
Essentials
of the
Java

Programming Language

Joan Krone
Thomas Bressoud

R. Matthew Kretchmar
Department of Mathematics and Computer Science

Denison University

2

Chapter 1

Introduction

1.1 Preliminaries

1.1.1 Learning a Language

Programming a computer is both a creative activity and a process structured by
rules. Computers areprogrammedor given instruction, through the use of pro-
gramming languages, so to program a computer, one must learna programming
language. The goal of this book is to introduce a programminglanguage called
Java.

Learning a programming language has similarities to learning a natural lan-
guage, such as English or Spanish or Japanese. Natural languages have alexicon,
a syntax, and asemantics. The lexicon is the vocabulary and punctuation. The
rules of syntax dictate how the lexicon can be ordered to formcorrect sentences.
The semantics conveys the meaning when the chosen words are combined in the
chosen syntax of each sentence. The semantics changes, sometimes in subtle ways,
depending on both the words chosen and the sentence syntax.

So too, a programming language has lexical elements, a syntax, and a seman-
tics. The lexical elements are comprised of keywords in the programming lan-
guage, symbols such as arithmetic operators or parenthesisor braces, and words
denoting identifiers by which we can name what is being operated upon. The
syntax specifies precise rules for how the lexical elements are ordered to form cor-
rect language statements and programs. The semantics is themeaning of the con-
structed language statements. In this context, the meaningis operational, telling
the computer “what to do” as the statements are encountered,in a well defined
sequence, in the execution of the program.

Learning programming languages and learning natural languages share other
similarities. First, the typical method for learning a language is a spiral approach.

3

4 CHAPTER 1. INTRODUCTION

We start with a very limited vocabulary, a few simple syntactic constructs and their
semantics. We then build our repertoire, adding vocabulary, syntax, and semantics,
and often returning to previously covered topics. Second, mastering a language
takes practice through active participation. You should practice by repeating each
example and by working out the exercises and problems posed in the book. Finally,
memorizationof example patterns is no substitute for understanding the semantics
associated with each syntactic structure. As the syntax changes, we must under-
stand the corresponding change in the semantics.

1.1.2 The Program and the Computer

Learning a programming language, and particularly learning your first program-
ming language, is intimately tied with learning how a computer works. Under-
standing how a computer works involves understanding how numbers and charac-
ters and aggregate data may be encoded and stored in the memory of the computer,
and how the data stored in memory can be operated upon by the central processing
unit (CPU) executing millions of very simple instructions.

Programming languages such as Java, C, or C++ are known ashigh-levellan-
guages. They allow specification of program instructions ina manner closer to
natural languages, but without the ambiguity and lack of precision. Computers,
on the other hand, are only capable of executing exceedinglyprimitive instructions
in a low-level language known as the computer’smachine language. We bridge
the gap by translating a high-level language into a low-level language through a
program known as acompiler.

1.2 Problem Solving through Programming

Programming is aboutsolving problems. Regardless of the language used, this
activity proceeds through a set of well-defined stages during the development of
the program.

Design In the design stage, a careful problem statement is articulated, indicating
the desired outcomes of the program. The problem statement is then refined
by listing a set of steps designed to accomplish the goal. Theset of steps is
called analgorithm, and may be presented in English or in some other ap-
propriate notation. The design stage does not require the use of a computer.

Edit In the edit stage, a program is created in a text editor and stored in one or
more files on disk. These files are known as the programsource code.

1.2. PROBLEM SOLVING THROUGH PROGRAMMING 5

Compile During the compile stage, the compiler translates the program source
code in the source file(s) into the machine code appropriate for the machine
on which the program will execute.

Execute The execute stage is the time when the compiled program is loaded from
disk into its execution environment and the machine carriesout the instruc-
tions.

By its very nature as a human endeavor, problem solving is rarely completely suc-
cessful on the first attempt. Some or all of the above phases may be revisited as we
refine and iterate toward a correct solution.

The above development description applies to any programming language, not
just Java. It is worthwhile to make some additional observations about program
development specific to Java.

• The source code for a Java program are contained in text files with the
.java extension.

• The Edit, Compile, and Execute stages of program development can some-
times be brought together in the context of a computer program known as an
Integrated Development Environment(IDE). Such IDEs vary in power and
facilities provided to the developer, and many are overkillfor a student’s first
introduction to a programming language. There are two Java IDEs that are
well suited to a new student,Dr. Java[1] andBlue J[2].

• Many common programming subproblems have already been solved and it
is not necessary to build these again. For Java, an extensiveset of libraries
is available and is part of the what is known as theJava Platform. TheJava
Application Programming Interface(API) defines the facilities available for
use from our Java programs.

• Different hardware platforms, such as Intel x86, Mac G4/5, or SGI MIPS,
have different machine languages. For Java to be able to run without mod-
ification on multiple platforms, the Java platform includesa Java Virtual
Machine(JVM). This is a computer program that simulates a machine that is
specific to Java. The machine code for the JVM is calledbytecodeand when
we compile a Java program, the compiler generates the bytecode and places
it in a file with a.class extension.

• During the Execute stage, the class file for our program is loaded into the
JVM, and combined with the class files that realize the Java API.

6 CHAPTER 1. INTRODUCTION

The remainder of this chapter is a short tutorial, introducing you to a small
set of elements of the Java language. The intent is to give youan initial flavor
of programming in Java without getting immersed in too many details and formal
rules. Think of it as your very first increment of vocabulary,syntax, and semantics
of the language. The goal is to quickly get to the point where you can write simple,
but complete, programs. Subsequent chapters of the book will delve into all of the
elements touched upon here, and in much greater detail.

1.3 A Java Tutorial

This tutorial will lead you through a sequence of Java programs designed to intro-
duce some basic concepts of Java programming. We begin with an application to
print a welcome message.

1.3.1 Welcome Application

Design

Your first application,WelcomeApp, has the simple problem statement:

Print the string of characters “Welcome to Java Programming!” to a
text console window.

As we shall see, part of the Java system API includes a Java statement that allows
us to print strings of characters as output to the text console window. Thus we can
complete our design stage with a single step:

1. Print the string"Welcome to Java Programming!" .

Edit

The following Java language code accomplishes the goal of our first program. The
line numbers on the left are included only for our reference;they are not part of the
source program itself.

1 / **
2 * The WelcomeApp class implements a simple application
3 * that prints a welcome message to the standard output.
4 * /
5 public class WelcomeApp {
6

1.3. A JAVA TUTORIAL 7

7 // The WelcomeApp class consists of a single method,
8 // namely the application entry method called ’main’.
9

10 public static void main(String[] args) {
11
12 // Invoke a system-provided method to
13 // print a String argument to standard output.
14
15 System.out.println("Welcome to Java Programming!");
16 }
17 }

Successful completion of the edit stage requires the creation of the source
code text file whose contents are the Java code given above. The file must end
in the .java extension and, due to requirements discussed later,mustbe named
WelcomeApp.java .

DR. JAVA

The edit, compile, and execute stages may all be accomplished within the Dr. Java
Integrated Development Environment. First, you must launch the Dr. Java appli-
cation. Depending on how Dr. Java was installed, there may exist a shortcut or
desktop icon that may be used to launch the application.

Once the application is launched, you will see three primarywindow panes in
the Dr. Java window. On the left side is theFiles Pane, a pane that will display the
set of Java source files that are currently active in Dr. Java.Upon initial launch,
there are no active source files, and(Untitled) should appear in this window
pane indicating an empty unnamed Java source file is ready forentry of code. The
largest window pane, on the right, is theDefinitions Paneand displays the content
of a single active source file. Since we have not entered any Java code yet, this pane
will be empty. The window pane across the bottom of the application window starts
in the tab for Dr. Java Interactions, and is referred to as theInteractions Pane.

Click in the Definitions Pane and enter the given Java code exactly as it appears
above (but without the listing line numbers). When you make modifications to a
source file, the condition of having an unsaved source file is indicated by a ‘* ’ ap-
pearing next to the source file in the File Pane. As you type code in the Definitions
Pane, you may note that parts of the code will be displayed in different colors. This
is calledsyntax highlightingand is used to show different parts of the vocabulary
of the Java language and their place in the syntax of the source file.

8 CHAPTER 1. INTRODUCTION

Once the Java code has been entered, the source file must be saved. This op-
eration writes the text source file out to the file system on thedisk of the com-
puter. From theFile menu, select theSave menu item. You can also click the
Save button on the button bar that appears underneath the Menu bar. This will
result in a Save dialog box. The ‘File Name’ and the ‘Files of Type’ items will
be filled in with “WelcomeApp” and “Java source files”. These are the correct
entries and should not be changed. This is specifying that the name of the file is
WelcomeApp.java . Use the upper portion of the Save dialog box to navigate
to the folder/directory where you want the source file (and ultimately the bytecode
file) to reside. Then click theSave button. Upon successful completion of the
save, the File Pane will change toWelcomeApp.java .

Compile

If you have successfully entered and saved the Java source code exactlyas it ap-
pears, then the compile stage should be very straightforward. We only have to
specify the source file to the compiler, which will, without any further interaction,
generate the output bytecode file. Problems arise in the formof compiler errors
if typographical errors have resulted when the code was entered. If this occurs,
compare your code carefully with the given code; correct anyerrors, and retry the
compile step given below.

DR. JAVA

Ensure that WelcomeApp.java appears and is highlighted in the Files Pane and
that the Java source code that you entered appears in the Definitions Pane of the
Dr. Java application. This should be the current state of affairs following the Edit
stage. If Dr. Java had been closed after the Edit stage, you can return to this point
by selecting theOpen menu item from theFile menu and navigating to, and
opening, the WelcomeApp.java source file from the prior step.

Compile the source file by clicking theTools menu and selecting either the
Compile All Documents or the Compile Current Document menu
item1. During compilation, the bottom pane will switch to the “Compiler Output”
tab and display the message “Compilation in Progress, please wait ...”. If there
are no syntax errors, the completion of the compilation willbe indicated by the

1These two are equivalent when there is a single file listed in the Files Pane. They differ when
more than one source file is active, and thus the Files Pane contains more than one entry.

1.3. A JAVA TUTORIAL 9

message “Last compilation completed successfully” in the Compiler Output tab of
the bottom pane.

Execute

Now for the moment of truth. It is time to execute your first Java program.

DR. JAVA

Again, ensure that theWelcomeApp.java appears and is highlighted in the
Files Pane and that the Java source code that you entered appears in the Definitions
Pane of the Dr. Java application. Now, from theTools menu, select theRun
Document’s Main Method menu item. The bottom pane should change to
the “Interactions” tab, and you will see, at the ’>’ prompt of the Interactions pane,
the following command:

java WelcomeApp

This should be followed by the output,"Welcome to Java Programming!"
in your console window. This is the result of the successful execution of your
Java program. Alternatively, you can click on the “Interactions” tab of the bottom
pane and manually type thejava WelcomeApp command. When you press
Enter/Return, the program will execute and display the"Welcome to Java
Programming!" output.

A Closer Look at the WelcomeApp Java Code

Now for some explanation of the source code. This first program exhibits four ele-
ments of the language: comments, class definition, method definition, and method
invocation. All four of these elements will be common to almost every Java pro-
gram.

A commentis free-form text that adds description to a program suitable for
helping a reader to understand what parts of the program are designed to do. Lines
1-4 together form a syntactic unit that is delimited at the beginning by the char-
acter sequence ‘/ ** ’ and at the end by the character sequence ‘* / ’. This defines
a multi-line comment in Java. Between the beginning of comment delimiter and
the end-of-comment delimiter, the programmer may type any sequence of charac-
ters available from the keyboard. Lines 7, 8, 12, and 13 are also Java comments,

10 CHAPTER 1. INTRODUCTION

but these are single-line comments. The comment begins withthe the character
sequence ‘// ’ and continues until the end of the current line. In this example, the
single line comments are the only element on the line, but this style of comment
is often used following some non-comment Java syntax and is used to explain the
Java on the line on which it resides.

Lines 6, 9, 11, and 13 are blank lines. The use of blank lines and the use of
indentation to show nesting of syntactic structures improves the readability of the
source code, but has no impact on the instructions that will be executed. Neatness
and readability count when we are writing programs.

The ability to cope with problems of any significant size requires the ability to
organize and break a problem up into smaller, more manageable, subproblems. All
high-level languages have some facilities for accomplishing this, and in Java, the
fundamental facilities are the notions of a class and of a method. Amethodgathers
together a set of program steps that define an action in the program. Aclassis a
collection of methods.

Line 5 begins the definition of the class namedWelcomeApp. In that line
public and class are necessary Java keywords,WelcomeApp is providing
the name of the class, and the ‘{’ is known as adelimeterthat begins the contents
of the class. The ‘}’ on line 17 is the corresponding closing delimeter ending the
class definition.

Line 10 begins the definition of the method namedmain . The keywords
public , static , andvoid are required syntax in the definition of this method,
as is the syntax ‘(String[] args) ’ following main . Like defining a class,
the definition of a method delimits the beginning and end of its contents with the
symbols ‘{’ and ‘}’.

Every Java program must consist of at least one class, and there must exist a
method namedmain declared as we see on line 10. Chapters 8 and 9 will treat the
concepts of class and method in much greater detail.

Now that we have covered all the syntax providing the required structure of a
class definition forWelcomeApp and itsmain method definition, we are left with
a single statement, on line 15, whose execution actually accomplishes our goal.

System.out.println("Welcome to Java Programming!");

This Java statement is the invocation of the methodSystem.out.println() .
(Or, more simply,println()). A method invocation has the semantics of tem-
porarily suspending execution of the steps in the current method and executing
the steps defined in the invoked method. Once those steps are complete, execu-
tion continues in the current method at the point following the method invocation
statement.

1.3. A JAVA TUTORIAL 11

In this example, the string"Welcome to Java Programming!" is the
parameter that is passed during method invocation to theprintln() method.
The println method is defined as having a string parameter andthe method handles
the output operation of printing the given string to the output console. The method
is also defined to end the output line and start the next line, so that subsequent
output is on a new line. By specifying different strings as the passed parameter
to theprintln() method, one can have any such string printed to the output
console.

Exercise 1.1Create (i.e. Edit, Compile, and Execute) a new Java application
class, calledWelcome2whose goal is to print the following output on the console:

Welcome
to Java Programming!

Exercise 1.2Create a new Java application, calledBill whose goal is to print
the following output on the console:

All the world’s a stage,
And all the men and women merely players:
They have their exits and their entrances;
And one man in his time plays many parts,
His acts being seven ages.

Exercise 1.3Let us intentionally make some mistakes. One at a time, make the
following changes to the original (correct) source file,WelcomeApp.java and
then attempt to compile the modified program. Observe the errors that result:

1. Omit the semicolon on the end of the line that beginsSystem.out.println
(line 15).

2. Omit the wordvoid on line 10 before the wordmain.

3. Omit the symbol sequence ‘*/’ on line 4.

4. Add the wordnew between the wordspublic andclass on line 5.

Another method, namedSystem.out.print() (print()) is available
and is a variant of theprintln method we have already seen. Like its cousin,
it also takes a given string parameter and prints the string to the output console.
However, it does not add the newline to begin the next line of the console, but
leaves the current output point immediately following the printed string, so any
subsequent output will follow on the same line.

12 CHAPTER 1. INTRODUCTION

Using theprint() method, we can use multiple method invocations to achieve
the same effect as a single (longer) invocation ofprintln() . So, the statement
sequence

System.out.print("Welcome to ");

System.out.println("Java Programming!");

is equivalent to

System.out.println("Welcome to Java Programming!");

Exercise 1.4 Modify your firstWelcomeApp class so that the body of themain
method uses the two statement sequence of aprint() followed by aprintln().

Exercise 1.5 Modify yourWelcomeApp class once again so that the"Welcome
to " string in theprint() invocation leaves off the trailing space. What do you
expect to happen? Compile and Execute the application and see if you are correct.

1.3.2 A Conversion Application

Design

The second application of this tutorial has slightly more depth than the simple
printing of output. We are going to use the computer to perform some calculations
in our program as well.

Consider the problem of converting distances. Some of the most common dis-
tances used in road races include 5K, 10K, and occasionally a5 mile race. We wish
to convert the kilometer distances to miles and the mileage distances to kilometers.
This will be the goal of our next application, with the problem statement:

Compute and print the conversion of 5K, and 10K to their correspond-
ing mileage distances, and 5 miles to its corresponding kilometer dis-
tance.

This problem statement can be refined into the following steps.

