubleword ImmediateRA,RS,shsradi

RA,RS,shsradi.

Shift Right Algebraic Immediate with MQ (601 specific)RA,RS,SHsraiq

RA,RS,SHsraiq.

Shift Right Algebraic with MQ (601 specific)RA,RS,RBsraq

RA,RS,RBsraq.

Shift Right Algebraic WordRA,RS,RBsraw

RA,RS,RBsraw.

Shift Right Algebraic Word ImmediateRA,RS,SHsrawi

RA,RS,SHsrawi.

Shift Right DoublewordRA,RS,RBsrd

RA,RS,RBsrd.

Macro: rldicl ra,rs,64-n,nra,rs,nsrdi

Macro: rldicl. ra,rs,64-n,nra,rs,nsrdi.

Macro: rlwinm ra,rs,32-n,n,31ra,rs,nsrwi

Macro: rlwinm. ra,rs,32-n,n,31ra,rs,nsrwi.

Shift Right Extended (601 specific)RA,RS,RBsre

RA,RS,RBsre.

PowerPC Assembler Instructions 107
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Shift Right Extended Algebraic (601 specific)RA,RS,RBsrea

RA,RS,RBsrea.

Shift Right Extended with MQ (601 specific)RA,RS,RBsreq

RA,RS,RBsreq.

Shift Right Immediate with MQ (601 specific)RA,RS,SHsriq

RA,RS,SHsriq.

Shift Right Long Immediate with MQ (601 specific)RA,RS,SHsrliq

RA,RS,SHsrliq.

Shift Right Long with MQ (601 specific)RA,RS,RBsrlq

RA,RS,RBsrlq.

Shift Right with MQ (601 specific)RA,RS,RBsrq

RA,RS,RBsrq.

Shift Right WordRA,RS,RBsrw

RA,RS,RBsrw.

Store ByteRT,D(RA)stb

Store Byte with UpdateRT,D(RA)stbu

Store Byte with Update IndexedRT,RA,RBstbux

108 PowerPC Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Store Byte IndexedRT,RA,RBstbx

Store DoublewordRT,DS(RA)std

Store Doubleword Conditional IndexedRT,RA,RBstdcx.

Store Doubleword with UpdateRT,DS(RA)stdu

Store Doubleword with Update IndexedRT,RA,RBstdux

Store Doubleword IndexedRT,RA,RBstdx

Store Floating-Point DoubleFRT,D(RA)stfd

Store Floating-Point Double with UpdateFRT,D(RA)stfdu

Store Floating-Point Double with Update IndexedFRT,RA,RBstfdux

Store Floating-Point Double IndexedFRT,RA,RBstfdx

Store Floating-Point as Integer Word IndexedFRT,RA,RBstfiwx

Store Floating-Point SingleFRT,D(RA)stfs

Store Floating-Point Single with UpdateFRT,D(RA)stfsu

Store Floating-Point Single with Update IndexedFRT,RA,RBstfsux

PowerPC Assembler Instructions 109
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Store Floating-Point Single IndexedFRT,RA,RBstfsx

Store HalfwordRT,D(RA)sth

Store Halfword Byte-Reverse IndexedRT,RA,RBsthbrx

Store Halfword with UpdateRT,D(RA)sthu

Store Halfword with Update IndexedRT,RA,RBsthux

Store Halfword IndexedRT,RA,RBsthx

Store Vector Element Byte Indexed (AltiVec specific)VS,RA,RBstvebx

Store Vector Element Halfword Indexed (AltiVec specific)VS,RA,RBstvehx

Store Vector Element Word Indexed (AltiVec specific)VS,RA,RBstvewx

Store Vector Indexed (AltiVec specific)VS,RA,RBstvx

Store Vector Indexed LRU (AltiVec specific)VS,RA,RBstvxl

Store Multiple WordRT,D(RA)stmw

Store String Word ImmediateRT,RA,NBstswi

Store String Word IndexedRT,RA,RBstswx

Store WordRT,D(RA)stw

110 PowerPC Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Store Word Byte-Reverse IndexedRT,RA,RBstwbrx

Store Word Conditional IndexedRT,RA,RBstwcx.

Store Word with UpdateRT,D(RA)stwu

Store Word with Update IndexedRT,RA,RBstwux

Store Word IndexedRT,RA,RBstwx

Equiv. to subf RT,RA,RBRT,RB,RAsub

Equiv. to subf. RT,RA,RBRT,RB,RAsub.

Equiv. to subfo RT,RA,RBRT,RB,RAsubo

Equiv. to subfo. RT,RA,RBRT,RB,RAsubo.

Equiv. to subfc RT,RA,RBRT,RB,RAsubc

Equiv. to subfc. RT,RA,RBRT,RB,RAsubc.

Equiv. to subfco RT,RA,RBRT,RB,RAsubco

Equiv. to subfco. RT,RA,RBRT,RB,RAsubco.

Subtract FromRT,RA,RBsubf

RT,RA,RBsubf.

RT,RA,RBsubfo

RT,RA,RBsubfo.

Subtract From CarryingRT,RA,RBsubfc

RT,RA,RBsubfc.

PowerPC Assembler Instructions 111
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

RT,RA,RBsubfco

RT,RA,RBsubfco.

Subtract From ExtendedRT,RA,RBsubfe

RT,RA,RBsubfe.

RT,RA,RBsubfeo

RT,RA,RBsubfeo.

Subtract From Immediate CarryingRT,RA,SIsubfic

Subtract From Minus One ExtendedRT,RAsubfme

RT,RAsubfme.

RT,RAsubfmeo

RT,RAsubfmeo.

Subtract From Zero ExtendedRT,RAsubfze

RT,RAsubfze.

RT,RAsubfzeo

RT,RAsubfzeo.

Equiv. to addi Rx,Ry,-valueRx,Ry,valuesubi

Equiv. to addic Rx,Ry,-valueRx,Ry,valuesubic

Equiv. to addic. Rx,Ry,-valueRx,Ry,valuesubic.

Equiv. to addis Rx,Ry,-valueRx,Ry,valuesubis

Synchronizesync

Lsync

112 PowerPC Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

T

Operation NameOperandsOperator

Trap DoublewordTO,RA,RBtd

if equalRA,RBtdeq

if not equalRA,RBtdne

if greater thanRA,RBtdgt

if greater than or equalRA,RBtdge

if not greater thanRA,RBtdng

if less thanRA,RBtdlt

if less than or equalRA,RBtdle

if not less thanRA,RBtdnl

if logically greater thanRA,RBtdlgt

if logically greater than or equalRA,RBtdlge

if logically not greater thanRA,RBtdlng

if logically less thanRA,RBtdllt

if logically less than or equalRA,RBtdlle

if logically not less thanRA,RBtdlnl

Trap Doubleword ImmediateTO,RA,SItdi

if equalRA,SItdeqi

if not equalRA,SItdnei

if greater thanRA,SItdgti

if greater than or equalRA,SItdgei

if not greater thanRA,SItdngi

if less thanRA,SItdlti

if less than or equalRA,SItdlei

if not less thanRA,SItdnli

if logically greater thanRA,SItdlgti

PowerPC Assembler Instructions 113
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

if logically greater than or equalRA,SItdlgei

if logically not greater thanRA,SItdlngi

if logically less thanRA,SItdllti

if logically less than or equalRA,SItdllei

if logically not less thanRA,SItdlnli

Translation Lookaside Buffer Invalidate Alltlbia

Translation Lookaside Buffer Invalidate EntryRBtlbie

RB,Ltlbie

Translation Lookaside Buffer Invalidate Entry LocalRBtlbiel

Load Data TLB Entry (603 specific)RBtlbld

Load Instruction TLB Entry (603 specific)RBtlbli

TLB Synchronizetlbsync

Trap Unconditionallytrap

Trap WordTO,RA,RBtw

if equalRA,RBtweq

if not equalRA,RBtwne

if greater thanRA,RBtwgt

if greater than or equalRA,RBtwge

if not greater thanRA,RBtwng

if less thanRA,RBtwlt

if less than or equalRA,RBtwle

if not less thanRA,RBtwnl

114 PowerPC Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

if logically greater thanRA,RBtwlgt

if logically greater than or equalRA,RBtwlge

if logically not greater thanRA,RBtwlng

if logically less thanRA,RBtwllt

if logically less than or equalRA,RBtwlle

if logically not less thanRA,RBtwlnl

Trap Word ImmediateTO,RA,SItwi

if equalRA,RBtweqi

if not equalRA,RBtwnei

if greater thanRA,RBtwgti

if greater than or equalRA,RBtwgei

if not greater thanRA,RBtwngi

if less thanRA,RBtwlti

if less than or equalRA,RBtwlei

if not less thanRA,RBtwnli

if logically greater thanRA,RBtwlgti

if logically greater than or equalRA,RBtwlgei

if logically not greater thanRA,RBtwlngi

if logically less thanRA,RBtwllti

if logically less than or equalRA,RBtwllei

if logically not less thanRA,RBtwlnli

V

Operation NameOperandsOperator

Vector Add Carry-out Unsigned Word (AltiVec specific)VT,VA,VBvaddcuw

Vector Add Float (AltiVec specific)VT,VA,VBvaddfp

PowerPC Assembler Instructions 115
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Operation NameOperandsOperator

