
Data Structures: cs271
Denison University Jan. 26, 2012
Professor Thomas C. Bressoud Homework Set 2 DRAFT

Homework Set 2 DRAFT

This problem set is due Wednesday February 8
Analysis (in hard copy) by class time; Programming by 11:59PM.
Solutions should be submitted in PDF form using LATEX.
Remember, your goal is to communicate. Full credit will be given only to the correct solution
which is described clearly. Convoluted and obtuse descriptions might receive low marks, even
when they are correct. Also, aim for concise solutions, as it will save you time spent on write-
ups, and also help you conceptualize the key idea of the problem. Demonstration of your
work/reasoning can result in partial credit.

1. Prove Theorem 3.1 on page 48:

Theorem 1 (3.1). For any two functions f(n) and g(n), we have f(n) = Θ(g(n)) if
and only if f(n) = O(g(n)) and f(n) = Ω(g(n)).

2. Show that if d(n) is O(f(n)), and e(n) is O(g(n)), then the product d(n)e(n) is
O(f(n)g(n)).

3. Argue the following using the definitions of O, Ω, and Θ.

(a) 2n+1 = O(2n)

(b) lnn = Θ(log2 n)

(c) nε = Ω(lg n) for any ε > 0

4. Read Section B.5 (in Appendix B of CLRS). Use induction to show that a nonempty
binary tree with n nodes has height at least blg nc.

5. Use induction to show that a complete binary tree with height h contains 2h+1 - 1
nodes.

6. Consider a binary search tree T whose keys are distinct. Prove that if the right subtree
of a node x in T is empty and x has a successor y in T , then y is the lowest ancestor of
x whose left child is also an ancestor of x. (Recall that every node is its own ancestor.)

7. Show that if a node in a binary search tree has two children, then its successor has no
left child and its predecessor has no right child.



2 Homework Set 2 DRAFT

8. Implement a Binary Search Tree of integers. Your binary search tree must support the
following public operations, where T is a typedef for an int, or is a template type
parameter.

typedef int T;

// Binary Tree Node

class BTNode {

public:

BTNode() : key(0), parent(NULL), left(NULL), right(NULL) {}

BTNode(const T & e1, BTNode *p = NULL, BTNode *l = NULL, BTNode *r = NULL) :

key(e1), parent(p), left(l), right(r) {}

T key;

BTNode * parent;

BTNode * left;

BTNode * right;

};

// Binary Search Tree

class BST {

public:

BST() : root(NULL) {} // Constructor

~BST(); // Destructor

void Clear(); // Remove all nodes from BST

void Insert (const T & el); // Insert element el into BST

void Delete (const T & el); // Find and remove node with key el

void DeleteNode (BTNode * & node); // Remove BTNode node from BST

bool Empty() const; // Is BST empty?

BTNode * Search(const T & el) const; // Search for BTNode with key el

T * Minimum() const; // Return pointer to min key

T * Maximum() const; // Return pointer to max key

BTNode * Successor(BTNode *) const; // Given node, find successor

BTNode * Predecessor(BTNode *) const;// Given node, find predecessor

protected:

// Helper functions

void Clear(BTNode * &);

BTNode * Search(BTNode *, const T &) const;

BTNode * Minimum(BTNode *) const;

BTNode * Maximum(BTNode *) const;

private:

BTNode * root;



Homework Set 2 DRAFT 3

9. In teams of two and three, generate test case scripts and accompanying expectation
check files and post them on Piazza for all class members to use in evaluating their
implementations. This means that test cases need to be in place at least 4 hours in
advance of the due date/time of the program itself.

10. A list can be sorted by inserting the elements into a binary search tree and then
extracting them in an in-order traversal.

(a) What is the worst-case running time of this algorithm?

(b) Implement this sorting algorithm using the BST class specified above. Using
a variety of inputs and input lengths, compare this sort to the other sorting
algorithms implemented in HW01.