1. x miles = 5K * 0.6214 miles/K

2. Print the string"5K = " and thenx and then the string" miles" .

3. y miles = 10K * 0.6214 miles/K

4. Print the string"10K = " and theny and then the string" miles" .

5. z K = 5 miles * 1.609 K/mile

1.3. A JAVA TUTORIAL 13

6. Print the string"5 miles = " and thenz and then the string" K" .

Note the introduction of the variablesx, y, andz during the enumeration of steps
so that we have a way of naming and talking about a computed quantity to use in
subsequent steps. At this point, these variables have nothing to do with a computer
program. They are simply tools used in the same way that we usevariables in
algebra.

Edit

The following Java language code accomplishes the goal of the second program of
our tutorial.

1 / **
2 * The ConvertMilesK class implements a simple application wh ose
3 * purpose is to convert the distances of 5Km and 10Km to miles, a nd
4 * to convert 5 miles to Km.
5 * /
6 public class ConvertMilesK {
7
8 // The ConvertMilesK class consists of a single method defin ition,
9 // namely the application entry method called ’main’.

10
11 public static void main(String[] args) {
12
13 double milesValue; // variable for miles in conversion
14 double kilometersValue; // variable for kilometers in conv ersion
15
16 // Convert 5Km to miles and print result
17
18 kilometersValue = 5.0;
19 milesValue = kilometersValue * 0.6214;
20 System.out.println("5Km = " + milesValue + " miles");
21
22 // Convert 10Km to miles and print result
23
24 kilometersValue = 10.0;
25 milesValue = kilometersValue * 0.6214;
26 System.out.println("10Km = " + milesValue + " miles");
27
28 // Convert 5 miles to Km and print result
29
30 milesValue = 5.0;
31 kilometersValue = milesValue * 1.609;
32 System.out.println("5 miles = " + kilometersValue + " Km");

14 CHAPTER 1. INTRODUCTION

33 }
34 }

Using the skills acquired during the last application of thetutorial, create the
ConvertMilesK.java source file based on the Java code given above as ap-
propriate to your development environment.

Compile and Execute

Compile the createdConvertMilesK.java and then execute. You should ob-
tain output similar to the following:

5Km = 3.1069999999999998 miles
10Km = 6.2139999999999995 miles
5 miles = 8.045 Km

A Closer Look at the ConvertMilesK Java Code

Note the similarities between this program and the earlierWelcomeApp program.

• Both source files begin with a comment that describes the purpose of the
class, and is often a restatement of the problem statement.

• Line 6 ofConvertMilesK.java beginning the class definition is almost
identical to Line 5 ofWelcomeApp.java . The difference is simply in the
name of the class being defined.

• The beginning of themain method definition on line 11 is identical to the
corresponding line 10 ofWelcomeApp.

As we examine the Java instructions withinmain method (lines 12 through 32)
in theConvertMilesK class, we can readily observe a correspondence between
the Java code and the steps enumerated during the design stage. In particular, lines
16 through 32 correspond to the conversion and print for the 5Km, 10Km, and 5
mile conversions.

We can create variables in a programming language that we canuse for naming
and manipulating values during the steps of the program. In this program, we
define and use two variables, namedmilesValue andkilometersValue .

Lines 13 and 14 arevariable declaration statements(also called simplydecla-
rations) for variablesmilesValue andkilometersValue . A variable dec-
laration statement associates a programmer supplied variable name, oridentifier,
with a unit of storage in the memory of the machine.

1.3. A JAVA TUTORIAL 15

A declaration also associates a data type with the declared variable. In pro-
gramming languages, thetypeof a variable determines the set of valid values that
are permitted to be stored in the variable. The type of bothmilesValue and
kilometersValue is given by the keyworddouble . The typedouble for a
variable specifies that the variable may have real number values, where real num-
bers are numbers that contain decimal points (e.g. 1.5, -8.23, 0.0).

In general, a variable may be declared using the following syntax:

<type> <identifier>;

substituting the appropriate data type for<type>, and the desired variable name
for <identifier>.

In line 18, we assign the constant real number value 5.0 to thevariable that
was declared in line 14,kilometersValue . This is our first example of an
assignment statement. The assignment statement is a fundamental construct of
programming. It updates the storage unit associated with a variable with a value.

The syntax of an assignment statement is the following:

<identifier> = <expression>;

The symbol ‘=’ is the assignment operator. For the expression side of an assign-
ment statement, we can have expressions that are as simple asa constant value, but
can be considerably more complex. Arithmetic and more complex expressions will
be explored in Chapter 3.

The semantics of the assignment statement is the following:

1. Evaluate the right hand side of the assignment. Use the current values asso-
ciated with any variables that appear and combine them with the operators
and constants and obtain a final value and type for the complete expression.

2. Store the computed value at the location associated with the variable named
on the left hand side of the assignment.

Line 19 demonstrates another assignment statement. By the semantics given
above, the current value ofkilometersValue , which is 5.0 because of the
previous statement, is multiplied by the constant value 0.6214. The result is stored
in the variablemilesValue .

Then, on line 20, we see a statement invoking theprintln() method. The
difference from what we have seen before is that the string argument to the method
is specified in pieces. We have the constant string values"5K = " and" miles" .
When working between operands that are strings, the ‘+’ operator performs string
concatenation, which appends two string together into a composite string. The use

16 CHAPTER 1. INTRODUCTION

of the variablemilesValue , whose type isdouble , in a string expression like
this causes the current value ofmilesValue to be converted to a string, so that
the final result is a string argument that can be passed toprintln .

The remaining lines of the program, lines 22 through 32, repeat the same kinds
of assignments and print statements. Note that it is perfectly fine to reuse variables.

Exercise 1.6 Study the remainder of the ConvertMilesKmain method definition,
looking for the similarities and differences between theseremaining sections and
the section discussed.

Exercise 1.7 Modify the ConvertMilesK program to perform conversions for 15K,
25K, 10 miles, and the official marathon distance of 26 miles,385 yards.

Exercise 1.8 Create a new class calledConvertFtoC to convert between tem-
peratures in Fahrenheit and their corresponding temperatures in Celsius. Convert
the values 80F, 72F, 32F, and 0F. Be sure and use appropriate names for your
variables.

Chapter 2

User Interaction

2.1 Console Based User Interaction

2.1.1 An Application to Add Two Integers Input by the User

Design

The next example application addresses the need to interactwith a user, getting
their input in order to achieve a goal. Say that we want to add two numbers. How-
ever, we don’t know ahead of time what those numbers will be. We need some
mechanism in our program to ask the user for some input, and then to retrieve the
user’s response. We will use theprint() method to print the question asking
for input to the user, but we need a corresponding input method to retrieve the
response.

Our problem statement:

Add two integer numbers input by the user, and print the computed
sum.

can be realized by the following steps:

1. Prompt the user for the first integer.

2. Retrieve the first integer, denotedx.

3. Prompt the user for the second integer.

4. Retrieve the second integer, denotedy.

5. Computez = x + y

6. Print the string"Sum is " followed by the value ofz.

17

18 CHAPTER 2. USER INTERACTION

Edit

Java (J2SE) 5.0

When programming in Java 1.5.0 (J2SE 5.0) and later, the following Java pro-
gram satisfies the requirements of this application.

1 / **
2 * The AddTwoInts class implements a simple application
3 * whose purpose is to input two numbers entered by the
4 * user, compute the sum, and print it out to the console.
5 * /
6
7 import java.util.Scanner; // program needs the Scanner
8 // class for console input
9 public class AddTwoInts {

10
11 // The single method of the AddTwoInts class, main.
12
13 public static void main(String[] args) {
14
15 int firstNumber;
16 int secondNumber;
17 int sum;
18
19 // In J2SE 5.0, can use the Scanner class
20
21 Scanner consoleIn;
22 consoleIn = new Scanner(System.in);
23
24 System.out.print("Enter first integer: ");
25 firstNumber = consoleIn.nextInt();
26
27 System.out.print("Enter second integer: ");
28 secondNumber = consoleIn.nextInt();
29
30 sum = firstNumber + secondNumber;
31 System.out.println("Sum is " + sum);
32 }
33 }

2.1. CONSOLE BASED USER INTERACTION 19

Create theAddTwoInts.java source file based on the given code as appro-
priate to your development environment.

Compile and Execute

Compile the createdAddTwoInts.java and then execute. You should obtain
output similar to the following:

Enter first integer: 34
Enter second integer: -12
Sum is 22

where the boldface values of 34 and -12 are the input typed by the user.

A Closer Look at the AddTwoInts Java Code

The main method ofAddTwoInts begins with three variable declarations, for
the variablesfirstNumber ,secondNumber , andsum(on lines 13–15). These
associate the given variable names with a unit of storage andwith a data type of
int . The int data type is used for whole numbers, which have no fractional
part. Compare these to the declarations of thedouble variables in the example in
Section 1.3.2.

Java (J2SE) 5.0

Themain method continues with another variable declaration and an assign-
ment statement. The variable declaration uses a data type ofScanner and a vari-
able name ofconsoleIn . The behavior of aScanner as a data type is given
by theScanner class of the Java API. Using classes to define types allows more
complex data structures and methods to be created, and in this case, defines the op-
erations needed to get user input. Just as with the primitivetypes ofdouble and
int , thisScanner variable is uninitialized, and its initialization is the purpose of
the following statement. The expression on the rhs of the assignment creates a new
Scanner object based on the console input streamSystem.in . Once the object
is created, we have access to the methods defined in theScanner class through
that object.

Line 17 outputs a string to the console. Note the use ofprint() instead of
println() so that the following user input is on the same line as the prompt.

20 CHAPTER 2. USER INTERACTION

The next line is an assignment statement in which the right hand side is an
expression made up of a method invocation. Unlike the methodinvocations we
have seen up to this point, the method must return a value and have an associated
data type in order for the assignment statement to follow itsprescribed semantics.

Java (J2SE) 5.0

The methodconsoleIn.nextInt() is defined to retrieve input typed by
the user, convert the user’s keystroke sequence up to the next Enter into an integer,
and return the integer as the value computed by the method. When we invoke
a method, we pass any paramters needed by the method inside the parentheses
following the method name. In this case, there are no arguments, and so we simply
have ‘() ’.

The next two lines, lines 20 and 21, of the Java program repeatthe process
of prompting the user for an integer and then retrieving the input from the user
through a method invocation and assignment into the variable secondNumber .

Once the two values to be added are stored in the variablesfirstNumber
andsecondNumber , we are ready to compute their sum. This is accomplished
on line 23 with an assignment statement whose target is the variable sum and
whose computation is given by the expression, evaluating the current values of
firstNumber andsecondNumber , and adding them together to get a value.

In similar fashion to earlier examples, the value of the variable sum is then
printed out to the console.

Exercise 2.1 We have seen the use of integer variables and the corresponding
methods to retrieve an integer (typeint) value as input from the user. We may
also wish to retrieve adouble value as input from the user.

Java (J2SE) 5.0

TheScanner class includes a method callednextDouble() for input of a
double value from an object that has typeScanner, such asconsoleIn from
the previous example. It is used in exactly the same manner asnextInt().

Create a new application class calledAddTwoDoubles that declares the vari-
ablesfirstNumber andsecondNumber andsum to be of typedouble and

2.2. DIALOG BASED USER INTERACTION 21

modify the method invocations to retrieve the user input to call thesedouble-
based methods. Neither the addition operation nor theprintln of the result
needs to change.

Exercise 2.2Create a new application program to convert a single value from
Celsius to Fahrenheit. The type of the value should be adouble and it should be
input by the user. Use appropriate variable names and a prompt that informs the
user of what is being asked for.

2.2 Dialog Based User Interaction

For current students, who have grown up with computers and have been using com-
puters for word processing, web browsing, building spreadsheets, and so forth, the
console-based input and output of Section 2.1 may well seem quite foreign and
even primitive. Users of today are much more accustomed to Graphical User Inter-
faces (GUIs), in which computer programs use windowing systems and a collection
of graphical interfaces such as menus, menu items, toolbars, and dialog boxes in
which to display information to the user and to gather information from the user.

Graphical User Interfaces use a model of programming, called event-driven
programming, that is at level of sophistication beyond the initial abilities of a stu-
dent learning their first programming language. This is why we begin by demon-
stating interaction with the user through input and output of a text console.

However, many students may desire a more graphical approach. The remainder
of this chapter introduces the use of a simple but relativelypowerful collection of
system-provided APIs for dialog boxes. These can be used without forcing the
programmer into an event-driven model, and can be used to display messages to
the user, as well as gather information from the user, sufficient for the types of
interaction required through the rest of this book.

2.2.1 Basic Operations

The Java API provides a class calledJOptionPane , which allows user interac-
tion through dialog boxes. To allow a program to use these facilities, the program
must include the statement

import javax.swing.JOptionPane;

before the class definition begins.

22 CHAPTER 2. USER INTERACTION

Figure 2.1: JOptionPane Message Dialog

Displaying a Message to the User

A dialog box displaying a message to the user is comparable toour use ofSystem.out.println .
We wish to construct a message string and have a dialog box displayed with the
message, and an ‘OK’ button, by which the user may dismiss themessage.

The methodJOptionPane.showMessageDialog() provides this facil-
ity. The method takes two parameters, but the first is only used in a full GUI, so
we use the keywordnull to indicate our standalone use. The second parameter is
a string specifying the message.

The following statement

JOptionPane.showMessageDialog(null, "Welcome to Java") ;

results in the display of the dialog box shown in Figure 2.1.

User Confirmation

Another common interaction with a user is to ask a question, expecting a response
of ”yes” or ”no” or ”cancel”. The methodJOptionPane.showConfirmDialog()
provides this facility. LikeshowMessageDialog()the method takes two param-
eters, and we use a value ofnull to indicate our standalone use. The second
parameter is a string specifying the question.

The method interprets the button push of the user and maps a ”Yes” button press
to the integer value 0, a ”No” button press to the integer value 1, and a ”Cancel”
button press to the integer value 2. It is this integer value that is “computed” and
returned as a result when the method is invoked.

The following code declares a variable nameuserValue of type int and
then invokes theshowConfirmDialog() method, assigning the result to the
userValue variable. The resulting dialog box is shown in Figure 2.2.

int userValue;

userValue = JOptionPane.showConfirmDialog(null, "Do you wish

to continue?");

2.2. DIALOG BASED USER INTERACTION 23

Figure 2.2: JOptionPane Confirm Dialog

If the user pressed the “No” button, theuserValue variable would have the
value 1 as a result.

User Input

General input can be retrieved from the user by displaying a dialog box that has a
text entry area.JOptionPane.showInputDialog() is a method that pro-
vides this general input. In its simplest form, it also has two parameters, anull
for its standalone (non-GUI) use, and a string specifying a prompt displayed to
the user. SinceshowInputDialog() is a general facility, it simply collects the
string of characters typed by the user in the text entry area and returns that string
as the result of the method invocation.

Just as we have strings of characters that we enclose in double quotes to use in
our programs, we can have variables whose type isString and that we can use to
manipulate strings. In the following code, we declare a variable,userAnswer ,
to have a data type ofString and then use theshowInputDialog to retrieve
the string of characters from the user and assign it to the declared variable.

String userAnswer;

userAnswer = JOptionPane.showInputDialog(null,

"Enter your name:");

Figure 2.3 shows the result of this invocation and after a user has typed in the
characters “Susan” into the text entry area. Note that the user does not type the
double quote marks.

While the demonstrated usage is adequate for user input of strings, what do
we do when we require other data types, like an integer (int) or a real number
(double)? The answer is that we use the same method and retrieve a string from
the user, but we then need to convert the string into the required data type.

Suppose we want to use dialog-based input for the application of Section2.1.1.
For each integer, we want to prompt the user for the integer and then store the
number into a variable. We begin as we did in the last example:

24 CHAPTER 2. USER INTERACTION

Figure 2.3: JOptionPane Input Dialog (of a string)

Figure 2.4: JOptionPane Input Dialog (of an integer)

String userAnswer;

userAnswer = JOptionPane.showInputDialog(null, "Enter f irst

integer:");

This results in the dialog box of Figure 2.4, with the user having typed “34” in the
text entry area.

We then declare our integer variablefirstNumber , and perform a conver-
sion. The Java API provides a collection of methods related to the integer data
type, and among these, there is a method to convert aString into an integer. The
methodInteger.parseInt() takes a single string parameter and converts the
given string into an integer, returning the result. The following code accomplishes
this for our example:

int firstNumber;

firstNumber = Integer.parseInt(userAnswer);

2.2.2 Dialog-based User Application

Let us put together what we have learned into a complete applicaiton.