Vector Add Signed Byte Saturate (AltiVec specific)VT,VA,VBvaddsbs

Vector Add Signed Halfword Saturate (AltiVec specific)VT,VA,VBvaddshs

Vector Add Signed Word Saturate (AltiVec specific)VT,VA,VBvaddsws

Vector Add Unsigned Byte Modulo (AltiVec specific)VT,VA,VBvaddubm

Vector Add Unsigned Byte Saturate (AltiVec specific)VT,VA,VBvaddubs

Vector Add Unsigned Halfword Modulo (AltiVec specific)VT,VA,VBvadduhm

Vector Add Unsigned Halfword Saturate (AltiVec specific)VT,VA,VBvadduhs

Vector Add Unsigned Word Modulo (AltiVec specific)VT,VA,VBvadduwm

Vector Add Unsigned Word Saturate (AltiVec specific)VT,VA,VBvadduws

Vector Logical AND (AltiVec specific)VT,VA,VBvand

Vector Logical AND with Complement (AltiVec specific)VT,VA,VBvandc

Vector Multiply-Add Float (AltiVec specific)VT,VA,VC,VBvmaddfp

Vector Average Signed Byte (AltiVec specific)VT,VA,VBvavgsb

Vector Average Signed Halfword (AltiVec specific)VT,VA,VBvavgsh

Vector Average Signed Word (AltiVec specific)VT,VA,VBvavgsw

Vector Average Unsigned Byte (AltiVec specific)VT,VA,VBvavgub

Vector Average Unsigned Halfword (AltiVec specific)VT,VA,VBvavguh

Vector Average Unsigned Word (AltiVec specific)VT,VA,VBvavguw

Vector Convert From Signed fiXed-point word (AltiVec specific)VT,VB,UIMvcfsx

116 PowerPC Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Operation NameOperandsOperator

Vector Convert From Unsigned fiXed-point word (AltiVec specific)VT,VB,UIMvcfux

Vector Compare Bounds Float [Record] (AltiVec specific)VT,VA,VBvcmpbfp

VT,VA,VBvcmpbfp.

Vector Compare Equal-To Float [Record] (AltiVec specific)VT,VA,VBvcmpeqfp

VT,VA,VBvcmpeqfp.

Vector Compare Equal-To Unsigned Byte [Record] (AltiVec specific)VT,VA,VBvcmpequb

VT,VA,VBvcmpequb.

Vector Compare Equal-To Unsigned Halfword [Record] (AltiVec
specific)

VT,VA,VBvcmpequh

VT,VA,VBvcmpequh.

Vector Compare Equal-To Unsigned Word [Record] (AltiVec specific)VT,VA,VBvcmpequw

VT,VA,VBvcmpequw.

Vector Compare Greater-Than-or-Equal-To Float [Record] (AltiVec
specific)

VT,VA,VBvcmpgefp

VT,VA,VBvcmpgefp.

Vector Compare Greater-Than Float [Record] (AltiVec specific)VT,VA,VBvcmpgtfp

VT,VA,VBvcmpgtfp.

Vector Compare Greater-Than Signed Byte [Record] (AltiVec specific)VT,VA,VBvcmpgtsb

VT,VA,VBvcmpgtsb.

Vector Compare Greater-Than Signed Halfword [Record] (AltiVec
specific)

VT,VA,VBvcmpgtsh

VT,VA,VBvcmpgtsh.

Vector Compare Greater-Than Signed Word [Record] (AltiVec
specific)

VT,VA,VBvcmpgtsw

VT,VA,VBvcmpgtsw.

PowerPC Assembler Instructions 117
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Operation NameOperandsOperator

Vector Compare Greater-Than Unsigned Byte [Record] (AltiVec
specific)

VT,VA,VBvcmpgtub

VT,VA,VBvcmpgtub.

Vector Compare Greater-Than Unsigned Halfword [Record] (AltiVec
specific)

VT,VA,VBvcmpgtuh

VT,VA,VBvcmpgtuh.

Vector Compare Greater-Than Unsigned Word [Record] (AltiVec
specific)

VT,VA,VBvcmpgtuw

VT,VA,VBvcmpgtuw.

Vector Convert To Signed fiXed-point word Saturate (AltiVec
specific)

VT,VB,UIMvctsxs

Vector Convert To Unsigned fiXed-point word Saturate (AltiVec
specific)

VT,VB,UIMvctuxs

Vector 2 Raised to the Exponent Estimate Float (AltiVec specific)VT,VBvexptefp

Vector Log 2 Estimate Float (AltiVec specific)VT,VBvlogefp

Vector Maximum Float (AltiVec specific)VT,VA,VBvmaxfp

Vector Maximum Signed Byte (AltiVec specific)VT,VA,VBvmaxsb

Vector Maximum Signed Halfword (AltiVec specific)VT,VA,VBvmaxsh

Vector Maximum Signed Word (AltiVec specific)VT,VA,VBvmaxsw

Vector Maximum Unsigned Byte (AltiVec specific)VT,VA,VBvmaxub

Vector Maximum Unsigned Halfword (AltiVec specific)VT,VA,VBvmaxuh

Vector Maximum Unsigned Word (AltiVec specific)VT,VA,VBvmaxuw

Vector Multiply-High and Add Signed Halfword Saturate (AltiVec
specific)

VT,VA,VB,VCvmhaddshs

118 PowerPC Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Operation NameOperandsOperator

Vector Multiply-High Round and Add Signed Halfword Saturate
(AltiVec specific)

VT,VA,VB,VCvmhraddshs

Vector Minimum Float (AltiVec specific)VT,VA,VBvminfp

Vector Minimum Signed Byte (AltiVec specific)VT,VA,VBvminsb

Vector Minimum Signed Halfword (AltiVec specific)VT,VA,VBvminsh

Vector Minimum Signed Word (AltiVec specific)VT,VA,VBvminsw

Vector Minimum Unsigned Byte (AltiVec specific)VT,VA,VBvminub

Vector Minimum Unsigned Halfword (AltiVec specific)VT,VA,VBvminuh

Vector Minimum Unsigned Word (AltiVec specific)VT,VA,VBvminuw

Vector Multiply-Low and Add Unsigned Halfword Modulo (AltiVec
specific)

VT,VA,VB,VCvmladduhm

Vector Move Register (AltiVec specific)VT,VSvmr

Vector Merge High Byte (AltiVec specific)VT,VA,VBvmrghb

Vector Merge High Halfword (AltiVec specific)VT,VA,VBvmrghh

Vector Merge High Word (AltiVec specific)VT,VA,VBvmrghw

Vector Merge Low Byte (AltiVec specific)VT,VA,VBvmrglb

Vector Merge Low Halfword (AltiVec specific)VT,VA,VBvmrglh

Vector Merge Low Word (AltiVec specific)VT,VA,VBvmrglw

Vector Reciprocal Square Root Estimate Float (AltiVec specific)VT,VBvrsqrtefp

Vector Multiply-Sum Mixed-sign Byte Modulo (AltiVec specific)VT,VA,VB,VCvmsummbm

PowerPC Assembler Instructions 119
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Operation NameOperandsOperator