Design

The following application will interact with the user by getting the user’s name,
and then retrieving two real numbers to add together. It should then compute the

2.2. DIALOG BASED USER INTERACTION 25

sum and display the result in a user-personalized manner.
Our problem statement:

Add two real numbers input by the user, and print the computedsum,
using a personalized approach.

can be realized by the following steps:

1. Ask the user for their name, and retrieve the resulting string, s.

2. Prompt and retrieve the first real number, denotedx.

3. Prompt and retrieve the second real number, denotedy.

4. Computez = x + y

5. Display the string"Hi " followed by the value ofs, followed by", your
sum is " followed by the value ofz.

The Program

1 / **
2 * The AddDoubles class adds two real numbers (doubles)
3 * together, demonstrating user interaction through
4 * dialog boxes.
5 * /
6
7 import javax.swing.JOptionPane; // Tell Java where to find
8 // JOptionPane
9

10 public class AddDoubles {
11
12 // The single method of the class, main.
13
14 public static void main(String[] args) {
15
16 double sum; // sum of firstNumber and secondNumber
17 double firstNumber; //
18 double secondNumber; //
19
20 String userName; // user entered name
21 String userAnswer; // string with number to be converted
22
23 // Get user name
24

26 CHAPTER 2. USER INTERACTION

25 userName = JOptionPane.showInputDialog(null,
26 "Enter your name:");
27
28 // Retrieve the two numbers from the user
29
30 userAnswer = JOptionPane.showInputDialog(null,
31 "Enter first real number:");
32 firstNumber = Double.parseDouble(userAnswer);
33
34 userAnswer = JOptionPane.showInputDialog(null,
35 "Enter second real number:");
36 secondNumber = Double.parseDouble(userAnswer);
37
38 // Compute the sum
39
40 sum = firstNumber + secondNumber;
41
42 // Display result in a friendly way
43
44 JOptionPane.showMessageDialog(null,
45 "Hi " + userName + ", your sum is " + sum);
46 }
47 }

Chapter 3

Arithmetic

Computers are well known for their fast and accurate arithmetic computations. The
Java language provides support for arithmetic using notation familiar to all of us.
For example:

1 int x = 5;
2 int y = 2;
3 int z = 4;
4 z = z/y;
5 x = x * y + z;
6 y = x * (y + z);

In lines 1 - 3 of this example, we have introduced the idea of initialization in
Java. When a variable is declared, the programmer may immediately assign a value
to it on the same line as the declaration. On line 1, we have notonly declaredx to
be an integer, but we have assigned it the value of 5. Good programming dictates
that it is a good idea to initialize every variable before youuse it.

Using the Interaction window in DrJava, you can type lines 1 -3 of the example
code and then write:

1 System.out.println(z);
2 System.out.println(x);
3 System.out.println(y);

to get an immediate result of what the code does in the initialization lines. You
can then type lines 4 - 6 followed by System.out.println statements for each of the
variables again to see what happens as a result of those operations. It is also a
good idea to try out a variety of assignments to help understand what results can

27

28 CHAPTER 3. ARITHMETIC

be obtained using addition, subtraction, multiplication,division, and parentheses.

In the example, variables namedx, y , andz are declared to be integers and
are assigned initial values. Note that the equal sign,= is used in Java to mean
assign to. This is different from the meaning of the equal sign in mathematics. In
an assignment,x = 5; , the meaning is not that x is equal to 5, but rather that x
should be assigned the value 5.

On the fourth line, the value ofz divided byy is assigned to the variablez .
On the fifth line, the variablex is assigned the value obtained by first multiplying
the values of x and y and then adding the value of z to the result. Notice that we
use the* symbol to indicate multiplication, since writing xy would be indistin-
guishable from a variable named xy. Finally, on line 6, the variable y is assigned
the value obtained by first adding the values of y and z and thenmultiplying the
result by the value of x. This is exactly the way we would indicate this operation
in mathematics.

Just as in standard mathematical practice, any computations enclosed within
parentheses are carried out before other computations. After parentheses, multipli-
cation and division are done in the order in which they appear, and finally, addition
and subtraction are completed in the order in which they appear. These rules about
what operations should be done before which others are called the rules of prece-
dence in mathematics. Figure 3.1 lists operations in the order in which they are
performed in the left column. The right column contains rules about where to start
the evaluations and the left column tells whether to proceedfrom right to left or left
to right or inside out to do the evaluations. For example,when evaluating expres-
sions enclosed in parentheses, when some expressions are nested inside others, the
rule requires that whatever is in the innermost parenthesesshould be done first.

Consider a more complex expression: 3*(-5 + (2 - 6)*2) -10%3 +8/3. Using
the table, we see that we need to start by evaluating whateverexpression(s) lie
inside parentheses. Moreover, we should start with the innermost parentheses. In
this case, we need to evaluate the (2 - 6) first, resulting in -4. We now need to
evaluate the newly formed expression 3*(-5 + -4*2)-10%3+8/3. Next we evaluate
the expression -5 + -4*2, which requires us to first multiply -4 by 2 and then add
the -5 to the result, yielding -5 - 8 which is -13. Now all the parentheses have been
processed and we continue by carrying out multiplication, division, and taking the
remainder as they appear, moving from left to right on the updated expression 3*
-13 - 10%3 + 8/3. So we first multiply 3 by -13 getting -39. Next we take the
remainder when 10 is divided by 3, which yields 1, and then dividing 8 by 3 we
get 2. Note that all of the values in this example are integer and so the division
omits anything that is not an integer. Now we have the expression -39 - 1 + 2 and

3.1. TYPES 29

Operator Associativity
() inside out
unary - right to left
*, /, % left to right
+, - left to right

Figure 3.1: Operator Precedence and Associativity

following the table, we complete the subtraction and addition moving from left to
right yielding -40 + 2 which equals -38.

3.1 Types

When writing mathematical expressions or formulas, we often use a variety of
number types, such as natural numbers (non-zero only integers such as 3, 10, or
357), integers (whole numbers both postive and negative such as -25, 78, or 0),
rational numbers (written as fractions or decimals such as 1/4, .25, or 234.5678),
and real numbers (written in decimal notation such as 123.67, 1.3333, or 3.14). We
use the same operation symbols when we mix these different numbers in the same
expressions or formulas. For example, we might write the expression 3*(4.5 -π).
Here we are multiplying an integer by the difference betweena rational number
and a real number. Human beings have no problem sorting this out and figuring
out that since all of the numbers involved are in the real number set, the answer
will be a real number, as opposed to an integer or rational.

Division poses an interesting phenomenon. Suppose we have two integers, 12
and 10. If we divide 12 by 10, the answer is not an integer. We can get an approxi-
mation to the answer, namely 1, but the exact answer is the rational number 1.2.

Although people automatically reason about such situations and make their
own choices about whether they are satisfied with approximations, exact answers,
or at least a more precise answer, computers need people to indicate their choices.
For this reason we make explicit distinctions among these various mathematical
types and use the type names to indicate what we want.

We will be able to write most of our Java arithmetic using two types: a type
called int , standing for integer and a type calleddouble to use when we want
real numbers. The term ”double” has to do with precision, thenumber of digits on

30 CHAPTER 3. ARITHMETIC

the right hand side of the decimal point. Here are some instructions to try out using
ints and doubles:

1 int x = 8;
2 int y = 6;
3 int quotient1 = x/y;
4 System.out.println(quotient1);
5 double z = 8.0
6 double w = 6.0;
7 double quotient2 = z/w;
8 System.out.println(quotient2);

On the third line, the integer variablequotient1 is assigned the result of
dividing the value ofx by the value ofy . Note that the result turns out to be 1.
This is because bothx andy are integers and so when you divide their values, you
lose all but the integer part of the answer. On line 7, thequotient2 is assigned
the result of dividing the value ofx by the value ofy again, and this time all the
variables have been declared to be of type(double) and so the value includes
the decimal part, yielding 1.3333333333333333.

The next question we want to explore is ”What happens when an expression
has a mixture of types. What type will the answer be?

Here are the rules Java uses to address the issue of what type the evaluation of
an expressiona <op> b will be. By <op> we mean some operation such as +, -,
*, /, or %. Examples illustrating the rules will follow.

1. If a and b are of the same type, the result is of that same type.

2. If a and b are different types the operand is promoted to thegreater operand
and then the evaluation is done.

3. Java does not permit assignment of a greater type to becomea lesser type.

4. Promotion of a lesser type to a greater type will happen automatically when
an assignment is called for.

When we talk about lesser and greater, we refer to the following progression
from lowest to greatest:char , int , float , double .

3.1. TYPES 31

Here are some examples illustrating the rules:

1. int x = 3 ; int y = 4 ;
Herex + y is the integer 7 Since bothx andy are the same type,int , the
sum is of typeint .

2. int x = 3 ;
double y = 4.5;
If we want to add these, x + y, first x is promoted to double by rule 2, and
then the addition takes place, resulting in the double 7.5. This example illus-
trates rule 2.

3. int x = 0;
double y = 5.2;
x = y; This is an error by rule 3.

4. int x = 3;
double y;
y = x; This is alright. y gets the value 3.0. This illustrates rule 4.

Sometimes we may have variables that we would like to treat asintegers in
some parts of a program, but as real numbers elsewhere. For example, we might
get the ages of three people as whole numbers of years but thenwant to compute
the average as a real number. Java allows us to convert between two different data
types by an operation called “casting.” To cast an integer asa double, we put the
worddouble enclosed in parentheses in front of the integer. Here is an example:

1 int x = 8;
2 double y = (double)x;
3 int z = x;

We have declared an integerx and a doubley and then assigned the value of
x to y . In order to make the assignment, we cast thex to be treated as a double.
Note that the variablex does not change to a double, so on line 3, the assignment
puts the integer value ofx into the integer variablez .

The typeint can be used for integers between -2,147,483,648 and 2,147,483,647.
Although these numbers are large enough for many computations, sometimes we

32 CHAPTER 3. ARITHMETIC

Type Value Range

boolean true, false
float ±3.4 × 10−38 to±3.4 × 10−38 with 7 digits of accuracy
byte -128 to 127
int -2,147,483,648 to 2,147,483,647
char ascii characters
long -9,223,372,036,854,775,808 to 9,223,372,036,854,775,808
double ±1.7 × 10−308 to ±1.7 × 10−308 with 15 digits of accuracy
short -32,768 to 32,767

Figure 3.2: Primitive Types

may need even larger integers. For example, suppose we want to find out how
many times a person’s heart will beat during an average lifetime. Currently, life
expectancy is 80 years and the average heartrate is 70 beats per minute. To get the
number of beats in a lifetime, we need to multiply 80 by 70 by the number of min-
utes in a year. This multiplication results in a very large integer. To accommodate
such large numbers, we can use a type calledlong.

1 long lifetimebeats = 0;
2 long minutesperyear = 0;
3
4 minutesperyear = 60 * 24* 365;
5 lifetimebeats = 70 * minutesperyear * 80;
6 System.out.println("Average count of heart beats in a life time: "
7 + lifetimebeats + ".");

There are additional types in Java that we may use later. In Figure 3.2, we
present a table of several types in Java. We will introduce examples of types
throughout the text as we need them.

3.2 Special Math Methods

Some mathematical computations require more than just a simple sum or product.
For example, suppose we want to solve a quadratic equationx2 + 5x − 3 = 0.
One way to do this is to use the quadratic formula solution which requires us to
take the square root of25 − 4 ∗ 1 ∗ (−3). The formula solves the general equation

ax2 + bx + c is x = −b±
√

b2−4ac

2a
.

3.3. BUILDING EXPRESSIONS 33

Java provides commonly needed mathematical functions implemented as meth-
ods collected together into a class called Math. We can use those methods in the
programs we write by importing the Math class at the beginning of our program
and then calling the methods such assqrt , to suggest square root. The * in
Line 5 of the program indicates that we want all of the available methods in the
class calledjava.math. To indicate that the method comes from the Math class,
we write Math.sqrt() on the line of the program in which we use the square
root method. On Line 13 we assign the value thatMath.sqrt() computes to
the variable solution. This can happen because the method called Math.sqrt()
produces a value consistent with the type of the variablesolution . Example:

1 / **
2 * This program computes part of the quadratic formula
3 * /
4 //get the Math functions to use.
5 import java.math. * ;
6
7 public class MathUsage
8 {
9 public static void main(String[] args)

10 {
11 double solution = 0;
12 // factor: 0 = xˆ2 + 5x - 3
13 solution = Math.sqrt(25 - 4 * 2* (-3));
14 System.out.println(solution);
15 }
16 }

Some other mathematical operations that Java provides methods for include
abs() for absolute value, the typical trigonometric functions,sin(), cos(),
tan() , as well as functions to compute the maximum and minimum,max()
andmin() respectively. There is also a function that produces a random value,
random() .

3.3 Building Expressions

We have seen how various expressions are written and evaluated according to rules
of precedence and associativity by looking at examples. We now want to see the
rules for how to build a larger expression from smaller components. At the simplest

34 CHAPTER 3. ARITHMETIC

level, expressions can be constants, variables, or method invocations. An example
of a constant is3. We have seen and used many variables with names such asx . In
our quadratic formula we used the method invocationMath.sqrt() .

In formal notation, letting<E> represent an expression, we say this as follows:

<E> := <constant> | <variable> | <method invocation>

The | mark means “or.”
Using the same notational forms, we can show how other expressions can be

built:

<E> := (<E>) | <E> + <E> | <E> - <E>
| <E> * <E> | <E> / <E>

In other words, we can build complicated expressions from simple ones using
parentheses and arithmetic operator symbols.

Exercise 3.1 Write a progam to compute a student’s gpa. You should allow the
user to input a grade between 0.0 and 4.0 for each of four courses and then compute
the gpa and print it out in an appropriate message. The input grades should be
between 0 and 4.0.

Exercise 3.2 Write a program to find the weekly earnings for an employee. Ask
the employee what the hourly wage is and how many hours the person has worked.
Print out the earnings in appropriate form with a dollar sign.

Exercise 3.3 Write a program that inputs a number, either positive or negative,
and prints out the absolute value.

Exercise 3.4 Write a program that inputs a number of degrees in Fahrenheitand
prints out the number of degrees in Celsius. To get this valueyou need to multiply
5/9 by (F - 32) where F means the number of degrees in Fahrenheit.

Exercise 3.5 Write a program that inputs ages of three people and then prints
out the average age. Declare the ages to be integers, but compute the average to
include the fractional part.

Chapter 4

Conditionals

A lot of what computers do for us is what we call “event driven,” meaning that the
computer responds to some external event such as an input by auser. Of course,
what the computer should do upon receiving an input usually depends on what
that input is. For example, if you are getting input via a dialog box and you ask
the question “Do you want to continue with this program?”, then a negative reply
means that the user wants the program to stop, but if the user says“yes,” you want
the program to continue doing whatever it has been written todo. Here, a decision
has to be made based on an input value.

Sometimes a decision must be made based on a computation. Forexample,
in the previous chapter, Expressions, we computed the number of hearbeats for a
person who lives an average lifespan. Suppose we want to provide for those who
are interested, not only the number of heartbeats, but also the number of minutes in
the average lifespan. We can ask the user to choose whether ornot he/she wants to
know the number of minutes as well as the number of heartbeats. Depending on the
response, the program will provide both statistics or only the number of heartbeats.
Look at the example that computes number of heartbeats and think about how you
could print the number of minutes for those users who requestit, but omit that
information for those who do not. Using only sequential control for what happens,
we have no way to skip some statements, so we either give everyuser both values
or we don’t. Before modifying this program to satisfy the requirement that we
provide number of minutes only for those who want to see it, weneed to find out
how Java allows code to be skipped.

Java supports decision making by what are called “conditional” statements and
by “switch” statements. The conditionals are usually used when there are only two
choices and the switch when there are several choices. However, either can be used
whenever different actions are associated with some result.

35

36 CHAPTER 4. CONDITIONALS

4.1 if Statements

An if statement takes the form:

if (<boolean expression>)
{

<stmt>
}
<stmt>

The first statement sequence,<stmt> , is executed only when the boolean ex-
pression evaluates totrue . It is skipped otherwise. The second statement se-
quence is carried out in either case.

Here is the modified example for finding real solutions to quadratic equations.
A typical Boolean expression is a relational expression that has two parts sep-

arated by a comparison symbol and evaluates to either “true”or “false.” Here are
some examples:

1. x < 3
If x has a value less than 3, the expression evaluates to “true.” If x has value
3 or greater, the value of this expression is “false.”