Vector Multiply-Sum Signed Halfword Modulo (AltiVec specific)VT,VA,VB,VCvmsumshm

Vector Multiply-Sum Signed Halfword Saturate (AltiVec specific)VT,VA,VB,VCvmsumshs

Vector Multiply-Sum Unsigned Byte Modulo (AltiVec specific)VT,VA,VB,VCvmsumubm

Vector Multiply-Sum Unsigned Halfword Modulo (AltiVec specific)VT,VA,VB,VCvmsumuhm

Vector Multiply-Sum Unsigned Halfword Saturate (AltiVec specific)VT,VA,VB,VCvmsumuhs

Vector Multiply Even Signed Byte (AltiVec specific)VT,VA,VBvmulesb

Vector Multiply Even Unsigned Byte (AltiVec specific)VT,VA,VBvmuleub

Vector Multiply Even Signed Halfword (AltiVec specific)VT,VA,VBvmulesh

Vector Multiply Even Unsigned Halfword (AltiVec specific)VT,VA,VBvmuleuh

Vector Multiply Odd Signed Byte (AltiVec specific)VT,VA,VBvmulosb

Vector Multiply Odd Unsigned Byte (AltiVec specific)VT,VA,VBvmuloub

Vector Multiply Odd Signed Halfword (AltiVec specific)VT,VA,VBvmulosh

Vector Multiply Odd Unsigned Halfword (AltiVec specific)VT,VA,VBvmulouh

Vector Negative Multiply-Subtract Float (AltiVec specific)VT,VA,VC,VBvnmsubfp

Vector Logical NOR (AltiVec specific)VT,VA,VBvnor

Vector Logical Complement (AltiVec specific)VT,VSvnot

Vector Logical OR (AltiVec specific)VT,VA,VBvor

Vector Permute (AltiVec specific)VT,VA,VB,VCvperm

Vector Pack Pixel32 (AltiVec specific)VT,VA,VBvpkpx

120 PowerPC Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Operation NameOperandsOperator

Vector Pack Signed Halfword Signed Saturate (AltiVec specific)VT,VA,VBvpkshss

Vector Pack Signed Halfword Unsigned Saturate (AltiVec specific)VT,VA,VBvpkshus

Vector Pack Signed Word Signed Saturate (AltiVec specific)VT,VA,VBvpkswss

Vector Pack Signed Word Unsigned Saturate (AltiVec specific)VT,VA,VBvpkswus

Vector Pack Unsigned Halfword Unsigned Modulo (AltiVec specific)VT,VA,VBvpkuhum

Vector Pack Unsigned Halfword Unsigned Saturate (AltiVec specific)VT,VA,VBvpkuhus

Vector Pack Unsigned Word Unsigned Modulo (AltiVec specific)VT,VA,VBvpkuwum

Vector Pack Unsigned Word Unsigned Saturate (AltiVec specific)VT,VA,VBvpkuwus

Vector Reciprocal Estimate Float (AltiVec specific)VT,VBvrefp

Vector Round to Floating-Point Integer toward Minus infinity
(AltiVec specific)

VT,VBvrfim

Vector Round to Floating-Point Integer Nearest (AltiVec specific)VT,VBvrfin

Vector Round to Floating-Point Integer toward Positive infinity
(AltiVec specific)

VT,VBvrfip

Vector Round to Floating-Point Integer toward Zero (AltiVec specific)VT,VBvrfiz

Vector Rotate Left Integer Byte (AltiVec specific)VT,VA,VBvrlb

Vector Rotate Left Integer Halfword (AltiVec specific)VT,VA,VBvrlh

Vector Rotate Left Integer Word (AltiVec specific)VT,VA,VBvrlw

Vector Conditional Select (AltiVec specific)VT,VA,VB,VCvsel

Vector Shift Left (AltiVec specific)VT,VA,VBvsl

PowerPC Assembler Instructions 121
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Operation NameOperandsOperator

Vector Shift Left Integer Byte (AltiVec specific)VT,VA,VBvslb

Vector Shift Left Double by Octet Immediate (AltiVec specific)VT,VA,VB,SHvsldoi

Vector Shift Left Integer Halfword (AltiVec specific)VT,VA,VBvslh

Vector Shift Left by Octet (AltiVec specific)VT,VA,VBvslo

Vector Shift Left Integer Word (AltiVec specific)VT,VA,VBvslw

Vector Splat Byte (AltiVec specific)VT,VB,UIMvspltb

Vector Splat Halfword (AltiVec specific)VT,VB,UIMvsplth

Vector Splat Immediate Signed Byte (AltiVec specific)VT,SIMvspltisb

Vector Splat Immediate Signed Halfword (AltiVec specific)VT,SIMvspltish

Vector Splat Immediate Signed Word (AltiVec specific)VT,SIMvspltisw

Vector Splat Word (AltiVec specific)VT,VB,UIMvspltw

Vector Shift Right (AltiVec specific)VT,VA,VBvsr

Vector Shift Right Algebraic Byte (AltiVec specific)VT,VA,VBvsrab

Vector Shift Right Algebraic Halfword (AltiVec specific)VT,VA,VBvsrah

Vector Shift Right Algebraic Word (AltiVec specific)VT,VA,VBvsraw

Vector Shift Right Byte (AltiVec specific)VT,VA,VBvsrb

Vector Shift Right Halfword (AltiVec specific)VT,VA,VBvsrh

Vector Shift Right by Octet (AltiVec specific)VT,VA,VBvsro

Vector Shift Right Word (AltiVec specific)VT,VA,VBvsrw

122 PowerPC Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Operation NameOperandsOperator

Vector Subtract & write Carry-out Unsigned Word (AltiVec specific)VT,VA,VBvsubcuw

Vector Subtract Float (AltiVec specific)VT,VA,VBvsubfp

Vector Subtract Signed Byte Saturate (AltiVec specific)VT,VA,VBvsubsbs

Vector Subtract Signed Halfword Saturate (AltiVec specific)VT,VA,VBvsubshs

Vector Subtract Signed Word Saturate (AltiVec specific)VT,VA,VBvsubsws

Vector Subtract Unsigned Byte Modulo (AltiVec specific)VT,VA,VBvsububm

Vector Subtract Unsigned Byte Saturate (AltiVec specific)VT,VA,VBvsububs

Vector Subtract Unsigned Halfword Modulo (AltiVec specific)VT,VA,VBvsubuhm

Vector Subtract Unsigned Halfword Saturate (AltiVec specific)VT,VA,VBvsubuhs

Vector Subtract Unsigned Word Modulo (AltiVec specific)VT,VA,VBvsubuwm

Vector Subtract Unsigned Word Saturate (AltiVec specific)VT,VA,VBvsubuws

Vector Sum Across Signed Word Saturate (AltiVec specific)VT,VA,VBvsumsws

Vector Sum Across Partial (1/2) Signed Word Saturate (AltiVec
specific)

VT,VA,VBvsum2sws

Vector Sum Across Partial (1/4) Signed Byte Saturate (AltiVec
specific)

VT,VA,VBvsum4sbs

Vector Sum Across Partial (1/4) Signed Halfword Saturate (AltiVec
specific)

VT,VA,VBvsum4shs

Vector Sum Across Partial (1/4) Unsigned Byte Saturate (AltiVec
specific)

VT,VA,VBvsum4ubs

Vector Unpack High Pixel16 (AltiVec specific)VT,VBvupkhpx

Vector Unpack High Signed Byte (AltiVec specific)VT,VBvupkhsb

PowerPC Assembler Instructions 123
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Operation NameOperandsOperator

Vector Unpack High Signed Halfword (AltiVec specific)VT,VBvupkhsh

Vector Unpack Low Signed Byte (AltiVec specific)VT,VBvupklsb

Vector Unpack Low Pixel16 (AltiVec specific)VT,VBvupklpx

Vector Unpack Low Signed Halfword (AltiVec specific)VT,VBvupklsh

Vector Logical XOR (AltiVec specific)VT,VA,VBvxor

X

Operation NameOperandsOperator

XORRA,RT,RBxor

RA,RT,RBxor.