2. 4> 7
Note that this expression will always evaluate to “false.” This type of state-
ment doesn’t usually appear in a program since it is always false.

3. 500<= x + y
The value depends onx andy .

4. x == y
This syntax evaluates to true whenx andy have equal values.

5. w != y
This checks to see ifwdoes not equaly .

6. -456>= x*y - w
Here some computation must be done in order to determine the truth value
of the expression.

4.1. IF STATEMENTS 37

< less than
> greater than
<= less than or equal to
>= greater than or equal to
!= not equal
== equal

Figure 4.1: Symbols and Meanings

Figure 4.1 is a list of the possible relations and their meanings:

When used in an expression each of these symbols result in an evaluation to
“true” or “false.” We call the type whose values are “true” or“false” boolean ,
one of the primitive types in Java. Each boolean expression has a value of this type.
Notice the ”equals comparison” has two equals signs==. A single equals denotes
an assignment statement, you must use the double equals for comparing two items
in a boolean expression.

We are now ready to modify the program that computes heartbeats so that it
also prints number of minutes for those who want to know both:

1 / **
2 * This program computes the average number of times a heart bea ts
3 * in a lifetime. For those who want to know, it also displays the
4 * number of minutes in an average lifespan.
5 * /
6
7 import java.util.Scanner;
8
9 class HeartBeats

10 {
11 public static void main(String[] args)
12 {
13 long lifetimebeats = 0;
14 long minutesperyear = 0;
15 long minutesperlife = 0;
16 int response = 0;
17
18 minutesperyear = 60 * 24* 365;
19 minutesperlife = 80 * minutesperyear;

38 CHAPTER 4. CONDITIONALS

20 lifetimebeats = 70 * minutesperlife;
21
22 System.out.print(
23 "The average number of times a heart beats");
24 System.out.println(
25 " in a lifetime is " + lifetimebeats + ".");
26 System.out.print(
27 "Would you like to know the number of ");
28 System.out.println(
29 "minutes in an average lifespan?");
30 System.out.println("Enter 1 for yes and 0 for no");
31
32 Scanner consoleIn = new Scanner(System.in);
33 response = consoleIn.nextInt();
34
35 if(response == 1)
36 {
37 // This output occurs only when the response is 1.
38 System.out.print(
39 "The number of minutes in an average lifespan");
40 System.out.println(" is " + minutesperlife + ".");
41 }
42 }
43 }
44

This program computes both the number of minutes in an average lifespan and
the number of heartbeats. However, after it prints the number of heartbeats, it
asks the user whether he/she also wants to know the number of minutes. If the
repsonse is in the affirmative, the program provides the number of minutes, but if
the response is negative, the output line is skipped and the program ends.

Here is another example of theif statement:

1 if (sales > 75000)
2 {
3 bonus = 1000;
4 System.out.println("Your bonus is $1000.");
5 }
6 System.out.println(
7 "The target for next month is $75000.");

4.2. IF ELSE STATEMENTS 39

In this code segment, the conditional statement checks to see if the sales value is
greater than 75000. If it is, a message is printed out awarding a bonus. Whether or
not the sales value exceeds 75000, a message is printed telling what the target for
next month will be. Notice that the steps which must be executed when the boolean
expression evaluates totrue are enclosed within a pair of braces. When there is
only one statement to be done, the braces are not required, but for any number of
statements greater than one, the braces are needed.

4.2 if else Statements

Often, there are two distinct actions desired upon evaluating a boolean expression,
one action to take place if the expression is true and anotherif it is false. For exam-
ple, if we want to find the larger of two numbers, we can compareone to the other
and then choose to output the larger one based on the results of the comparison:

1 int x = 5;
2 int y = 7;
3 if (x > y)
4 {
5 System.out.println(x + " is larger than " + y);
6 }
7 else
8 {
9 System.out.println(y + " is larger than or equal to " + x);

10 }

In this program segment, the value ofx is compared toy . Sincex fails to be
greater thany , the control flow will cause the program to skip the first output line
and go to the line following theelsepart.

The form of anif else statment is:

if (<boolean expression>)
{

<true stmt block>
}
else
{

40 CHAPTER 4. CONDITIONALS

<false stmt block>
}

We are now ready to modify the program we did for getting solutions to quadratic
equations by checking to see whether the solutions are real:

1 / ** This programs allows users to enter coefficients for the
2 * quadratic equation a * xˆ2 + b * x + c. If the solutions are
3 * real, the program computes them and prints them, but if
4 * the solutions are not real, the prpogram prints an
5 * appropriate message for the user.
6 * /
7
8 import java.math. * ;
9 import java.util.Scanner;

10
11 class QuadSolutions
12 {
13 public static void main(String[] args)
14 {
15 double a, b, c = 0.0;
16 double solution1, solution2 = 0.0;
17
18 Scanner consoleIn = new Scanner(System.in);
19 System.out.println("Enter your value for a: ");
20 a = consoleIn.nextDouble();
21
22 System.out.println("Enter your value for b: ");
23 b = consoleIn.nextDouble();
24
25 System.out.println("Enter your value for c: ");
26 c = consoleIn.nextDouble();
27
28 if (b * b - 4 * a* c < 0.0)
29 System.out.println(
30 "Your solutions are not real numbers.");
31
32 else
33
34 {

4.3. COMPOUND BOOLEAN EXPRESSIONS 41

35 solution1 = (-b + Math.sqrt(b * b - 4 * a* c))/2 * a;
36 solution2 = (-b - Math.sqrt(b * b - 4 * a* c))/2 * a;
37
38 System.out.println("The solutions are "
39 + solution1 + " and " + solution2);
40 }
41 }
42 }
43

In this modified version of the quadratic program we set up variables to hold
the values of the coefficients of the quadraticax2 + bx + c and variables to hold
the solutions if they exist. Before doing the computation the program checks the
value of the square root to see if it might be negative. If it isnegative, the program
produces a message indicating that the solutions are not real. But if the value of the
square root is not negative, the program computes both rootsand prints them out.

4.3 Compound Boolean Expressions

Sometimes there may be more than one condition controlling what action is to be
taken. For example, in a particular company, it may be that anyone who makes
more than 10 sales or who sells a total amount of at least $85,000 will receive a
bonus of $2,000. In this case we need to check two expressionsindicating that if
either one or the other evaluates to true, the salesperson gets the bonus. To express
anor we use the symbol‖.

1 double totalSales = 0.0;
2 int numberSales = 0;
3
4 // insert code here to enter values for
5 // totalSales and numberSales
6
7 if (totalSales >= 85000 || numberSales > 10)
8 {
9 System.out.println("You get a bonus of $2,000.");

10 }
11
12 // the rest of your program goes here

We have omitted parts of the program to retrieve input fortotalSales and
numberSales .

42 CHAPTER 4. CONDITIONALS

x y x | | y x &&y
T T T T
T F T F
F T T F
F F F F

Figure 4.2: Evaluation of Compound Boolean Expressions

If you need to confirm that more than one condition must evaluate to true in
order for certain code to be executed, we use the symbol&&. For example, suppose
that students who are under 19 and who have at least a 3.0 average are eligible for
the junior debate team. We can indicate this as follows:

1 if (age < 19 && gpa >= 3.0)
2 {
3 System.out.println(
4 "You are eligible for the debate team.");
5 }

The rules for how to evaluate compound statements are shown in the table,
Figure 4.2.

4.4 switch Statements

It is possible by using multipleif else combinations to handle situations that
involve several actions depending on the evaluation of one or more boolean expres-
sions. For example, depending on what year of college a particular student is in, a
different status will be assigned. Assuming a student inputs the value of year as 1
or 2 or 3 or 4, the following code illustrates how status wouldbe noted:

1 switch(year)
2 {
3 case 1:
4 System.out.println("Freshman.");
5 break;
6 case 2:
7 System.out.println("Sophomore.");

4.5. NESTED CONDITIONALS 43

8 break;
9 case 3:

10 System.out.println("Junior.");
11 break;
12 case 4:
13 System.out.println("Senior.");
14 break;
15 default:
16 System.out.println("Not a valid year.");
17 }

The wordswitch is a keyword in Java. The wordyear in the parentheses
is the variable name on whose value the control flow depends.case is a key-
word followed by a particular value thatyear might receive as input. For each
case, some statement or sequence of statements following that case indicate what
action(s) must be taken for that case. The keywordbreak is used to termi-
nate the switch statement. This is important here, so that once a particular case
has been determined, the correct action is taken and then thecontrol flow passes
to the next statement following the switch statement. Without the break , con-
trol would pass through all the cases, evaluating them all. The last case listed is
one called default . This allows the programmer to handle the situation when
the user has given as input some value that none of the other case statements has.
In this example, in the event that a user gave any value other than the four val-
ues allowed, a message will make that clear to the user. It is important to note
that the value on which theswitch statement depends must be discrete, such
asint, char, long, byte, boolean, and short not a value which
might need to be an approximation, such as adouble . For example, it’s alright
to make the switch statement depend on an integer, but not on a real number
(double in Java).

4.5 Nested Conditionals

There may be more than one way to make sure your program follows the control
sequencing needed. For example, instead of using a switch statement for printing
out a message telling whether a student is a Freshman, Sophomore, Junior, or Se-
nior, it is possible to use a series of if-else combinations.One of the exercises in
this chapter asks you to do so.

For more complicated situations, one might consider placing oneif statement
inside the body of anotherif statement orif else statement to express what

44 CHAPTER 4. CONDITIONALS

needs to happen in a convenient way. This is called “nesting.” Let’s consider the
following problem:

A bank wants to screen potential borrowers online by asking them some ques-
tions to see if they qualify for a loan before making an appointment to spend time
discussing loans with the customer. The bank requires that aperson be employed
in order to be eligible for a loan, but the bank also wants the potential borrower to
earn at least $25,000 per year. If a person fails to meet the employment require-
ment, the bank wants the person to receive a message saying that a person must be
employed in order to be considered for a loan. If the person isemployed but fails
to meet the $25,000 requirement, the bank wants the person toreceive a message
telling the person that their income is not high enough.

Let’s follow the steps we saw in the first chapter for preparing a program for the
bank. For the design stage, we have a problem statement in theprevious paragraph
that describes what the bank wants the program to accomplish. Next we need to
make a sequence of statments that will satisfy those requirements.

1. Prepare a message to display to potential borrowers telling them what infor-
mation they will need to provide and in what form they should provide it.
Let’s plan to tell the customers that they will need to tell whether or not they
are employed and whether or not their income exceeds $25,000.

2. Ask whether the customer is employed and provide a variable in which to
store the responses.

3. Ask whether the customer has an income above $25,000 and provide a vari-
able in which to store the respone.

4. Check to see if the customer is employed.

• If the customer is employed, then check to see if the income isade-
quate.

• If the customer is employed, but the income is not adequate, display a
message saying so.

5. If the customer is not employed, display a message saying so.

Let’s look at what code would be entered when you use your editor to write
the code. We have chosen to call our program class “LoanQualification.” In the
main method we have declared two integersemployed andincome and initial-
ized them to 0. On line 11, we alert the user to answer questions using a1 for
an affirmative answer and0 for a negative answer. The first question concerning

4.5. NESTED CONDITIONALS 45

employment is output on line 13. On line 14 the variableemployed is assigned
the input.

Line 16 asks about income and on line 17income is assigned whatever the
user enters.

On line 19 we begin our firstif statement. The expression to be evaluated
checks the value ofincome to see if it is equal to1. If so, anotherif statement
is introduced to see if theincome value is1. We call this a “nested”if because
the secondif is processed only when the firstif expression evaluates totrue.

When the first boolean expression ((employed == 1)) evaluates totrue
but the second one (income > 25000)) is false , theelse section is exe-
cuted, producing the message about income.

Note that if the user inputs a0 indicating that the user is not employed, then
the income check does not occur, but rather the control jumpsto line 32, producing
the message about the need for employment.

The use of the nesting is a convenient way to produced the desired results. It is
important to note that most conditional situations may be achieved in a variety of
ways, some more cumbersome than others. It is a good idea to give some thought
to what you need to accomplish to determine which of the possible conditional
statements would suit your situation best.

1 / **
2 * This program determines whether a potential lender
3 * qualifies for a bank loan or not.
4 * /
5 import java.util.Scanner;
6
7 class LoanQualification
8 {
9 public static void main(String[] args)

10 {
11 int employed, income =0;
12
13 // retrieve user data from keyboard input
14 Scanner consoleIn = new Scanner(System.in);
15
16 System.out.println(
17 "Answer the following questions with 1 " +
18 "for yes and 0 for no.");
19
20 System.out.println("Are you employed? ");

46 CHAPTER 4. CONDITIONALS

21 employed = consoleIn.nextInt();
22
23 System.out.println(
24 "Is your income above $25,000 per year? ");
25 income = consoleIn.nextInt();
26
27 // We check to see if the user is employed.
28 if (employed == 1)
29 {
30 // Only if the user is employed do we check
31 // whether the income is adequate.
32 if (income == 1)
33 {
34 // If both expressions are true,
35 // the user qualifies for the loan.
36 System.out.println(
37 "You qualify for a bank loan.");
38 }
39 else
40 {
41 // the user’s income is inadequate.
42 System.out.println(
43 "Your income is not high enough " +
44 "to secure a loan.");
45 }
46 }
47 // only print this message if user is unemployed.
48 else
49 {
50 System.out.println(
51 "You must be employed to qualify " +
52 "for a loan.");
53 }
54 }
55 }

4.6. EXERCISES 47

4.6 Exercises

Exercise 4.1Write a code segment that inputs an amount representing a sales-
person’s total sales for a month. If that input is greater than 75000, the program
should print a bonus of 1000. In any case, the program should print a message
encouraging the salesperson to work toward next month’s sales.

Exercise 4.2Write a method that inputs two numbers and outputs the smaller of
the two.

Exercise 4.3Write a program that asks the user to input the number of hours
worked during the past week and the hourly rate of pay. If the number of hours
is 40 or less, the amount earned is that number of hours multiplied by the rate.
If the number of hours is greater than 40, then the amount earned is 40 times the
rate plus time and a half for the number of hours over 40. The program you write
should print out an appropriate message that includes the amount earned.

Exercise 4.4Write a program that asks for a child’s name and age and the child’s
readiness score. If either the age is greater than 6 or the readiness score is greater
than or equal to 85, the program should print a message stating that the child is
ready for first grade. Otherwise, there should be a message stating that the child
should try again at a later time.

Exercise 4.5Write a program that inputs two real numbers and then allows the
user to ask for any of the following: the sum, the difference,the product or the
quotient of the numbers. Hint: You may want to have the user type the letter “S”
for sum, “D” for difference, etc. To do this you will need to use a type calledchar
that allows variables to have ascii values.

Exercise 4.6Wrtie a program that allows a user to input 3 grades between 0 and
100. The program finds the average and outputs both the numerical average and
an appropriate letter grade. Assume that grades are assigned on a 10 point scale
where below 60 is “F,” 60 to 69 “D,” etc.

Exercise 4.7Write a program that inputs a student’s year as an integer andthen
prints out Freshman, Sophomore, Junior, or Senior depending on whether a 1 or 2
or 3 or 4 is entered. Use a succession ofif or if else statements, rather than
a switch statement for the purpose of showing that it can be done.

48 CHAPTER 4. CONDITIONALS

Chapter 5

Repetition

We have seen how it is possible to transfer control within a program by evaluating
a boolean expression and then either executing or skipping certain code segments.
Sometimes it is particularly useful to control the flow of action in a program by re-
peating some collection of statements over and over again until some task has been
accomplished. For example, suppose you want to find the largest value among four
numbers. You could declare four variables and assign a valueto each and then start
using conditional statements to compare those numbers in anattempt to find the
largest. However, such a program would not only be cumbersome to write, even
worse, it would defeat the purpose of automating the task at all, since it would
probably be quicker to just process the numbers without using a computer at all.