XOR ImmediateRA,RT,UIxori

XOR Immediate ShiftedRA,RT,UIxoris

124 PowerPC Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

PowerPC Addressing Modes and Assembler Instructions

Important: This is a preliminary section. It has not been updated with the latest revisions to the i386
addressing modes and instructions. While most of the information is technically accurate, the document
is incomplete and is subject to change.You can check http://developer.apple.com/ for information
about updates to this and other developer documents. To receive notification of documentation
updates, you can sign up for a free Apple Developer Connection Online membership and receive the
biweekly ADC News e-mail newsletter. (See http://developer.apple.com/membership/ for more
details about ADC membership.)

This chapter contains information specific to the Intel i386 processor architecture, which includes the
i386, i486, and Pentium processors. The first section, “i386 Registers and Addressing Modes” (page 125),
lists the registers available and describes the addressing modes used by assembler instructions. The
second section, “i386 Assembler Instructions” (page 129), lists each assembler instruction with Mac
OS X assembler syntax.

Note: Don’t confuse the i386 architecture with the i386 processor. Darwin makes use of instructions
specific to the i486 and Pentium processors, and will not run on an i386 processor.

i386 Registers and Addressing Modes

This section describes the conventions used to specify addressing modes and instruction mnemonics
for the Intel i386 processor architecture. The instructions themselves are detailed in the next section,
“i386 Assembler Instructions” (page 129).

Instruction Mnemonics

The instruction mnemonics that the assembler uses are based on the mnemonics described in the
relevant Intel processor manuals.

i386 Registers and Addressing Modes 125
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler
Instructions

http://developer.apple.com/
http://developer.apple.com/membership

Note: The Mac OS X assembler for Intel i386 processors always produces branch instructions that are
long (32 bits) for non-local labels. This allows the link editor to do procedure ordering (seethe
description of the -sectorder option in the ld(1) man page).

Registers

Many instructions accept registers as operands. The available registers are listed in this section. The
Mac OS X assembler for Intel i386 processors always uses names beginning with a percent sign (‘%’)
for registers, so naming conflicts with identifiers aren’t possible; further, all register names are in
lowercase letters.

General Registers

Each of the 32-bit general registers of the i386 architecture are accessible by different names, which
specify parts of that register to be used. For example, the AX register can be accessed as a single byte
(%ah or %al), a 16-bit value (%ax), or a 32-bit value (%eax). The figure below shows the names of
these registers and their relation to the full 32-bit storage for each register:

Figure 6-1 Register Names in the 32-bit i386 architecture

%ah

%dh

%ch

%bh %bl

%cl

%dl

%al

%bx

%cx

%dx

%ax

%ebx

%ecx

%edx

%eax

%bp

%si

%di

%sp %esp

%edi

%esi

%ebp frame base pointer

stack pointer

08|716|1531

accumulator

data

count

base

source index

destination index

16-bitlow-bytehigh-byte 32-bit default use

Floating-Point Registers

Register

%st

%st(0)–%st(7)

126 i386 Registers and Addressing Modes
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

Segment Registers

DescriptionRegister

code segment register%cs

stack segment register%ss

data segment register%ds

data segment register (string operation destination segment)%es

data segment register%fs

data segment register%gs

Other Registers

DescriptionRegister

control registers%cr0–%cr3

debug registers%db0–%db7

test registers%tr3–%tr7

MMX registers%mm0–%mm7

XMM registers%xmm0–%xmm7

Operands and Addressing Modes

The i386 architecture uses four kinds of instruction operands:

 ■ Register

 ■ Immediate

 ■ Direct Memory

 ■ Indirect Memory

Each type of operand corresponds to an addressing mode. Register operands specify that the value
stored in the named register is to be used by the operator. Immediate operands are constant values
specified in assembler code. Direct memory operands are the memory location of labels, or the value
of a named register treated as an address. Indirect memory operands are calculated at run time from
the contents of registers and optional constant values.

Operands and Addressing Modes 127
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

Register Operands

A register operand is given simply as the name of a register. It can be any of the identifiers beginning
with ‘%’ listed above; for example, %eax. When an operator calls for a register operand of a particular
size, the operand is listed as r8, r16, or r32.

Immediate Operands

Immediate operands are specified as numeric values preceded by a dollar sign (‘$’). They are decimal
by default, but can be marked as hexadecimal by beginning the number itself with ‘0x’. Simple
calculations are allowed if grouped in parentheses. Finally, an immediate operand can be given as a
label, in which case its value is the address of that label. Here are some examples:

$100
$0x5fec4
$(10*6) # calculated by the assembler
$begloop

A reference to an undefined label is allowed, but that reference must be resolved at link time.

Direct Memory Operands

Direct memory operands are references to labels in assembler source. They act as static references to
a single location in memory relative to a specific section, and are resolved at link time. Here’s an
example:

 .data
var: .byte 0 # declare a byte-size variable labelled "var"
 .text
 .
 .
 .
 movb %al,var # move the low byte of the AX register into the
 # memory location specified by "var"

By default, direct memory operands use the %ds segment register. This can be overridden by prefixing
the operands with the segment register desired and a colon:

 movb %es:%al,var # move the low byte of the AX register into the
 # memory location in the segment given by %es
 # and "var"

Note that the segment override applies only to the memory operands in an instruction; “var” is
affected, but not %al. The string instructions, which take two memory operands, use the segment
override for both. A less common way of indicating a segment is to prefix the operator itself:

 es/movb %al,%var # same as above

128 Operands and Addressing Modes
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

Indirect Memory Operands

Indirect memory operands are calculated from the contents of registers at run time. An indirect
memory operand can contain a base register, and index register, a scale, and a displacement. The
most general form is:

displacement(base_register,index_register,scale)

displacement is an immediate value. The base and index registers may be any 32-bit general register
names, except that %esp can’t be used as an index register. scale must be 1, 2, 4, or 8; no other values
are allowed. The displacement and scale can be omitted, but at least one register must be specified.
Also, if items from the end are omitted, the preceding commas can also be omitted, but the comma
following an omitted item must remain:

10(%eax,%edx)
(%eax)
12(,%ecx,2)
12(,%ecx)

The value of an indirect memory operand is the memory location given by the contents of the register,
relative to a segment’s base address. The segment register used is %ss when the base register is %ebp
or %esp, and %ds for all other base registers. For example:

movl (%eax),%edx # default segment register here is %ds

The above assembler instruction moves 32 bits from the address given by %eax into the %edx register.
The address %eax is relative to the %ds segment register. A different segment register from the default
can be specified by prefixing the operand with the segment register name and a colon (‘:’):

movl %es:(%eax),%edx

A segment override can also be specified as an operator prefix:

es/movl (%eax),%edx

i386 Assembler Instructions

Note the following points about the information contained in this section:

 ■ Name is the name that appears in the upper left corner of a page in the Intel manuals.

 ■ Operation Name is the name that appears after the operator name in the Intel manuals.
Processor-specific instructions are marked as they occur.

 ■ The form of operands is that used in Intel’s i486 Microprocessor Programmer’s Reference Manual.

 ■ The order of operands is source -> destination, the opposite of the order in Intel’s manuals.

i386 Assembler Instructions 129
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

A

Operation NameOperandOperatorName

ASCII Adjust after Additionaaaaaa

ASCII Adjust AX before Divisionaadaad

ASCII Adjust AX after Divisionaamaam

ASCII Adjust AL after Subtractionaasaas

Add with Carry$imm8,r/m8adcadc

$imm16,r/m16adc

$imm32,r/m32adc

$imm8,r/m16adc

$imm8,r/m32adc

r8,r/m8adc

r16,r/m16adc

r32,r/m32adc

r/m8,r8adc

r/m16,r16adc

r/m32,r32adc

Add$imm8,r/m8addadd

$imm16,r/m16add

$imm32,r/m32add

$imm8,r/m16add

$imm8,r/m32add

130 i386 Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

r8,r/m8add

r16,r/m16add

r32,r/m32add

r/m8,r8add

r/m16,r16add

r/m32,r32add

Logical AND$imm8,r/m8andand

$imm16,r/m16and

$imm32,r/m32and

$imm8,r/m16and

$imm8,r/m32and

r8,r/m8and

r16,r/m16and

r32,r/m32and

r/m8,r8and

r/m16,r16and

r/m32,r32and

Adjust RPL Field of Selectorr16,r/m16arplarpl

B

Operation NameOperandOperatorName

Check Array Index Against Boundsm16&16,r16boundbound

m32&32,r32bound

Bit Scan Forwardr/m16,r16bsfbsf

r/m32,r16bsf

i386 Assembler Instructions 131
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

Bit Scan Reverser/m16,r16bsrbsr

r/m32,r16bsr

Byte Swap (i486-specific)r32bswapbswap

Bit Testr16,r/m16btbt

r32,r/m32bt

$imm8,r/m16bt

$imm8,r/m32bt

Bit Test and Complementr16,r/m16btcbtc

r32,r/m32btc

$imm8,r/m16btc

$imm8,r/m32btc

Bit Test and Resetr16,r/m16btrbtr

r32,r/m32btr

$imm8,r/m16btr

$imm8,r/m32btr

Bit Test and Setr16,r/m16btsbts

r32,r/m32bts

$imm8,r/m16bts

$imm8,r/m32bts

132 i386 Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

C

Operation NameOperandOperatorName

Call Procedurerel16callcall

r/m16call

ptr16:16call

m16:16call

rel32call

r/m32call

$imm16,$imm32lcall

m16lcall

m32lcall

Convert Byte to Wordcbwcbw cwde

Convert Word to Doublewordcwde

Clear Carry Flagclcclc

Clear Direction Flagcldcld

Clear Interrupt Flagclicli

Clear Task-Switched Flag inCR0cltsclts

Complement Carry Flagcmccmc

Compare Two Operands$imm8,r/m8cmpcmp

$imm16,r/m16cmp

i386 Assembler Instructions 133
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

$imm32,r/m32cmp

$imm8,r/m16cmp

$imm8,r/m32cmp

r8,r/m8cmp

r16,r/m16cmp

r32,r/m32cmp

r/m8,r8cmp

r/m16,r16cmp

r/m32,r32cmp

Compare String Operandscmps cmpsb cmpsw cmpsd

m8,m8cmps

m16,m16cmps

m32,m32cmps

cmpsb

cmpsw

cmpsd

(optional forms with segment override)

%seg:0(%esi),%es:0(%edi)cmpsb

%seg:0(%esi),%es:0(%edi)cmpsw

%seg:0(%esi),%es:0(%edi)cmpsd

Compare and Exchange (i486-specific)r8,r/m8cmpxchgcmpxchg

r16,r/m16cmpxchg

r32,r/m32cmpxchg

Compare and Exchange 8 Bytes (Pentium-specific)m32cmpxchg8bcmpxchg8b

134 i386 Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

CPU Identification (Pentium-specific)cpuidcpuid

Convert Word to Doubleword/cwdcwd cdq

Convert Doubleword to Quadwordcdq

D

Operation NameOperandOperatorName

Decimal Adjust AL after Additiondaadaa

Decimal Adjust AL after Subtractiondasdas

Decrement by 1r/m8decdec

r/m16dec

r/m32dec

r16dec

r32dec

Unsigned Divider/m8,%aldivdiv

r/m16,%axdiv

r/m32,%eaxdiv

E

Operation NameOperandOperatorName

Make Stack Frame for Procedure Parameters$imm16,$imm8enterenter

i386 Assembler Instructions 135
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

F

Operation NameOperandOperatorName

Computer 2x–1f2xm1f2xm1

Absolute Valuefabsfabs

Addfadd faddp fiadd

m32realfadd

m64realfadd

ST(i),STfadd

ST,ST(i)fadd

ST,ST(i)faddp

fadd

m32intfiadd

m16intfiadd

Load Binary Coded Decimalm80decfbldfbld

Store Binary Coded Decimal and Popm80decfbstpfbstp

Change Signfchsfchs

Clear Exceptionsfclexfclex fnclex

fnclex

Compare Realfcom fcomp fcompp

m32realfcom

136 i386 Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

m64realfcom

ST(i)fcom

fcom

m32realfcomp

m64realfcomp

ST(i)fcomp

fcomp

fcompp

Cosinefcosfcos

Decrement Stack-Top Pointerfdecstpfdecstp

Dividefdiv fdivp fidiv

m32realfdiv

m64realfdiv

ST(i),STfdiv

ST,ST(i)fdiv

ST,ST(i)fdivp

fdiv

m32intfidiv

m16intfidiv

Reverse Dividefdivr fdivpr fidivr

m32realfdivr

m64realfdivr

ST(i),STfdivr

ST,ST(i)fdivr

i386 Assembler Instructions 137
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

ST,ST(i)fdivrp

fdivr

m32intfidivr

m16intfidivr

Free Floating-Point RegisterST(i)ffreeffree

Compare Integerficom ficomp

m16realficom

m32realficom

m16intficomp

m32intficomp

Load Integerm16intfildsfild

m32intfildl

m64intfildq

Increment Stack-Top Pointerfincstpfincstp

Initialize Floating-Point Unitfinitfinit fninit

fninit

Store Integerm16intfistsfist fistp

m32intfistl

m16intfistps

m32intfistpl

m64intfistpq

138 i386 Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

Load Realm32realfldsfld

m64realfldl

m80realfldt

ST(i)fld

Load Constantfld1 fldl2t fldl2e fldpi fldlg2 gldln2 fldz

fld1

fld2t

fld2e

fldpi

fldlg2

fldln2

fldz

Load Control Wordm2bytefldcwfldcw

Load FPU Environmentm14/28bytefldenvfldenv

Multiplyfmul fmulp fimul

m32realfmul

m64realfmul

ST(i),STfmul

ST(i),STfmul

ST,ST(i)fmulp

fmul

m32intfimul

m16intfimul

i386 Assembler Instructions 139
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

No Operationfnopfnop

Partial Arctangentfpatanfpatan

Partial Remainderfpremfprem

Partial Remainderfprem1fprem1

Partial Tangentfptanfptan

Round to Integerfrndintfrndint

Restore FPU Statem94/108bytefrstorfrstor

Store FPU Statefsave fnsave

m94/108bytefsave

m94/108bytefnsave

Scalefscalefscale

Sinefsinfsin

Sine and Cosinefsincosfsincos

Square Rootfsqrtfsqrt

Store Realm32realfstfst fstp

140 i386 Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

m64realfst

ST(i)fst

m32realfstp

m64realfstp

m80realfstp

ST(i)fstp

Store Control Wordfstcw fnstcw

m2bytefstcw

m2bytefnstcw

Store FPU Environmentfstenv fnstenv

m14/28bytefstenv

m14/28bytefnstenv

Store Status Wordfstsw fnstsw

m2bytefstsw

%axfstsw

m2bytefnstsw

%axfnstsw

Subtractfsub fsubp fisub

m32realfsub

m64realfsub

ST(i),STfsub

ST,ST(i)fsub

ST,ST(i)fsubp

fsub

i386 Assembler Instructions 141
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

m32intfisub

m16intfisub

Reverse Subtractfsubr fsubpr fisubr

m32realfsubr

m64realfsubr

ST(i),STfsubr

ST,ST(i)fsubr

ST,ST(i)fsubpr

fsubr

m32intfisubr

m16intfisubr

Testftstftst

Unordered Compare Realfucom fucomp fucompp

ST(i)fucom

fucom

ST(i)fucomp

fucomp

fucompp

Waitfwaitfwait

Examinefxamfxam

Exchange Register ContentsST(i)fxchfxch

fxch

142 i386 Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

Extract Exponent and Significandfxtractfxtract

Compute y ¥ log2xfyl2xfyl2x

Compute y ¥ log2(x+1)fyl2xp1fyl2xp1

H

Operation NameOperandOperatorName

Halthlthlt

I

Operation NameOperandOperatorName

Signed Divider/m8idividiv

r/m16,%axidiv

r/m32,%eaxidiv

Signed Multiplyr/m8imulimul

r/m16imul

r/m32imul

r/m16,r16imul

r/m32,r32imul

$imm8,r/m16,r16imul

$imm8,r/m32,r32imul

$imm8,r16imul

$imm8,r32imul

$imm16,r/m16,r16imul

$imm32,r/m32,r32imul

i386 Assembler Instructions 143
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