Our code would like this:

1 / **
2 * This program finds the largest in a set of 4 integers
3 * using a different variable for each integer.
4 * /
5
6 import java.util.Scanner;
7
8 class FindLargest
9 {

10 public static void main(String[] args)
11 {
12 int a, b, c, d = 0;
13 int largest = 0;
14 Scanner consoleIn = new Scanner(System.in);

49

50 CHAPTER 5. REPETITION

15
16 System.out.println("What is your first number?");
17 a = consoleIn.nextInt();
18
19 System.out.println("What is your next number?");
20 b = consoleIn.nextInt();
21
22 System.out.println("What is your next number?");
23 c = consoleIn.nextInt();
24
25 System.out.println("What is your next number?");
26 d = consoleIn.nextInt();
27
28 largest = a;
29
30 if(b > largest)
31 largest = b;
32 if(c > largest)
33 largest = c;
34 if(d > largest)
35 largest = d;
36
37
38 System.out.println("The largest is " + largest);
39 }
40 }

Even with four numbers to process, the program gets long and repetitious.
Think of what would need to be done if we needed to find the largest among 100
numbers or more. Next we will see a way to find the largest among100 numbers
by using far fewer than 100 variables by using a new constructcalled a “loop.”
There are several kinds of loop constructs. We will examine two of them. The first
we will consider is thewhile loop.

The syntax for thewhile loop is given by:

while (<boolean expression>)
{

<stmt>
}

Semantically we note two parts of the construct: First, there is the question of

51

how many times the body of the loop should be executed. That isdetermined by
the boolean expression. The second part is the code to be iterated (repeated). This
is called the “body” of the loop.

In thewhile loop, the boolean expression determines the flow of control.As
long as that expression evaluates totrue , the statements in the loop are executed
over and over. The repetition stops only when the boolean expression evaluates to
false . Here is an example of a code fragment that finds the largest among 10
integers (it would be trivial to modify the program to find thelargest among 100
integers, but this takes too long if you want to actually testthe program) :

1 / **
2 * This program finds the largest of 10 integers.
3 * /
4
5 import java.util.Scanner;
6
7 class FindLargest10
8 {
9 public static void main(String[] args)

10 {
11 // holds one number at a time as it is read.
12 int number = 0;
13 // holds the largest number entered so far.
14 int largest = 0;
15 // keeps track of how many have been read.
16 int counter = 1;
17
18 Scanner consoleIn = new Scanner(System.in);
19 System.out.println("What is your first number?");
20 // note: first input is automatically the largest
21 // number seen so far
22 largest = consoleIn.nextInt();
23
24 while (counter < 10)
25 {
26 System.out.println("Enter next number: ");
27 number = consoleIn.nextInt();
28 if (number > largest)
29 largest = number;

52 CHAPTER 5. REPETITION

30 counter = counter + 1;
31 }
32 System.out.println("The largest is "
33 + largest + ".");
34 }
35 }

When control reaches thewhile construct, the boolean expression is evalu-
ated. When this point of the program is encountered for the first time, the value of
counter is 1 and so the boolean evaluates totrue . This means that the state-
ments between the braces will be executed once. During the execution of the loop
body, a number is input and assigned as the value fornumber . That value is com-
pared to the current value oflargest and if the new number is bigger than the
current value oflargest , the value oflargest is changed to be whatever the
newly input value ofnumber is. Note that before the loop begins, the first of the 10
numbers is read into the variable calledlargestand so when the loop has executed
once, the larger of the first two numbers is already stored in the variable called
largest and so at that point, the value oflargest is the biggest of the values
because it is the only value. The last statement in the loop incrementscounter
by 1, making it 2. At the end of the loop code as indicated by a brace, the boolean
expression is again evaluated. Of course, since the value ofcounter is now 2
and is still less than 10, the loop executes again. So a third number is input and
compared against the value oflargest .

Remember thatlargest holds the larger of the first two numbers, so if the
value ofnumber is still bigger, it will replacelargest . If not, largest will
remain as is, now being the maximum of the first three numbers.This process
continues. Each time the loop is executed,counter increases, the boolean ex-
pression is checked, and as long as the value ofcounter remains less than 10, the
loop steps are executed. However, once the counter reaches 10, this means all the
numbers have been read. Now the boolean expression evaluates tofalse and the
loop steps are skipped entirely, bringing control to the output statement. Since the
value stored in the variablelargest is the largest of all 10 numbers, it is printed
out.

5.1 for Loops

When the programmer knows exactly how many times a code section must be
repeated, an alternative to thewhile loop is a construct called afor loop. A
second example finds the largest number among 10 numbers entered using afor
loop, the same job we did previously with awhile loop.

5.1. FOR LOOPS 53

1 / **
2 * This program finds the largest of 10 integers.
3 * /
4
5 import java.util.Scanner;
6
7 class FindLargestForLoop10
8 {
9 public static void main(String[] args)

10 {
11 // holds one number at a time as it is read.
12 int number = 0;
13 // holds the largest number entered so far.
14 int largest = 0;
15 // keeps track of how many have been read.
16 int counter;
17
18 Scanner consoleIn = new Scanner(System.in);
19 System.out.println("What is your first number?");
20 // note: first input is automatically the largest
21 // number seen so far
22 largest = consoleIn.nextInt();
23
24 for (counter = 2; counter <= 10; counter++)
25 {
26 System.out.println("Enter next number: ");
27 number = consoleIn.nextInt();
28 if (number > largest)
29 largest = number;
30 }
31 System.out.println("The largest is "
32 + largest + ".");
33 }
34 }

In this example, the code section preceding the loop is the same as we used
earlier. We simply set up variables to use for keeping track of the number currently
under consideration, the variable used to store the largestnumber, and a variable to
use for counting how many numbers have been read in. As beforewe read in the
first number and immediately identify it as the largest, since it is the largest so far.

54 CHAPTER 5. REPETITION

In the loop, the keywordfor is followed by a pair of parentheses in which there are
three parts. The first part, the loop initialization, tells where to start. In this case
we have chosen to start counting at 2, since we already read inthe first number.
The second part, the boolean condition, tells what boolean expression should be
checked each time the loop is entered. If this boolean condition is true, the loop
will be entered again. It will continue to be entered until the condition is false. In
this particular case we want the program to continue readingnumbers until 10 have
been read. The third part, the loop update, tells how to keep the counter variable up
to date. This update statement is always executed at the end of every loop iteration.
Note thatcounter++ is a shorthand way of writingcounter = counter +
1 but means exactly the same thing.

The code segment to be repeated is enclosed between braces just as in the while
loop. Note that we do not need to increment the counter in the repeated segment,
since the loop update part of thefor-loop inside the parentheses takes care of
that.

An obvious question concerns when to use awhile loop and when to use
a for loop. It turns out that any loop can be written with either construct, but
there is a definite convention that should be followed.for loops should be used
any time that you knowthe exact number of loop iterationsbefore entering the
loop. Otherwise, you should use awhile loop construct. In our largest-among
10 integers problem, afor loop is the correct choice because before the loop
executes, we already know that we need exactly 10 iterations. However, if we were
to prompt the use to keep entering numbers until they enter a 0, we would need
a while loop since the exact number of interations is not known – it depends on
what the user enters inside the loop body.

5.2 Nested Loops

Just as it was possible and sometimes convenient to put conditional statements
inside other conditionals, there are times when we will needto put loops insider
other loops. Before doing an application of this technique,it is useful to see what
happens when we write a program that illustrates what happens when one loop is
nested inside another.

1 / **
2 * An example of nested loops. Can you
3 * guess what is printed?
4 * /
5 class NestedLoop

5.3. APPLICATON: A MULTIPLICATION TABLE 55

6 {
7 public static void main(String[] args)
8 {
9 int i,j = 0;

10
11 for (i = 0; i < 4; i++)
12 {
13 System.out.println("i is " + i);
14 for (j = 0; j < 3; j++)
15 {
16 System.out.println("j is " + j);
17 }
18 }
19 }
20 }

This short program serves to show how a loop inside another loop behaves.
We often call the first loop (with thei loop control variable) theouter loopand
the second loop (with thej loop counter) theinner loop. When the outer loop is
first reached, the value of the loop counteri is set to 0, the boolean expression is
evaluated, and since the value is true, the inner loop is reached. Its control variable,
j is set to 0, the boolean expression is evaluated, and since the value istrue , the
body of the second loop is executed. At the end of one iteration of the inner loop,
j is incremented and the boolean expression evaluted with thenew value ofj .
Since that value is stilltrue the inner loop body is executed again. This repetition
of execution, incrementing, and expression evaluation continues until the boolean
expression finally evaluatesfalse whenj reaches 3.

It is only when the inner loop finishes that control reverts tothe outer loop,
incrementing thei (now to the value of 1), evaluating the boolean expression to
see ifi is less than 4 and then upon an evaluation oftrue , repeating the loop body
once again. Since the loop body contains the inner loop, whencontrol reaches the
inner loop, the value ofj is set back to 0 and the whole porcess begins again.

The result is that for each of the four iterations of the outerloop, the inner loop
goes through 3 iterations. Run the program to confirm that youunderstand how the
control flows. Try to guess the output before you enter and runthe program.

5.3 Applicaton: A Multiplication Table

In this application we use one new idea besides nested loops.To provide flexibility
so you could print a table for any number of values, not just 10, we introduce

56 CHAPTER 5. REPETITION

the idea of a constant. The integer representing the highestvalue whose pairs we
want the product for has the word final in front of it:final int MAX = 9; .
Final means that the value is set in the declaration and can never be changed in the
program. In this case we have set the value at 9, remembering that the digits go
from 0 to 9. It is common convention to use all uppercase letters for a constant so
that they are easy to identify in the code.

Problem Statement: Write a program that will produce a multiplication table
for all 10 digits, showing the product for each pair of digits. Keep the program flex-
ible so if we wanted a multiplication table for just 5’s or 8’sor any other number,
we could just change the line of the program where we declaredMAX.

Design:

1. Choose variables to represent the digit pairs whose product is required.

2. Choose a variable to represent the maximum digit for whichwe want the
table of product pairs.

3. Display a heading for the table.

4. For each digit, find the product of it with every other digitand display the
products on a single line labeled by that digit.

1 / **
2 * This program produces a multiplicaton table
3 * for pairs of digits.
4 * /
5
6 class MultTable
7 {
8 public static void main(String[] args)
9 {

10 int i;
11 int j;
12 final int MAX = 10;
13
14 // print the top header row
15 System.out.print(" * | ");
16 for (j = 1; j <= MAX; j++)
17 {
18 System.out.print(" " + j + " ");
19 }

5.4. EXERCISES 57

20 System.out.println();
21 for (j = 1; j <= MAX; j++)
22 {
23 System.out.print("------");
24 }
25 System.out.println();
26
27 // print the table
28 for (i = 1; i <= MAX; i++)
29 {
30 System.out.print(i + " | ");
31 for (j = 1; j <= MAX; j++)
32 {
33 System.out.print(" " + i * j + " ");
34 }
35 System.out.println();
36 }
37 }
38 }

5.4 Exercises

Exercise 5.1Write a program that allows a user to input as many numbers as the
user wants to enter and then outputs the number of values thatwere entered.

Exercise 5.2Write a program that asks how many numbers a user wants to add
and then allows those numbers to be entered. After all the numbers are entered,
the program outputs the sum.

Exercise 5.3Write a program that finds the average of however many numbersa
user may want.

Exercise 5.4Write a program that allows a user to input as many numbers as
the user wants to enter and then outputs the maximum and the minimum numbers
among the entered numbers.

Exercise 5.5Write the same programs again using the other kind of loop from the
one you used the first time.

58 CHAPTER 5. REPETITION

Chapter 6

Strings

We have been using examples of strings throughout our programs thus far. This
chapter takes a closer look at the syntax and semantics associated with creating
and manipulating the data type ofString in the Java language.

We first note that the typeString is not one of the primitive types listed in
our table of Figure 3.1. We do see the type ‘char ’ in that table as having a value
of ASCII characters. Intuitively, aString is a sequence of characters grouped
together. For instance, the sequence of characters ‘J’, ‘a’, ‘v’, and ‘a’ can form
theString "Java" . This more complex type has its own class definition, and is
referred to as aclass type. We shall learn to create our own class types in Chapter 9,
but the focus of this chapter is on how tousethe String class type to greater
effect in our own programs.

We begin by reviewing some of the concepts from earlier in thetext.

6.1 String Syntax and Semantics

6.1.1 String Constants

We have already seen that we can introduce aString constant into our program
by simply putting the desired sequence of characters between double quotes. For
instance, our first program used the constantString , "Welcome to Java
Programming!" as a parameter to theSystem.out.println() method.

A string constant, just like a variable defined as (class) type String , is an
expression whose type isString and whose value refers to the sequence of char-
acters that make up the constant. As such, a string constant can be used in any
case where a string expression is appropriate. We have seen this in the use of string
constants as parameters to methods, such asprintln and on the right hand side

59

60 CHAPTER 6. STRINGS

of assignment statements.

6.1.2 String Declarations and Initialization

In a manner similar to the declarations statement for the primitive data types of
int or double , we can declare a variable to refer to aString . The syntax

String <identifier>;

is exactly the same as that introduced in Chapter 1. The declaration creates the
variable<identifier> and associates storage in the memory of the machine with
that<identifier>. It also associates the data type ofString with <identifier>,
constraining the valid values that may be stored in the variable.

We can also initialize aString variable when it is declared. The syntax is

String <identifier> = <string-expression>;

where the<string-expression> is most often a<string-constant>, as defined above.
For example, we can declare and initializeString variablefirst andsecond
as follows:

String first = "Now is the time ";
String second = "for all good persons";

and now I can use the variablesfirst andsecond anywhere that aString is
appropriate. We have already seen the use ofString variables in the context of
user interaction.

6.1.3 String Concatenation

We use the ‘+’ operator withString s to form longer strings that are the concate-
nation of theString operands. Continuing our example from above, the string
expressionfirst + second results in a newString whose value is"Now
is the time for all good persons" . This string expression could be
assigned to a newString variable:

String third = first + second;

or it could be used as theString argument to an output statement:

System.out.println(first + second);

6.2. STRING MANIPULATION 61

or anywhere else a string expression is appropriate.
The string concatenation operator in Java is also frequently used to help us

convert numbers and other data types intoString s. If either of the operandsof a
‘+’ operator is a string, then the other operand is automatically converted to a string
as well, and then both strings are concatenated. We have beenusing this property
from some of our earliest programs in Chapter 1. For example,suppose we have
the following sequence of code:

int age = 25;
String prefix = "My age is ";
String myage = prefix + age;

In the third statement, sinceprefix on the right hand side of the assignment
statement is aString , the integerage is converted from the value 25 to the two
character string sequence"25" . Then the two strings"My age is " and"25"
are concatenated together to form the string"My age is 25" .

String concatenation also works with non-numeric types. Suppose I want to
combine a primitive typechar with aString . I can use the same technique:

char letterS = ’s’;
String animal = "frog";
String plural = animal + letterS;

to yield the value"frogs" for the variableplural .

6.2 String Manipulation

When we increase the complexity of a data type, we often wish to manipulate and
access some of the simpler types that make up the more complextype. This is
certainly true for the class typeString . For instance, one attribute of any string
is its length. The length of the string"Welcome to Java Programming!"
is 28. Note that we include the characters that are spaces andpunctuation, ... ,
they are part of the string. The quote marks, however, are not. They are part of the
syntax that we use to denote a string constant.

When a class type is defined, the designer of that type may define methods
that operate on instances of this type so that we can query andmanipulate the
constituent attributes of the complex type. For instance, the class type ofString
has a method calledlength() that returns the length of a particularString
instance. We invoke a method for a particular instance of a class type by using the
syntax:

<instance>. <method>(<parameters>)

62 CHAPTER 6. STRINGS

So if I have theString variable namedplural as defined above,plural
refers to the instance of aString , andplural.length() would invoke the
length() method on the string, and return the value of 5. I can use this expres-
sion anywhere that an integer experssion is appropriate, for instance:

int n = plural.length();

6.2.1 Character Positions and Accessing Individual Characters

When we wish to access an individual character of a string, weuse thecharAt()
method of theString class. ThecharAt() method takes a single parameter
that specifies the position of the desired character in the string. We begin number-
ing character postions of a string at index 0, so for the string "Java" , the ‘J’ is at
index position 0, the ‘a’ at index 1, the ‘v’ at index 2, and the‘a’ at index 3. The
index of the last character of any string is equal to the length of the string minus
one.

Consider the following declarations and initialization:

String line = "Let it be!"
int lineLength = line.length();
char firstChar = line.charAt(0);
char lastChar = line.charAt(lineLength - 1);
char middleChar = line.charAt(lineLength/2);

In this example, the length of the string, stored in the variable lineLength ,
is 10. In the second line, we pass an integer 0 as the requestedcharacter position
in the invocation ofcharAt() and so the variablefirstChar has the value
’L’ . In the next statement, we retrieve the last character of thestring by comput-
ing the final index position oflineLength - 1 , or 9. This yields the value
’!’ in the variablelastChar . Finally, we compute the position of the charac-
ter about halfway through the string with the expressionlineLength/2 , which
evaluates to 5, and is passed tocharAt() to get the’t’ assigned to the variable
middleChar .