$imm16,r16imul

$imm32,r32imul

Input from Port$imm8,%alinin

$imm8,%axin

$imm8,%eaxin

%dx,%alin

%dx,%axin

%dx,%eaxin

Increment by 1r/m8incinc

r/m16inc

r/m32inc

r16inc

r32inc

Input from Port to Stringins insb insw insd

ins

insb

insw

insd

Call to Interrupt Procedure3intint into

$imm8int

into

Invalidate Cache (i486-specific)invdinvd

144 i386 Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

Invalidate TLB Entry (i486-specific)minvlpginvlpg

Interrupt Returniretiret iretd

iretd

J

Operation NameOperandOperatorName

Jump if Condition is Metjcc

short if aboverel8ja

short if above or equalrel8jae

short if belowrel8jb

short if below or equalrel8jbe

short if carryrel8jc

short if %cx register is 0rel8jcxz

short if %ecx register is 0rel8jecxz

short if equalrel8je

short if 0rel8jz

short if greaterrel8jg

short if greater or equalrel8jge

short if lessrel8jl

short if less or equalrel8jle

short if not aboverel8jna

short if not above or equalrel8jnae

short if not belowrel8jnb

short if not below or equalrel8jnbe

short if not carryrel8jnc

short if not equalrel8jne

short if not greaterrel8jng

i386 Assembler Instructions 145
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

Operation NameOperandOperatorName

short if not greater or equalrel8jnge

short if not lessrel8jnl

short if not less or equalrel8jnle

short if not overflowrel8jno

short if not parityrel8jnp

short if not signrel8jns

short if not 0rel8jnz

short if overflowrel8jo

short if parityrel8jp

short if parity evenrel8jpe

short if parity oddrel8jpo

short if signrel8js

short if zerorel8jz

near if aboverel16/32ja

near if above or equalrel16/32jae

near if belowrel16/32jb

near if below or equalrel16/32jbe

near if carryrel16/32jc

near if equalrel16/32je

near if 0rel16/32jz

near if greaterrel16/32jg

near if greater or equalrel16/32jge

near if lessrel16/32jl

near if less or equalrel16/32jle

near if not aboverel16/32jna

near if not above or equalrel16/32jnae

near if not belowrel16/32jnb

146 i386 Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

Operation NameOperandOperatorName

near if not below or equalrel16/32jnbe

near if not carryrel16/32jnc

near if not equalrel16/32jne

near if not greaterrel16/32jng

near if not greater or lessrel16/32jnge

near if not lessrel16/32jnl

near if not less or equalrel16/32jnle

near if not overflowrel16/32jno

near if not parityrel16/32jnp

near if not signrel16/32jns

near if not 0rel16/32jnz

near if overflowrel16/32jo

near if parityrel16/32jp

near if parity evenrel16/32jpe

near if parity oddrel16/32jpo

near if signrel16/32js

near if 0rel16/32jz

Jumprel8jmpjmp

rel16jmp

r/m16jmp

rel32jmp

r/m32jmp

$imm16,$imm32ljmp

m16ljmp

m32ljmp

i386 Assembler Instructions 147
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

L

Operation NameOperandOperatorName

Load Flags into AH Registerlahflahf

Load Access Rights Byter/m16,r16larlar

r/m32,r32lar

Load Effective Addressm,r16lealea

m,r32lea

High Level Procedure Exitleaveleave

Load Global/Interruptm16&32lgdtlgdt lidt

Descriptor Table Registerm16&32lidt

Load Full Pointerlgs lss lds les lfs

m16:16,r16lgs

m16:32,r32lgs

m16:16,r16lss

m16:32,r32lss

m16:16,r16lds

m16:32,r32lds

m16:16,r16les

m16:32,r32les

m16:16,r16lfs

m16:32,r32lfs

148 i386 Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

Load Local Descriptor Table Registerr/m16lldtlldt

Load Machine Status Wordr/m16lmswlmsw

Assert LOCK# Signal Prefixlocklock

Load String Operandlods lodsb lodsw lodsd

m8lods

m16lods

m32lods

lodsb

lodsw

lodsd

(optional forms with segment override)

%seg:0(%esi),%allodsb

%seg:0(%esi),%allodsw

%seg:0(%esi),%allodsd

Loop Control with CX Counterloop loopcond

rel8loop

rel8loope

rel8loopz

rel8loopne

rel8loopnz

Load Segment Limitr/m16,r16lsllsl

r/m32,r32lsl

i386 Assembler Instructions 149
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

Load Task Registerr/m16ltrltr

M

Operation NameOperandOperatorName

Move Datar8,r/m8movmov

r16,r/m16mov

r32,r/m32mov

r/m8,r8mov

r/m16,r16mov

r/m16,r16mov

Sreg,r/m16mov

r/m16,Sregmov

moffs8,%almov

moffs8,%axmov

moffs8,%eaxmov

%al,moffs8mov

%ax,moffs16mov

%eax,moffs32mov

$imm8,reg8mov

$imm16,reg16mov

$imm32,reg32mov

$imm8,r/m8mov

$imm16,r/m16mov

$imm32,r/m32mov

Move to/from Special Registersr32,%cr0movmov

%cr0/%cr2/%cr3,r32mov

%cr2/%cr3,r32mov

150 i386 Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

%dr0–3,r32mov

%dr6/%dr7,r32mov

r32,%dr0–3mov

r32,%dr6/%dr7mov

%tr4/%tr5/%tr6/%tr7,r32mov

r32,%tr4/%tr5/%tr6/%tr7mov

%tr3,r32mov

r32,%tr3mov

Move Data from String to Stringmovs movsb movsw movsd

m8,m8movs

m16,m16movs

m32,m32movs

movsb

movsw

movsd

(optional forms with segment override)

%seg:0(%esi),%es:0(%edi)movsb

%seg:0(%esi),%es:0(%edi)movsw

%seg:0(%esi),%es:0(%edi)movsd

Move with Sign-Extendr/m8,r16movsxmovsx

r/m8,r32movsx

r/m16,r32movsx

Move with Zero-Extendr/m8,r16movzxmovzx

r/m8,r32movzx

i386 Assembler Instructions 151
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

r/m16,r32movzx

Unsigned Multiplication of AL or AXr/m8,%almulmul

r/m16,%axmul

r/m32,%eaxmul

N

Operation NameOperandOperatorName

Two’s Complement Negationr/m8negneg

r/m16neg

r/m32neg

No Operationnopnop

One’s Complement Negationr/m8notnot

r/m16not

r/m32not

O

Operation NameOperandOperatorName

Logical Inclusive OR$imm8,r/m8oror

$imm16,r/m16or

$imm32,r/m32or

$imm8,r/m16or

$imm8,r/m32or

r8,r/m8or

r16,r/m16or

152 i386 Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

Operation NameOperandOperatorName

r32,r/m32or

r/m8,r8or

r/m16,r16or

r/m32,r32or

Output to Port%al,$imm8outout

%ax,$imm8out

%eax,$imm8out

%al,%dxout

%ax,%dxout

%eax,%dxout

Output String to Portouts outsb outsw outsd

r/m8,%dxouts

r/m16,%dxouts

r/m32,%dxouts

outsb

outsw

outsd

P

Operation NameOperandOperatorName

Pop a Word from the Stackm16poppop

m32pop

r16pop

r32pop

%dspop

i386 Assembler Instructions 153
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

Operation NameOperandOperatorName

%espop

%sspop

%fspop

%gspop

Pop all General Registerspopa popad

popa

popad

Pop Stack into FLAGS orpopfpopf popfd

EFLAGS Registerpopfd

Push Operand onto the Stackm16pushpush

m32push

r16push

r32push

$imm8push

$imm16push

$imm32push

Sregpush

Push all General Registerspusha pushad

pusha

pushad

Push Flags Register onto the Stackpushf pushfd

pushf

154 i386 Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

pushfd

R

Operation NameOperandOperatorName

Rotatercl rcr rol ror

1,r/m8rcl

%cl,r/m8rcl

$imm8,r/m8rcl

1,r/m16rcl

%cl,r/m16rcl

$imm8,r/m16rcl

1,r/m32rcl

%cl,r/m32rcl

$imm8,r/m32rcl

1,r/m8rcr

%cl,r/m8rcr

$imm8,r/m8rcr

1,r/m16rcr

%cl,r/m16rcr

$imm8,r/m16rcr

1,r/m32rcr

%cl,r/m32rcr

$imm8,r/m32rcr

1,r/m8rol

%cl,r/m8rol

$imm8,r/m8rol

1,r/m16rol

%cl,r/m16rol

i386 Assembler Instructions 155
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

Operation NameOperandOperatorName

$imm8,r/m16rol

1,r/m32rol

%cl,r/m32rol

$imm8,r/m32rol

1,r/m8ror

%cl,r/m8ror

$imm8,r/m8ror

1,r/m16ror

%cl,r/m16ror

$imm8,r/m16ror

1,r/m32ror

%cl,r/m32ror

$imm8,r/m32ror

Read from Model-Specific Register (Pentium-specific)rdmsrrdmsr

Read from Time Stamp Counter (Pentium-specific)rdstcrdstc

Repeat Following Stringrep repe repz repne repnz

Operation%dx,rm8rep ins

%dx,rm16rep ins

%dx,rm32rep ins

m8,m8rep movs

m16,m16rep movs

m32,m32rep movs

rm8,%dxrep outs

rm16,%dxrep outs

156 i386 Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

rm32,%dxrep outs

m8rep lods

m16rep lods

m32rep lods

m8rep stos

m16rep stos

m32rep stos

m8,m8repe cmps

m16,m16repe cmps

m32,m32repe cmps

m8repe scas

m16repe scas

m32repe scas

m8,m8repne cmps

m16,m16repne cmps

m32,m32repne cmps

m8repne scas

m16repne scas

m32repne scas

Return from Procedureretret

$imm16ret

Resume from System-Management Mode (Pentium-specific)rsmrsm

S

Operation NameOperandOperatorName

Store AH into Flagssahfsahf

i386 Assembler Instructions 157
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

Shift
Instructions

sal sar shl shr

1,r/m8sal

%cl,r/m8sal

$imm8,r/m8sal

1,r/m16sal

%cl,r/m16sal

$imm8,r/m16sal

1,r/m32sal

%cl,r/m32sal

$imm8,r/m32sal

1,r/m8sar

%cl,r/m8sar

$imm8,r/m8sar

1,r/m16sar

%cl,r/m16sar

$imm8,r/m16sar

1,r/m32sar

%cl,r/m32sar

$imm8,r/m32sar

1,r/m8shl

%cl,r/m8shl

$imm8,r/m8shl

1,r/m16shl

%cl,r/m16shl

$imm8,r/m16shl

1,r/m32shl

%cl,r/m32shl

$imm8,r/m32shl

158 i386 Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

1,r/m8shr

%cl,r/m8shr

$imm8,r/m8shr

1,r/m16shr

%cl,r/m16shr

$imm8,r/m16shr

1,r/m32shr

%cl,r/m32shr

$imm8,r/m32shr

Integer Subtraction with Borrow$imm8,r/m8sbbsbb

$imm16,r/m16sbb

$imm32,r/m32sbb

$imm8,r/m16sbb

$imm8,r/m32sbb

r8,r/m8sbb

r16,r/m16sbb

r32,r/m32sbb

r/m8,r8sbb

r/m16,r16sbb

r/m32,r32sbb

Compare String Datascas scasb scasw scasd

m8scas

m16scas

m32scas

scasb

scasw

i386 Assembler Instructions 159
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

scasd

(optional forms with segment override)

%al,%seg:0(%edi)scasb

%ax,%seg:0(%edi)scasw

%eax,%seg:0(%edi)scasd

Byte Set on Conditionsetcc

abover/m8seta

above or equalr/m8setae

belowr/m8setb

below or equalr/m8setbe

carryr/m8setc

equalr/m8sete

greaterr/m8setg

greater or equalr/m8setge

lessr/m8setl

less or equalr/m8setle

not abover/m8setna

not abover or equalr/m8setnae

not belowr/m8setnb

not below or equalr/m8setnbe

not carryr/m8setnc

not equalr/m8setne

not greaterr/m8setng

not greater or equalr/m8setnge

not lessr/m8setnl

not less or equalr/m8setnle

not overflowr/m8setno

160 i386 Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

not parityr/m8setnp

not signr/m8setns

not zeror/m8setnz

overflowr/m8seto

parityr/m8setp

parity evenr/m8setpe

parity oddr/m8setpo

signr/m8sets

zeror/m8setz

Store Global/Interruptmsgdtsgdt sidt

Descriptor Table Registermsidt

Double Precision Shift Left$imm8,r16,r/m16shldshld

$imm8,r32,r/m32shld

%cl,r16,r/m16shld

%cl,r32,r/m32shld

Double Precision Shift Right$imm8,r16,r/m16shrdshrd

$imm8,r32,r/m32shrd

%cl,r16,r/m16shrd

%cl,r32,r/m32shrd

Store Local Descriptor Table Registerr/m16sldtsldt

Store Machine Status Wordr/m16smswsmsw

Set Carry Flagstcstc

i386 Assembler Instructions 161
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

Set Direction Flagstdstd

Set Interrupt Flagstisti

Store String Datastos stosb stosw stosd

m8stos

m16stos

m32stos

stosb

stosw

stosd

(optional forms with segment override)

%al,%seg:0(%edi)stosb

%ax,%seg:0(%edi)stosw

%eax,%seg:0(%edi)stosd

Store Task Registerr/m16strstr

Integer Subtraction$imm8,r/m8subsub

$imm16,r/m16sub

$imm32,r/m32sub

$imm8,r/m16sub

$imm8,r/m32sub

r8,r/m8sub

r16,r/m16sub

r32,r/m32sub

r/m8,r8sub

r/m16,r16sub

162 i386 Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

r/m32,r32sub

T

Operation NameOperandOperatorName

Logical Compare$imm8,r/m8testtest

$imm16,r/m16test

$imm32,r/m32test

r8,r/m8test

r16,r/m16test

r32,r/m32test

V

Operation NameOperandOperatorName

Verify a Segment for Reading or Writingr/m16verrverr verw

r/m16verw

W

Operation NameOperandOperatorName

Waitwaitwait

Write-Back and Invalidate Cache (i486-specific)wbinvdwbinvd

Write to Model-Specific Register (Pentium-specific)wrmsrwrmsr

X

Operation NameOperandOperatorName

Exchange and Add (i486-specific)r8,r/m8xaddxadd

i386 Assembler Instructions 163
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

Operation NameOperandOperatorName

r16,r/m16xadd

r32,r/m32xadd

Exchange Register/Memoryr16,%axxchgxchg

with Register%ax,r16xchg

%eax,r32xchg

r32,%eaxxchg

r8,r/m8xchg

r/m8,r8xchg

r16,r/m16xchg

r/m16,r16xchg

r32,r/m32xchg

r/m32,r32xchg

Table Look-up Translationm8xlatxlat xlatb

xlatb

Logical Exclusive OR$imm8,r/m8xorxor

$imm16,r/m16xor

$imm32,r/m32xor

$imm8,r/m16xor

$imm8,r/m32xor

r8,r/m8xor

r16,r/m16xor

r32,r/m32xor

r/m8,r8xor

r/m16,r16xor

164 i386 Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

r/m32,r32xor

i386 Assembler Instructions 165
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

166 i386 Assembler Instructions
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

i386 Addressing Modes and Assembler Instructions

If you want to write assembly code that runs both in 32-bit PowerPC and 64-bit PowerPC environments,
you must make sure that 32-bit–specific code runs in 32-bit environments and 64-bit–specific code
runs in 64-bit environments. This appendix introduces the macros included in the Mac OS X v10.4
SDK to facilitate the development of assembly code that runs in both environments.

The mode_independent_asm.h file in /usr/include/architecture/ppcdefines a set of macros that
make it easy to write code that runs in 32-bit PowerPC and 64-bit PowerPC environments. These
macros include both manifest constants and pseudo mnemonics. For instance, the GPR_BYTES constant
is either 4 or 8 (the size of the general-purpose registers). And lg pseudo mnemonic expands to lwz
in a 32-bit environment or ld in a 64-bit environment. The header file documents all the macros in
detail.