Note that it is an error to invoke thecharAt() method with a parameter
whose value is outside the valid range of indices for the instance string on which it
is operating.

6.2.2 Other Useful String Methods

Finding the position of a substring

Another frequent operation required in programs is to search for a substring within
a larger string. TheString class provides a method for accomplishing this. Say

6.2. STRING MANIPULATION 63

that we have a string variable declared and intialized as follows:

String quote = "All the world’s a stage";

If we wish to find the index position of the substring"the" within this string, we
can use theindexOf() method:

int pos = quote.indexOf("the");

This returns the index within the instance string of the firstoccurance of the spec-
ified string. In this case, the variablepos would be assigned the value 4. If the
substring were not found in the instance string, the method returns a -1.

Extracting a substring by position

At other times in our programs, it may be necessary to extracta substring from
a given string. The methodsubstring() accomplishes this task for us. For
example, if we with to extract the substring from index position 8 through index
position 12 (inclusive) of thequote string instance, and assign the substring to a
newString variable, we could write:

String sub1 = quote.substring(8,12);

This would result insub1 referring to a new string whose value is"world" . It
is an error for the beginning index to be greater than the ending index, or for either
the begiining index or ending index to be outside the range ofvalid indices for the
string.

Comparing two strings

We often wish to compare two strings to see if they have the same sequence of
characters. For primitive types, we can simply use the ‘==’ comparison operator,
but for class types, we require an operation that “looks inside” and compares the
elements within. For instances of theString type, we can invoke theequals()
method, that takes a single string parameter specifying thestring to compare the
instance string to. The method returns aboolean (true or false) that indicates
if the instance string is identical to the parameter string or not. By returning a
boolean , we can use this method invocation anywhere a boolean expression is
appropriate, such as in the condition of anif statement.

Say that we have a string input from the user and want to determine if the user
typed the string ”stop”. The following code exemplifies thiscommon scenario:

64 CHAPTER 6. STRINGS

Scanner input = new Scanner(System.in);
String answer = input.nextLine();
if (answer.equals("stop")) {
< stop-statements >
}

Since the method invocation is a boolean expression, we can apply boolean op-
erators to it. For instance, we can change the above example to execute a block
of statements whenever the user’s answer isnot "stop" by using the code:if
(!answer.equals("stop"))). The parameter to theequals method need
not be a string constant. It could be any string expression. For instance, we could
compareString str1 with String str2 by usingstr1.equals(str2) .
It is equivalent to interchange the instance string and the parameter string, so
str2.equals(str1) will return the same result.

If, in the above example, the user typed"Stop" instead of"stop" , then the
equals() method would returnfalse, because the upper case ’S’ is not the same
character as the lower case ’s’. This will probably result inunexpected behavior of
the program. TheString class defines a method namedequalsIgnoreCase()
to address this case. As the method name suggests, this compares an instance
string with a string parameter, but ignores differences in case in the two character
sequences.

A final comparison method of classString comes into play when we wish
to determine the lexicographic ordering of two strings. Think of the lexicographic
ordering of strings as their ordering by standard dictionary-style alphbetical order-
ing. In applications such as sorting or searching a collection of elements, we need
to compare two strings and see which should occur earlier than the other in this or-
dering. We want to be able to tell that the string “Jones” should be ordered before
“Smith” and that “Smith” should be before “Smithson”, whichshould be before
“Smithy”.

ThecompareTo() method of theString class gives us this ordering abil-
ity. We compare an instance string, through which we invoke the method, to a
string passed as a parameter. There are three possible outcomes to this compar-
ison. If the instance string occursbeforethe parameter string in a lexicographic
ordering, the method returns a negative integer. If the two strings areequal, the
method returns zero. And if the instance string occursafter the instance string in
the ordering, the method returns a positive integer. For themost part, we need
not be concerned with the magnitude of the value returned from compareTo ; we
primarily interested in whether the result is negative, positive, or zero.

The following program illustrates the use ofequalsIgnoreCase() and
compareTo() in a way that allows you to experiment and see for yourself the

6.2. STRING MANIPULATION 65

way the methods work.

1 / **
2 * The CompareStrings class illustrates the use of the compare To
3 * and equalsIgnoreCase methods of the String class by repeate dly
4 * comparing two strings and reporting the outcome of the compa rison.
5 * /
6
7 import java.util.Scanner;
8
9 public class CompareStrings {

10
11 // The single method of the class, main.
12
13 public static void main(String[] args) {
14
15 String answer; // Hold the answer from the continue question
16
17 String string1;
18 String string2; // Hold the two strings entered by the user
19
20 int retval; // Return value from compareTo invocation
21
22 Scanner consoleIn = new Scanner(System.in);
23
24 System.out.println("Do you wish to continue [yes/no]? ");
25 answer = consoleIn.nextLine();
26
27 while (answer.equalsIgnoreCase("yes")) {
28
29 System.out.println("Enter the first string: ");
30 string1 = consoleIn.nextLine();
31
32 System.out.println("Enter the second string: ");
33 string2 = consoleIn.nextLine();
34
35 retval = string1.compareTo(string2);
36 if (retval < 0) {
37 System.out.println("compareTo is negative: " + retval);
38 System.out.println("so string1 (the instance string) is");
39 System.out.println("before string2 (the parameter strin g):");
40 System.out.println(" " + string1 + " < " + string2);
41 } else if (retval > 0) {
42 System.out.println("compareTo is positive: " + retval);
43 System.out.println("so string1 (the instance string) is");
44 System.out.println("after string2 (the parameter string):");
45 System.out.println(" " + string2 + " < " + string1);

66 CHAPTER 6. STRINGS

46 } else {
47 System.out.println("compareTo is zero: " + retval);
48 System.out.println("so string1 (the instance string) is t he");
49 System.out.println("same as string2 (the parameter strin g):");
50 System.out.println(" " + string1 + " = " + string2);
51 }
52
53 System.out.println("Do you wish to continue [yes/no]? ");
54 answer = consoleIn.nextLine();
55 }
56 }
57 }

6.3 Writing a Loop over a String

In Chapter 5, we learned the syntax and semantics of writing loops in Java, allow-
ing us to repeat a set of actions a number of times. When we wantto perform
the same set of steps for each character in a string, a loop that iterates over the
sequence of characters, one character at a time, is the righttool for the job.

To illusrate, we will develop a complete program to solve a particular problem.
Suppose we wish to count the number of words in a sentence thatis input by the
user. This will serve as our problem statement.

As we think about our solution to the problem, we note that, ina well-formed
sentence, each word is followed by either a space character,or the sentence ter-
minating punctuation character. For simplicity, let us assume that all of our input
sentences end in a period, and the sentences are all simple sentences (so no com-
mas, colons, or other punctuation in the sentence interior). This gives us our basic
algorithm: examine each character in the input string. If the character is either a
space or a period, increment a counter keeping track of the number of words.

The steps to solve our problem may be enumerated as follows:

1. Prompt the user for an input sentence.

2. Retrieve the input sentence from the user.

3. Begin with the word count, denotedx, set to zero.

4. Examine each character, denotedc, in the input sentence.

(a) If the current characterc is either a space or a period, then increment
the word countx.

6.3. WRITING A LOOP OVER A STRING 67

(b) Otherwise, continue.

5. Output the final word count result,x, to the user.

1 / **
2 * The WordCount class retrieves an input sentence from the use r and
3 * then combines a loop with String functions to examine the cha racters
4 * and count the words in the sentence.
5 * /
6
7 import javax.swing.JOptionPane; // Tell Java where to find
8 // JOptionPane
9

10 public class WordCount {
11
12 // The single method of the class, main.
13
14 public static void main(String[] args) {
15
16 int wordCount = 0; // Running count of number of words
17
18 String sentence; // User entered sentence
19 int sentenceLength; // Length of user entered sentence
20
21 // Prompt the user for the sentence and retrieve input.
22
23 sentence = JOptionPane.showInputDialog(null,
24 "Enter a simple sentence:");
25
26 // Number of iterations of the loop is the number of
27 // characters in the sentence.
28
29 sentenceLength = sentence.length();
30
31 // Loop index: 0 <= i <= sentenceLength - 1
32
33 for (int i=0; i < sentenceLength; i++) {
34
35 // set variable to the character at the current index (i)
36
37 char currentChar = sentence.charAt(i);
38
39 // check to see if it is a space or period
40
41 if (currentChar == ’ ’ || currentChar == ’.’) {
42
43 // if so, increment the word count

68 CHAPTER 6. STRINGS

44
45 wordCount = wordCount + 1;
46 }
47
48 // nothing else to do in the loop
49 }
50
51 // Display result in a friendly way
52
53 JOptionPane.showMessageDialog(null,
54 "Sentence word count is " + wordCount);
55 }
56 }

Chapter 7

Arrays

Often we need a collection of closely related variables. Forinstance, suppose
we wanted to perform an operation on four exam scores for the computer science
course. We could declare and initialize four separate variables like this:

int score1 = 90;
int score2 = 78;
int score3 = 86;
int score4 = 100;

In Chapter 5, we saw how a loop can allow you to process a seriesof variables
by repeating the same action over and over. However, once oneiteration of the loop
is over, any information in the loop variables is replaced during the next iteration
of the loop; essentially, none of the specific data is stored and can be accessed after
the loop terminates. Suppose instead we needed to process and store twenty exam
scores. Nobody wants to declare twenty separate variables;there is a better way.

An array is a list or collection of variables. All the individual variables in
the array must be the same type (allint s or alldouble s, for example) referred
to as thebase typeof the array. The individual array variables are now called
array elementsand we use a single variable name to refer to the entire collection
of elements. In the following example, we illustrate an array calledscores of
integer elements:

scores 90 78 86 100

Figure 7.1: An array of exam scoreint variables

69

70 CHAPTER 7. ARRAYS

7.1 Basics

In Java, arrays are declared by stating the base type of the array, followed by a
pair of brackets, and then an identifier or name for the array variable. Here is an
example of how to declare an array of exam scores:

int[] scores; // declare array
scores = new int[4]; // allocate memory space

There are two steps needed to prepare an array variable. The first linedeclares
a variable namedscores to be an array of integers (the base type). This tells the
Java compiler to associate the variable namedscores with an integer array. The
second line tells the compiler to allocates memory for four integers in the array.
The keywordnew is used to allocate new memory space for the array.

Unlike primitive types, arrays and objects require both a declaration and an
allocation step which will be discussed thoroughly in Chapter 9. Both the decla-
ration and allocation steps are necessary though most programmers will combine
them into a single statement as follows:

int[] scores = new int[4]; // declare and allocate

Thesizeor lengthof the array is specified in the allocation step. In the above
example, the length of thescores array is four; there are four integer elements
in this array. We can substitute any integer constant, integer variable or integer
expression for the size specification.

Though the array name refers to an entire collection of integers, we access each
integer element individually. Each element in an array is indexed by an integer
location; in Java, the first element has index 0 instead of index 1. Syntactically, we
use brackets again to denote the index of the element in the array to access. In the
code below, we illustrate the basic assignment statements using arrays.

1 // accessing integers in the array
2 public class SimpleArrayExample2
3 {
4 public static void main (String args[])
5 {

7.2. PROCESSING ARRAYS WITH LOOPS 71

6 int [] scores; // declare array
7 scores = new int[4]; // allocate memory space
8
9 scores[0] = 90;

10 scores[1] = scores[0] - 12;
11 scores[2] = 86;
12 scores[3] = 99;
13 scores[3]++;
14
15 // compute the average of the scores
16 double average = (scores[0] + scores[1]
17 + scores[2] + scores[3]) / 4.0;
18 }
19 }

Notice thatscores[0] is the first element indexed in the array (notscores[1])
andscores[3] is the last element in the array. It is an error to attempt to access
an array at an index outside this range. Because it is easy to forget to start number-
ing at 0, a common beginning mistake is to attempt to access anarray one past the
last entry. Try it out to see what error message you receive.

int[] scores = new int[4];
scores[0] = 90; // first exam score
scores[3] = 100; // last exam score
scores[4] = 100; // out of bounds exception

7.2 Processing Arrays with Loops

It is quite common to perform the same operation to every element in an array. The
for-loop is the natural construct that makes this an easy task. In this next example,
we declare an array of twentydouble s and initialize each element in the array to
a random number (between 0 and 1). Remember that Java requires each variable
(including each entry in an array) be initialized before use. We then compute and
print the average of the numbers in the array.

1 / **
2 * Create twenty random numbers
3 * Compute and print their average
4 * /
5 public class AverageTwenty

72 CHAPTER 7. ARRAYS

6 {
7 public static void main (String args[])
8 {
9

10 double numbers[] = new double[20];
11
12 for (int i = 0; i < numbers.length; i++)
13 numbers[i] = Math.random();
14
15 double sum = 0;
16 for (int i = 0; i < numbers.length; i++)
17 sum += numbers[i];
18
19 double average = sum / numbers.length;
20 System.out.println("Average is " + average + ".");
21 }
22 }

There are several new concepts here. First notice the syntax, numbers.length
on line 12. With a.length appended to the variable name of an array, we can ac-
cess the length (number of items) of the array; in this example,numbers.length
has a value of 20. This is useful because if we change the size of the array in the
allocation step on line 10, we do not need to change the for-loop as well; it will
automatically adjust to whatever lengthnumbers happens to be.

Lines 12 and 13 use a for-loop to assign a value to eachdouble in the ar-
ray; each array element receives a double value between 0 and1 through a call to
Math.random() . Lines 15-17 compute the sum of all numbers in the array. A
variable namedsum is used to accumulate the sum. Line 17 uses the short-hand
+= operator to add the contents of each slot in the array tosum; this is equivalent
to

sum = sum + numbers[i]; // same as sum += numbers[i]

7.3 Initialization

There is a short-cut notation for declaring and initializing an array in one step,
useful for smaller arrays. Suppose we wanted to declare and initialize an array with
the four single-digit prime numbers (2, 3, 5, and 7). Insteadof using four separate
assignment steps to put values into an array of four integers, we can create, allocate
and initialize the array all in one step as shown in the following example.

7.4. MULTIDIMENSIONAL ARRAYS 73

1 / **
2 * Initialize an array with the four single digit primes
3 * /
4 public class InitializeArray
5 {
6 public static void main (String args[])
7 {
8 int primes[] = {2, 3, 5, 7};
9

10 for (int i = 0; i < primes.length; i++)
11 System.out.println(primes[i] + " is a prime number.");
12 }
13 }

The Java compiler determines there are four elements in the set on the right
side of Line 8, automatically allocates an array of four integers and initializes the
array with the values in the set. Notice the use of the braces to hold the comma-
delineated, initialization set. The for-loop on lines 10 and 11 prints each prime
number.

7.4 Multidimensional Arrays

All the arrays discussed so far have been a sequence of data items. We call this
a one-dimensional arraybecause the sequence extends in one dimension (it has
length). We can also create arrays that are like tables; thatis, they have two di-
mensions (length and height). In the following code example, we create a two-
dimensional array of characters to implement a Tic-Tac-Toegame:

1 / **
2 * A two-dimensional array to hold a game of Tic Tac Toe
3 * /
4 public class TicTacToe
5 {
6 public static void main (String args[])
7 {
8 char board[][] = new char[3][3];
9

10 // initialize each board slot to a blank
11 for (int i = 0; i < board.length; i++)

74 CHAPTER 7. ARRAYS

12 {
13 for (int j = 0; j < board[i].length; j++)
14 {
15 board[i][j] = ’ ’;
16 }
17 }
18
19 // put an ’X’ in the upper right corner
20 board[0][2] = ’X’;
21 }
22 }

With two dimensional arrays, we use two pairs of brackets fordeclaration,
allocation, and access. We typically think of the first set ofbrackets (the left-most
pair) as specifying the rows and the second set of brackets (the right-most pair) as
specifying the columns. For example,

int array [][] = new int[3][5]

declares and allocates a two dimensional array with three rows and five columns.
To the Java compiler, a two dimensional array is really an array of arrays; it is an
array whose base type is also an array. In the Tic-Tac-Toe example, the variable
board is an array where each element is a character array. This concept of arrays
within arrays is depicted in Figure 7.2.

board =

board[0] →
[

board[0][0] board[0][1] board[0][2]
]

board[1] →
[

board[1][0] board[1][1] board[1][2]
]

board[2] →
[

board[2][0] board[2][1] board[2][2]
]

Figure 7.2: Structure of a Two-dimensional Array

Here board refers to the outer-most array. Each element inboard is an
array and is depicted in Figure 7.2 as a row. Noticeboard.length provides the
number of rows in theboard array and thatboard[0] accesses the first element
of board (which is the array in the top row) whileboard[2] accesses the last
element ofboard (which is the array in the bottom row).

7.5. AN APPLICATION EXAMPLE 75

We access the length or a particular element of an inner arrayby the follow-
ing syntax: board[0].length gives the length of the first inner array while
board[1][2] refers to the middle inner array (board[1]) and accesses the
last element from that middle row.

On lines 11-17, nested for-loops (one loop inside the other)initialize each char-
acter in the array to a blank space. The outer for-loop (withi as an index counter)
goes row by row while the inner for-loop (withj as a loop counter) processes col-
umn by column. You might wish to trace through this code examine by executing
each statement and noting the values ofi and j as you fill blanks into the table
(two-dimensional array). Just as single for-loops are the standard way to operate
on each element of a one-dimensional array, nested for-loops are the obvious way
to perform an operation on each element of a two-dimensionalarray.

The last statement on line 20 makes a move for Player 1 in this game. The spot
in the first row (row = 0) and last column (column = 2) is marked with an’X’ . This
assignment statement puts an’X’ in the upper right corner as Player 1’s first move
of the game. Recall that the array basetype ischar and that’X’ is a character
constant.

You can also create arrays of three or more dimensions thoughthese are rarer.
Can you guess the syntax for declaring and accessing such an array?

7.5 An Application Example

Consider the following problem:

Construct a program that searches through a sequence of integers to
find the smallest number.

Design

To store the sequence of integers, we opt for an array. Since the problem state-
ment (above) did not specify exactly how many integers are tobe in the sequence,
we have a few choices. First we could declare a constant at thebeginning of our
program and use this value throughout; this makes it easy to change the number
integers quickly and in only one place in our program. Alternatively, at the start
of the program we could prompt the user for the number of integers. This second
option allows the program to adapt to the user without havingto recompile. Let’s

76 CHAPTER 7. ARRAYS

opt for this second choice here.

After we receive the number of integers from the user and declare/allocate our
array, we must fill it with data. In this program, we have the user enter the sequence
of integers using the dialog boxes of a previous chapter. Prompting the user for the
numbers is convenient for small arrays and for quickly testing our program, but to
handle larger data sets, we would probably want to read arrayvalues from an input
file or create them automatically (randomly, for example).

Finding the smallest value in an array is a little trickier than might first appear.
At this point, we encourage you to see if you can sketch an algorithm to solve this
task yourself. It is a worthwhile programming exercise. Read on when you are
ready to see how we solve the problem.

We use the variablesmallestSpot to keep track of the location of the small-
est item in the array. As we scan the array from start to end, wewill compare each
new array element with what we currently believe to be the smallest location; if we
find a new item smaller, then we will update the smallest spot.It is critical to ini-
tialize smallestSpot to the first index (location 0) in the array before starting
the loop. Do you see why this step is necessary?

7.5.1 Edit

We enter the following program into Dr. Java and save it in a file calledSmallArray.java .

1 / **
2 * An application to find the smallest value in the array
3 * /
4 import javax.swing.JOptionPane;
5
6 public class SmallArray
7 {
8 public static void main (String args[])
9 {

10
11 String answer = JOptionPane.showInputDialog(
12 null,
13 "How many integers in your array?");
14 int num = Integer.parseInt(answer);
15
16 // create an array of NUM integers
17 int array[] = new int[num];

7.6. EXERCISES 77

18
19 // fill the array with values from the user
20 for (int i = 0; i < array.length; i++)
21 {
22 answer = JOptionPane.showInputDialog(
23 null,
24 "Enter integer " + (i+1) + ":"
25);
26 array[i] = Integer.parseInt(answer);
27 }
28
29 // find the location of the smallest integer in the array
30 int smallestSpot = 0; // assume the smallest int is in the firs t spot
31 for (int i = 0; i < array.length; i++)
32 {
33 if (array[i] < array[smallestSpot])
34 smallestSpot = i;
35 }
36
37 // report the smallest value
38 JOptionPane.showMessageDialog(null,
39 "Smallest int is " + array[smallestSpot]);
40 }
41 }

7.5.2 Compile

If you didn’t type the above program correctly, you may need to fix your compile
errors.

7.5.3 Execute

Test the program several times with arrays of different sizes and values, and with
different locations for the smallest item. Developing thorough test cases is both a
science and an art form that helps eliminate bugs from the code.

7.6 Exercises

Exercise 7.1Declare (only declare) an array of fifteen characters namedword.

Exercise 7.2Allocate memory for theword array in Exercise 7.1.

78 CHAPTER 7. ARRAYS

Exercise 7.3 Declare and allocate an array of 100 integers for holding thehome-
works grades of a very large class (assume one homework gradefor each of the
100 students – a one dimensional array).

Exercise 7.4 Declare and allocate an array to hold all the lower case vowels.

Exercise 7.5 Declare, allocate and initialize an array to hold all the lower case
vowels. Do this in at least two different ways.

Exercise 7.6 Declare, allocate and initialize an array to hold the first four letters
of the lower case alphabet. Do this in at least three different ways. Hint: can you
use a loop to initialize the array? Is it possible to use achar type for a loop
counter?.

Exercise 7.7 Establish an array to hold the integers 1 through 10. Use a loop to
initialize the array.

Exercise 7.8 Denison has 2000 students who will each take four courses this term.
Allocate an appropriate array to hold the final grades for each student in each
course. Hint: use a two dimensional array here.

Exercise 7.9 Assume the array of grades in the previous question has been allo-
cated and filled-in. Write a nested loop that will compute theGPA for each student
during this term. You can assume the grades are all A, B, C, D, or F. Store the
GPAs in another array that you create, declare, and allocate.

Exercise 7.10Again there are 2000 Denison students. Now allocate an array
that will hold the four course grades for each student duringeach of their eight
semesters. This is a three-dimensional array. As a challenge, see if you can write
a loop to compute the overall GPA for each student (assuming the grades for all
eight semesters are present).

Chapter 8

Methods

A methodgathers together a set of program steps that define an action in a program.
We have already used a number of built-in methods that are part of the Java API.
The System.out.println() method prints messages to the console. The
Math.sqrt() method computes the square root of a number. In addition to the
numerous built-in methods, we canconstruct our own that perform tasks specific to
our program. In fact, we have already created a method calledmain in each of our
application programs.

In this chapter we learn the basics of designing and using ourown methods that
will enable us to better manage the growing complexity of ourprograms. As we
shall discuss, methods are important for a number of reasons. Conceptually, they
allow us to break apart long and complex programs into more manageable pieces.
Methods allow us to better re-use our own code and share our code with other
programmers; this reduces the amount of effort required to build new programs.
Proper use of methods is important for isolating errors in programs and promotes
faster debugging. We’ll discuss the full implications of these factors after we have
learned the basics of methods.

8.1 Basics

We start with the syntax for defining a method:

1 <modifiers> <return-type> <method-name> (<parameter-li st>)
2 {
3 <statements for method body>
4 ...

79

80 CHAPTER 8. METHODS

5 <return statement>
6 }

Here is an example of a method calledaddTwoNumbers() in our own pro-
gram.

1 / **
2 * This program illustrates a basic method.
3 * /
4 public class MethodsExample1
5 {
6 public static void main (String args[])
7 {
8 int x = 5;
9 int y = 3;

10 int z = addTwoNumbers(x,y);
11 System.out.println(x + " + " + y + " = " + z);
12 }
13 / **
14 * A method to add two numbers and return the sum.
15 * /
16 public static int addTwoNumbers (int num1, int num2)
17 {
18 int sum;
19 sum = num1 + num2;
20 return sum;
21 }
22 }
23

Let us examine each part of the method separately.

• Method placement
Methods are created and listed inside the class definition. If the class is an ap-
plication, themain method is typically listed first. InMethodsExample1.java ,
we have also created a method calledaddTwoNumbers() which is listed
inside the class but after themain() method.

• Method name
We name each method so that we can call upon the method to perform the

8.1. BASICS 81

desired action. Since method names are identifiers, the syntax rules for them
are the same as for identifiers used in other parts of our programs such as for
variable and class/program names. It is conventional to choose verbs for our
method names and to capitalize the first letter in each word ofour method
name except for the first word. TheaddTwoNumbers() identifier follows
this convention.

• Return type
Immediately preceding the method name on the first line, is the return type.
The return type can be any valid primitive Java type, such asint ordouble ,
or any Java object (more about these in a later chapter). We may also use the
keywordvoid to indicate no return type.

For example,println() is a method that does not return any type. Its job
is merely to print a message to the console. In contrast,sqrt() is a method
that returns an answer (specifically, the square root of a number). Four our
addTwoNumbers() method, we specifyint as the return type to indicate
that our method returns an integer answer.

Methods can return only one answer though you can return arrays and ob-
jects which hold more than one single data item.

• Modifiers
You’ll notice that theaddTwoNumbers() method starts on line 16 with
the keywordspublic static . These modifiers precede the return type
and affect how the method is accessed and how it behaves. In Chapter 9
on objects, we’ll examine the meaning of the modifiers, but for now we’ll
simply include them in the methods we write.

• Parameters
The last item on the first line of a method definition is theparameter list.
The parameters are enclosed in a set of parentheses and consist of matched
pairs of types and variables. The parameters act much like variables inside
the method but are also a conduit for information coming in tothe method
from the outside world. We’ll further discuss the details ofparameters later
in this chapter.

• Method body
The method body is a series of statements that perform the work of the
method and is enclosed in a pair of start and end braces. Methods that return
values (the return type is other thanvoid) contain a specialreturn state-
ment that indicates the exact value to be returned; the variable or expression
in the return statement must match the return-type specifiedin the first line of

82 CHAPTER 8. METHODS

the method declaration. Methods of typevoid may have return statements
where no return value is specified; commonly, these methods omit the re-
turn and the Java compiler automatically inserts a return asthe last statement
in the body. Notice ourmain() method (of type void) does not contain a
return statement.

8.2 Invocation and Execution Order

Method calls alter the order in which statements are executed. The program starts
by executing the first statement inside themain method and then continues execut-
ing statements, one at a time, in the order they are listed. However, on line 10 of the
MethodExample1.java program, we encounter the call to theaddTwoNumbers()
method. The execution of statements inmain() will suspend at this point. The
program then ”jumps” to the first line in theaddTwoNumbers() method; it will
execute statements in the method body until it reaches the end or encounters a
return statement. Once execution of theaddTwoNumbers() method is com-
plete, the program will then return back to themain() method at line 11 and
resume executing the remaining statements insidemain() .

8.3 Parameters and Passing Information

Parameters are the information passed in to the method. We distinguish between
two different kinds of parameters, formal and actual parameters. Formal parame-
tersare the variables in the method; on line 16,num1andnum2are the two formal
parameters for this method.Actual parametersare the specific values being passed
to the method at the method call. These are thex andy parameters on line 10.

Actual parameters are matched to the formal parameters in the method’s pa-
rameter list; it is an error if the types of these matchings are not consistent. Values
are copied from the actual parameters and passed to the formal parameters. Thus,
the formal parameternum1 receives a value from actual parameterx and formal
parameternum2 receives a value from actual parametery .

In order to understand the connection between formal and actual parameters,
we’ll need to outline how variables are stored in memory. Consider the following
snippet of code:

int num = 1;
int scores[] = { 90, 85, 100 };

For primitive data types such asint , java allocates a single location in mem-
ory. The variable name,num in this example, is associated with this memory

8.3. PARAMETERS AND PASSING INFORMATION 83

num 1 scores

90

85

100

Figure 8.1: Memory Allocation for Variables

location. The actual value of the variable is stored here. InFigure 8.1, we see how
this segment in memory is reserved, how the variable name is associated with this
location, and how the value is stored here.

Objects and arrays, calledreference-types, are treated differently than primi-
tive types. Because objects and arrays typically contain more than one data ele-
ment, they require more than a single memory location. In ourexample, the array
scores is still allocated an initial single memory location. However, instead of
storing the whole array here (it won’t fit), we store a reference to separate, larger
segment of memory which contains all the data elements for the array. This also
explains why arrays (and objects) require two steps. Duringdeclaration the array
name is associated with the single reference location. But during allocation, the
reference points to a larger segment of memory which is reserved for the array.
This two-step concept is also illustrated in Figure 8.1.

Now that we have a basic understanding of how Java reserves memory for
primitive variables and arrays, we can explore how Java associates formal and ac-
tual parameters. Java uses a concept called pass-by-value to exchange information
between formal and actual parameters. Inpass-by-value, only the value of an actual
parameter is copied to the formal parameter. The formal parameter in the method
is a separate variable. The programmer is free to change the value of the formal
parameter inside the method, but any changes here do not causes changes to the
actual parameter in the method call.

We turn to another example program to help illustrate the subtle effects of pass-
by-value; seeMethodsExample2.java . In this program, the method named
doNothing() is an example of how primitive types are affected with pass-by-
value. On line 8 of the main program,numis assigned the value of 1 as is confirmed
by the firstprintln() statement. ThendoNothing() is invoked and variable
num, used as the actual parameter, is passed in by value. ThedoNothing()
method receivesnum’s initial value and assigns it to the formal parameter named

84 CHAPTER 8. METHODS

x . Inside ofdoNothing() , we print the value ofx (it is 1), then change the
value to 0, and print again (it is now 0). AfterdoNothing() returns, we print
the value ofnumagain in the main program. The value ofnum is still 1 showing
that changes to the formal parameter insidedoNothing() do not cause changes
to the actual parameternum.

1 / **
2 * This program illustrates parameter passing in methods
3 * /
4 public class MethodsExample2
5 {
6 public static void main (String args[])
7 {
8 int num = 1;
9

10 System.out.println("num = " + num);
11 doNothing(num);
12 System.out.println("num = " + num);
13
14 int scores[] = {90, 85, 100};
15
16 System.out.println("scores[0] = " + scores[0]);
17 doSomething(scores);
18 System.out.println("scores[0] = " + scores[0]);
19 }
20 / **
21 * Illustrates pass-by-value
22 * /
23 public static void doNothing (int x)
24 {
25 System.out.println("x = " + x);
26 x = 0;
27 System.out.println("x = " + x);
28 }
29 / **
30 * Illustrates pass-by-reference
31 * /
32 public static void doSomething (int list[])
33 {
34 System.out.println("list[0] = " + list[0]);
35 list[0] = 0;
36 System.out.println("list[0] = " + list[0]);
37 }
38 }
39

8.4. SCOPE 85

num 1 scores

90

85

100

x 1 list

copy value copy value

Formal

Parameters

Actual

Parameters

(a) Primitive Type (b) Reference Type

x 0

xx 0

Figure 8.2: Nuances of Pass-by-value

This concept of having separate memory locations for the formal and actual pa-
rameters is illustrated in Figure 8.2(a). We see how the value of actual parameter,
num, is copied to a separate memory location for formal parameter, x . Changes
made tox inside thedoNothing() method do not affect the value fornumbe-
causex has its own separate memory location.

However, this same idea of pass-by-value, affects arrays and objects quite dif-
ferently. In Figure 8.2(b), we see the reference associatedwith the formal array
parameterscores . This reference is copied via pass-by-value to the actual pa-
rameterlist . But notice, now there are two references pointing to the same chunk
of memory holding the array data! Because they are the same array, any changes
that are made to this data through the actual parameter oflist are reflected back
to the array ofscores . In reference types, pass-by-value creates an alias (another
reference) for the same piece of memory; it is akin to having two separate names
for the same data.

This concept is supported inMethodsExample2.java by thedoSomething()
method. It accepts an array as input and changes the value of the first element. This
change is retained back in the main program. Be sure to enter this program, execute
it, and watch what is printed to the screen.

8.4 Scope

Now that we have more than one method in our programs, it is possible that we
may wish to use the same variable name in different places. Java provides a rule

86 CHAPTER 8. METHODS

about how to arbitrate naming conflicts among variables. We must also understand
where in a program we can use different variables that we create. All of these
issues fall under the heading of variable scope. Thescopeof a variable is the part
of a Java program in which the variable can be accessed.

Java provides two different kinds of scope: class and local.A variable that has
class scopeis declared within a class but outside any method; these are often called
class variablesand can be used anywhere in the class (in any method within the
class). A variable that haslocal scopeis declared inside a method and can only
be used in that method. Since Java variables must be declaredbefore they can be
used, local scope variables can only be used in statements that follow a variable
declaration inside that same method.