For example, the 32-bit code to get a pointer at offset 16 from GPR15 into GPR14 is:

 lwz r14,16(r15)

The 64-bit code is:

 ld r14,16(r15)

One way to support both environments is by using conditional inclusion statements. For example,
the following code uses __ppc64__ to determine whether the program is running in 64-bit mode and
executes the appropriate statement:

#ifdef __ppc64__
 ld r14,16(r15)
#else
 lwz r14,16(r15)
#endif

However, a simpler way is to use the lg pseudo mnemonic, as shown here:

#include <architecture/ppc/mode_independent_asm.h>
 ...
 lg r14,16(r15)

If you write code that invokes functions that may be relocated, you may need to create a lazy symbol
pointer in 32-bit code similar to this:

 .lazy_symbol_pointer
L_foo$lazy_ptr:
 .indirect_symbol _foo

167
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X A

Mode-Independent Macros

 .long dyld_stub_binding_helper

The assembly sequence for is as for 64-bit code is similar to the 32-bit code, but you need to ensure
you allocate an 8-byte space for the symbol, using .quad instead of .long, as shown here:

 .lazy_symbol_pointer
L_foo$lazy_ptr:
 .indirect_symbol _foo
 .quad dyld_stub_binding_helper

Using the g_long mode-independent macro instead of .long or .quad, you can write a streamlined
dual-environment sequence without adding an #ifdef statement. The mode-independent sequence
would look like this:

#include <architecture/ppc/mode_independent_asm.h>
 ...
 .lazy_symbol_pointer
L_foo$lazy_ptr:
 .indirect_symbol _foo
 .g_long dyld_stub_binding_helper

168
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

A P P E N D I X A

Mode-Independent Macros

This table describes the changes to Mac OS X Assembler Guide.

NotesDate

Updated content to reflect additions made to the assembler and the Mac
OS X SDK.

2005-04-29

Added dcbtl and dcbtl128 operators to “PowerPC Assembler
Instructions” (page 67).

Added four-argument form of rlmi, rlwimi, rlwinm , and rlwnm operators.

Added “Mode-Independent Macros” (page 167) to introduce the
mode-independent macros in the Mac OS X v10.4 SDK.

Added information on dead-code stripping and the .machine and .quad
assembler directives.

2004-07-27

Added “Directives for Dead-Code Stripping” (page 51), which documents
.subsections_via_symbols and .no_dead_strip.

Added information onno_dead_strip andlive_support section attributes
to “Attribute Identifiers” (page 36).

Added “.machine” (page 55), which provides details on the .machine
directive.

Added information on .quad directive to “.byte, .short, .long, and
.quad” (page 45) in “Directives for Generating Data” (page 44).

Removed all 68000-related content.

Performed minor formatting and layout changes.

Clarified applicability of .private_extern directive.2004-03-09

Added jbsr and jmp instructions to the PPC Assembler Instructions
section.

2003-11-02

Added introduction and fixed minor organization bugs.2003-09-11

169
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

NotesDate

Updated with relevant information for hardware updates at WWDC.2003-06-16

170
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

Symbols

__DATA segment 41
__OBJC segment 42
__TEXT segment 37

A

assembler directives 31

C

.const assembler directive 37

.constructor assembler directive 37

.cstring assembler directive 37

D

.data assembler directive 41
data

generating 44
.destructor assembler directive 37

F

.fvmlib_init0 assembler directive 37

.fvmlib_init1 assembler directive 37

L

.literal4 assembler directive 37

.literal8 assembler directive 37
location counter 31

advancing 43

M

.mod_init_func assembler directive 41

P

.picsymbol_stub assembler directive 37
pseudo-ops <Italic> See assembler directives

S

.static_data assembler directive 41
symbols 48
.symbol_stub assembler directive 37

T

.text assembler directive 37

171
2005-04-29 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

Index

	Mac OS X Assembler Guide
	Contents
	Figures
	Introduction
	Using the Assembler
	Command Syntax
	Assembler Options
	-o
	--
	-f
	-g
	-v
	-n
	-I
	-L
	-V
	-W
	-dynamic
	-static

	Architecture Options
	-arch
	-force_cpusubtype_ALL
	-arch_multiple

	PowerPC-Specific Options
	-no_ppc601
	-static_branch_prediction_Y_bit
	-static_branch_prediction_AT_bits

	Assembly Language Syntax
	Elements of Assembly Language
	Characters
	Identifiers
	Labels
	Numeric Labels
	The Scope of a Label

	Constants
	Numeric Constants
	Character Constants
	String Constants
	Floating-Point Constants

	Assembly Location Counter

	Expression Syntax
	Operators
	Terms
	Expressions
	Absolute Expressions
	Relocatable Expressions
	External Expressions

	Assembly Language Statements
	Label Field
	Operation Code Field
	Intel i386 Architecture–Specific Caveats

	Operand Field
	Intel 386 Architecture–Specific Caveats

	Comment Field
	Direct Assignment Statements

	Assembler Directives
	Directives for Designating the Current Section
	.section
	.zerofill
	Section Types and Attributes
	Type Identifiers
	regular (S_REGULAR)
	cstring_literals (S_CSTRING_LITERALS)
	4byte_literals (S_4BYTE_LITERALS)
	8byte_literals (S_8BYTE_LITERALS)
	literal_pointers (S_LITERAL_POINTERS)
	symbol_stubs (S_SYMBOL_STUBS)
	lazy_symbol_pointers (S_LAZY_SYMBOL_POINTERS)
	non_lazy_symbol_pointers (S_NON_LAZY_SYMBOL_POINTERS)
	mod_init_funcs (S_MOD_INIT_FUNC_POINTERS)
	mod_term_funcs (S_MOD_TERM_FUNC_POINTERS)
	coalesced (S_COALESCED)

	Attribute Identifiers
	none (0)
	S_ATTR_SOME_INSTRUCTIONS
	no_dead_strip (S_ATTR_NO_DEAD_STRIP)
	no_toc (S_ATTR_NO_TOC)
	live_support (S_ATTR_LIVE_SUPPORT)
	pure_instructions (S_ATTR_PURE_INSTRUCTIONS)
	strip_static_syms (S_ATTR_STRIP_STATIC_SYMS)

	Built-in Directives
	Designating Sections in the __TEXT Segment
	.text
	.const
	.static_const
	.cstring
	.literal4
	.literal8
	.constructor
	.destructor
	.fvmlib_init0
	.fvmlib_init1
	.symbol_stub
	.picsymbol_stub

	Designating Sections in the __DATA Segment
	.data
	.static_data
	.const_data
	.lazy_symbol_ptr
	.non_lazy_symbol_ptr
	.mod_init_func
	.mod_term_func
	.dyld

	Designating Sections in the __OBJC Segment

	Directives for Moving the Location Counter
	.align
	.org

	Directives for Generating Data
	.ascii and .asciz
	.byte, .short, .long, and .quad
	.comm
	.fill
	.lcomm
	.single and .double
	.space

	Directives for Dealing With Symbols
	.globl
	.indirect_symbol
	.reference
	.weak_reference
	.lazy_reference
	.weak_definition
	.private_extern
	.stabs, .stabn, and .stabd
	.desc
	.set
	.lsym

	Directives for Dead-Code Stripping
	.subsections_via_symbols
	.no_dead_strip

	Miscellaneous Directives
	.abort
	.abs
	.dump and .load
	.file and .line
	.if, .elseif, .else, and .endif
	.include
	.machine
	.macro, .endmacro, .macros_on, and .macros_off

	PowerPC-Specific Directives
	.flag_reg
	.greg
	.no_ppc601
	.noflag_reg

	Additional Processor-Specific Directives

	PowerPC Addressing Modes and Assembler Instructions
	PowerPC Registers and Addressing Modes
	Registers
	Operands and Addressing Modes

	Extended Instruction Mnemonics & Operands
	Branch Mnemonics

	Branch Prediction
	Trap Mnemonics
	PowerPC Assembler Instructions
	A
	B
	C
	D
	E
	F
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	V
	X

	i386 Addressing Modes and Assembler Instructions
	i386 Registers and Addressing Modes
	Instruction Mnemonics
	Registers
	General Registers
	Floating-Point Registers
	Segment Registers
	Other Registers

	Operands and Addressing Modes
	Register Operands
	Immediate Operands
	Direct Memory Operands
	Indirect Memory Operands

	i386 Assembler Instructions
	A
	B
	C
	D
	E
	F
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W
	X

	Appendix A: Mode-Independent Macros
	Revision History
	Index
	Symbols
	A
	C
	D
	F
	L
	M
	P
	S
	T