1 / **
2 * This program illustrates scope rules
3 * /
4
5 public class Scope
6 {
7 static int x = 1;
8 static int y = 2;
9

10 public static void main (String args[])
11 {
12 int x = 3;
13
14 System.out.println("x = " + x);
15 System.out.println("y = " + y);
16
17 doNothing(y);
18 }
19 / **
20 * Illustrates scope rules
21 * /
22 public static void doNothing (int x)
23 {
24 int z = 5;
25
26 for (int i = 1; i <= 3; i++)
27 {
28 double root = Math.sqrt(i);
29 System.out.println(root);
30 }
31
32 System.out.println("x = " + x);

8.4. SCOPE 87

33 System.out.println("y = " + y);
34 System.out.println("z = " + z);
35 }
36 }
37

Scope.java is a Java program that would probably not be written other than
to illustrate various scope rules. Near the top of the program on lines 6 and 7,
variablesx andy are declared outside any method; these are calledclass variables
since they belongs to the class but not to a specific method within the class. In
Chapter 9 we shall learn more about class variables. These class variables can be
used throughout the entire java program – they have class scope.

Lines 9-17 contain themain() method. Line 11 declares a local variable
namedx. Variablex can only be used within the body ofmain() , specifically
on lines 12-17. Inmain we have a name conflict. There is a class variablex and
also a local variablex. Which variable will be printed on line 13? In this case, the
local variableoverridesor hidesthe class variable; the local variable (x = 3) will
be printed on line 13 while the class variabley is printed on line 14.

In the methoddoNothing() we have two more local variables. One of them,
z, is easy to identify. The other is a parameter (also namedx). Formal parameters
act just like local variables inside a method except that they are initialized with
values passed in from the method call. Again, local variablex hides the class
variablex.

Just to make things more interesting, notice the method callto doNothing()
on line 16 inmain passes the value of instance variabley. This value (y = 2) is
assigned to the parameter/valuex inside thedoNothing method.

In doNothing() , we point out one more peculiarity of scope. The for-loop
on lines 26-30 contain two more variable declarations: the loop counteri and a
data variableroot . In this case, the for-loop creates an ”inner block” of code
within the body of thedoNothing() method. These two local varaibles,i and
root , have scope that is limited only to the for-loop block of lines 26-30. It would
be an error to attempt to use them outside this block. In fact,all local variables
have scope restricted to the block in which they are defined whether this block is a
whole method, or a smaller block created by a loop or a decision statement.

Normally, a programmer would not write a confusing program such as this.
A more judicious use of names will help anyone reading your program to follow
the intent and execution more easily. We merely provide thisunusual example to
illustrate the peculiarities of scoping rules.

88 CHAPTER 8. METHODS

8.5 Method Overloading

It is possible to have more than one method of the same name. Inorder to do
this, the parameter list must be different (specifically different types in different
orders). This way the java compiler will know which method toassociate with each
method call. Having different methods of the same name is known asoverloading
the method.

At first, you might think naming separate methods the same is poor program-
ming practice because it adds confusion. However, there is aplausible situation in
which using the same name is appropriate. Consider that you want to perform the
same operation but on different data types. InOverload.java , we have two
separateaddTwoNumbers methods, one for integers and one for doubles.

1 / **
2 * This program illustrates method overloading.
3 * /
4 public class Overload
5 {
6 public static void main (String args[])
7 {
8 int x = addTwoNumbers(2,3);
9 System.out.println("2 + 3 = " + x);

10
11 double y = addTwoNumbers(2.5,3.1);
12 System.out.println("2.5 + 3.1 = " + y);
13 }
14 / **
15 * A method to add two integers and return the sum.
16 * /
17 public static int addTwoNumbers (int num1, int num2)
18 {
19 return num1 + num2;
20 }
21 / **
22 * A method to add two doubles and return the sum.
23 * /
24 public static double addTwoNumbers (double num1, double nu m2)
25 {
26 return num1 + num2;
27 }
28 }
29

8.6. METHODS AND SOFTWARE ENGINEERING PRINCIPLES 89

The method call on line 8 has two integers as parameters. Recognizing this,
the Java compiler associates this method call with theaddTwoNumbers method
on lines 17-20. Similarly, the method call on line 11 (with two real numbers)
invokes theaddTwoNumbers method on lines 24-27. This is a better design
than having a method namedaddTwoIntegers and another method named
addTwoDoubles . Since both methods accomplish the addition, it is easier for
the programmer using our methods to simply invokeaddTwoNumbers .

8.6 Methods and Software Engineering Principles

The addition of methods allows programmers to adopt some sound software engi-
neering techniques.

• Modula design
We want to avoid having methods (especiallymain) become too large and
cumbersome. This makes it difficult to read and difficult to debug. The idea
of modular designis to break up large tasks into smaller, more manageable
units that each become a method, and then call each method to accomplish
the task.

• Code Reuse
Using methods makes it easier to re-use code we have already written. If a
common task is written as a method, we can easily copy that method into
other programs that we write. Later, when we study objects, we will learn
even better ways to organize our code to make it more flexible and usable to
other software that we or others create.

• Isolation
We can view a method as a black box that accepts input and produces out-
put. If we make methods that are small and compact, we can testour meth-
ods thoroughly to be sure they implement the intended operation. Once this
is done, we can then use this method in other parts of our program freely
without having to worry about debugging the method. If thereis an error,
methods make it easier to isolate and repair the bug.

Let us illustrate the principles in the following program design.

Julie is taking a chemistry class and Megan is taking a biology class.
They each have received several midterm exam grades. Based on these
grades, determine who has the higher science class GPA?

90 CHAPTER 8. METHODS

Shown below inGPA1.java is the complete program without methods. Let
us now design a solution that uses methods and compare the two.

1 / **
2 * This program does not use methods to compute GPA’s
3 * /
4
5 import java.util.Scanner;
6
7 public class GPA1
8 {
9 public static void main (String args[])

10 {
11 Scanner consoleIn = new Scanner(System.in);
12 // create array to hold Julie’s scores
13 System.out.print("Enter number of midterms for Julie: ");
14 int numJulieExams = consoleIn.nextInt();
15 double julieScores[] = new double[numJulieExams];
16
17 // create array to hold Megan’s scores
18 System.out.print("Enter number of midterms for Megan: ");
19 int numMeganExams = consoleIn.nextInt();
20 double meganScores[] = new double[numMeganExams];
21
22 // read Julie’s scores
23 for (int i = 0; i < julieScores.length; i++)
24 {
25 System.out.print("Enter score " + (i+1) + " for Julie: ");
26 julieScores[i] = consoleIn.nextDouble();
27 }
28
29 // read Megan’s scores
30 for (int i = 0; i < meganScores.length; i++)
31 {
32 System.out.print("Enter score " + (i+1) + " for Megan: ");
33 meganScores[i] = consoleIn.nextDouble();
34 }
35
36 // compute Julie’s GPA (average midterm)
37 double julieAverage = 0.0;
38 for (int i = 0; i < julieScores.length; i++)
39 {
40 julieAverage += julieScores[i];
41 }
42 julieAverage = julieAverage/julieScores.length;
43
44 // compute Megan’s GPA (average midterm)

8.6. METHODS AND SOFTWARE ENGINEERING PRINCIPLES 91

45 double meganAverage = 0.0;
46 for (int i = 0; i < meganScores.length; i++)
47 {
48 meganAverage += meganScores[i];
49 }
50 meganAverage = meganAverage/meganScores.length;
51
52 if (julieAverage > meganAverage)
53 System.out.println("Julie has a better GPA.");
54 else if (meganAverage > julieAverage)
55 System.out.println("Megan has a better GPA.");
56 else
57 System.out.println("They have the same GPA.");
58 }
59 }

8.6.1 Design

Themain() method inGPA1.java is a bit too long. It becomes difficult to read
and contains a number of different tasks. Throughoutmain() , we also do the
essentially same task repeatedly to different data elements. It would be better to
reduce the clutter by moving some code to methods.

Our first activity is to engage in modular design to think about how to break up
the larger problem statement into subproblems. It seems that for each student, we
must prompt for the number of midterm exams, enter and recordthe midterms, and
then compute their average. Finally, after completing these tasks for each student,
we will compare their GPAs and print a message. Each of these subtasks is about
the appropriate size for a method so we create a method for each one.

Problem

Input number of exams

Input exam scores

Compute exam average

By moving each task to a method, we reduce the repetitive nature of the code in
the main program. InGPA1.java , we are repeating the same pieces of code for
each student. Methods reduce the amount of code by moving oftrepeated sections
to a method body. Thus there is only one place in the program that contains each
section; multiple method calls then invoke this code as manytimes as needed.

92 CHAPTER 8. METHODS

8.6.2 Edit, Compile, Execute

Below is the final program using methods. IngetArraySize , we decide to
pass in aString containing the student’s name. Thus the method can be used to
prompt for both students’ exam numbers. Notice we use the pass-by-value feature
that allows methods to change values of arrays in thereadArrayValues()
method. This method changes the values in the original arrayby reading values
typed by the user.

1 / **
2 * This program uses methods to compute GPA’s
3 * /
4
5 import java.util.Scanner;
6
7 public class GPA2
8 {
9 public static void main (String args[])

10 {
11 int size;
12
13 size = getArraySize("Julie");
14 double julieScores[] = new double[size];
15
16 size = getArraySize("Megan");
17 double meganScores[] = new double[size];
18
19
20 // read Julie’s scores
21 System.out.println("Enter Julie’s scores.");
22 readArrayValues(julieScores);
23
24 // read Megan’s scores
25 System.out.println("Enter Megan’s scores.");
26 readArrayValues(meganScores);
27
28 // compute Julie’s GPA (average midterm)
29 double julieAverage = computeAverage(julieScores);
30
31 // compute Megan’s GPA (average midterm)
32 double meganAverage = computeAverage(meganScores);
33
34 // compare GPAs
35 if (julieAverage > meganAverage)
36 System.out.println("Julie has a better GPA.");
37 else if (meganAverage > julieAverage)

8.6. METHODS AND SOFTWARE ENGINEERING PRINCIPLES 93

38 System.out.println("Megan has a better GPA.");
39 else
40 System.out.println("They have the same GPA.");
41 }
42
43 / *** **
44 * Method to prompt for array size
45 *** ** /
46 public static int getArraySize (String name)
47 {
48 Scanner consoleIn = new Scanner(System.in);
49 // create array to hold name’s scores
50 System.out.print("Enter number of midterms for " + name + ": ");
51 int num = consoleIn.nextInt();
52 return num;
53 }
54
55 / *** **
56 * Method to read values in array
57 *** ** /
58 public static void readArrayValues (double[] array)
59 {
60 Scanner consoleIn = new Scanner(System.in);
61 for (int i = 0; i < array.length; i++)
62 {
63 array[i] = consoleIn.nextDouble();
64 }
65 }
66
67 / *** **
68 * Method to compute average of values in array
69 *** ** /
70 public static double computeAverage (double[] array)
71 {
72 double average = 0;
73 for (int i = 0; i < array.length; i++)
74 {
75 average += array[i];
76 }
77 return average / array.length;
78 }
79
80 }

94 CHAPTER 8. METHODS

8.7 Exercises

Exercise 8.1 Write a method calledmax() that accepts two integers as input and
returns the value of the larger one.

Exercise 8.2 Override the method of the previous example to work with a pair of
double inputs and return a double value.

Exercise 8.3 Write a method calledwordCount() that accepts aString as
input and counts the number of words in the string. Words are groups of charac-
ter(s) separated by white space (spaces, returns, tabs) or punctuation.

Exercise 8.4 Name and describe the two different types of parameters. Give a
brief program and show/label each type of parameter within your program.

Exercise 8.5 Name and describe the technique that Java uses to associate formal
and actual parameters. Describe how this concept applies toprimitive types and
reference types differently; use both a program and also an picture of memory to
support your description.

Exercise 8.6 Is it an error to name a local variable using the same identifier as a
method name elsewhere in the class? Try it out to see what happens. Even if it is
legal, why should this not ever happen in one of your programs?

Exercise 8.7 Give at least three reasons why it is important to write a comment
at the top of each method that describes what the method does.Keep in mind that
other people might be reading your code at some point.

Exercise 8.8 Using the discussion of how memory is allocated for reference types,
describe why arrays have both a declaration and an allocation step. What happens
to the memory for an array during each step?

Exercise 8.9 Write a program that allows a user to play a game of Tic-Tac-Toe
against the computer. Use modular design to break the program down into simple
tasks. Then write a method for each task. Have the computer pick an empty square
at random for its moves.

Exercise 8.10Write a program that will spell check text documents. You should
be able to obtain a text dictionary on the internet or you can create your own
mini-dictionary to test your program. Prompt the user of your program to enter
filenames for both a text document and a dictionary. Then lookup each word in the
text document to see if it is in the dictionary or not. Print any words that are not
found.

Chapter 9

Objects

All data stored in a java program is either a primitive data type or an object type. We
have already encountered several primitive data types including int anddouble .
The object types are further divided into array types and user-defined types. In
Chapter 7 we encountered the array types. In this chapter we take a closer look
at the user-defined types. Figure 9.1 depicts the relationship of the data storage
hierarchy in java programs.

all Java

 types

primitive

 types

object

 types

user-defined

 types

array

types

Figure 9.1: Java Data

There is often some confusion with the use of terminology in object-oriented
programming. Rightly so, because some terms have differentformal and informal
meanings. Java uses the termclassto refer to a blueprint, or plan, for an object.
The class describes how an object is to be constructed and what features/methods
it implements. If you were in the house construction business, a class is like a
blueprint for the house to be constructed. As we’ll see shortly, the keywordclass

95

96 CHAPTER 9. OBJECTS

is used in programs to syntactically declare/create new types.
Formally, the termobjectrefers to any instantiation of a class. Using our house

construction business analogy, an object is a physical house that has been con-
structed according to the specified blueprint. Notice that with one blueprint (class)
you can build many houses (objects). This relationship is depicted in Figure 9.2.
Objects have lifespans; they come into existence, serve a purpose, and then are
disposed of once their function is accomplished. Classes are abstractions; they are
ideas that are ”created” and then live for all time. For example ”democracy” really
isn’t a physical entity; it is an idea about how to conduct a government. The idea
of democracy will be around forever even if there are no current implementations
of democracies in existence.

class

 object object object object object

Figure 9.2: Class (blueprint) and Object (house)

Informally, the termobject is sometimes used in place of class. That is, object
denotes not only the physical implementation of a class, butalso the abstract design
(ie class) itself. We’ll use the term object to refer only to the physical implementa-
tion of a class but beware of this other common and casual use of the word in other
literature or when conversing with programmers.

Finally, the termabstract data typeis sometimes used as a synonym for class.
Other computer scientists use abstract data type to refer tothe abstract concept
while a classdescribes the detailed implementation of that abstraction(and ob-
jects are physical instantiations of the class). Think of ”Victorian style” as an ab-
stract data type of our house construction project; we can have different blueprints
(classes) detailing Victorian houses and how they are to be constructed.

In summary, classes describe a new data type while objects are physical imple-
mentations of that data type. These features allow the programmer to create new
data types that are useful to the specific program being written. They also extend
the language by allowing programmers to create libraries ofcommon classes and
share them with others, thereby reducing redundant programming efforts. With
the right design philosophy, objects and object-oriented programming facilitate the
creation of very large programs.

9.1. THE PHILOSOPHY OF OBJECTS 97

In this chapter we examine the basics of creating our own classes.

9.1 The Philosophy of Objects

Objects provide three key features: encapsulation, data hiding and inheritance.
These three features allow the programmer to extend the Javalanguage by creating
new data types.

We use the automobile as an analogy to develop some of these ideas. People
with a small amount of training and a proper license are able to drive just about
any kind of automobile even though each car may differ greatly in its design and
structure.

Encapsulationrefers to the logical grouping of a data type along with the op-
erations on that data type. In a non-object-oriented programming language, say C
for example, the programmer primarily builds a structure tohold some particular
data; then routines are designed to operate on those structures. In Java, the view is
more wholistic. The data item and its operations are viewed as a natural whole.

In terms of our automobile, encapsulation refers to idea that you view the au-
tomobile as a unified concept. For example, you don’t go down to the local Ford
dealership to buy some tires, an engine, a frame, a transmission, some assorted
nuts and bolts, and then take everything home to assemble your own home-made
automobile. Instead, you buy the whole car, already fully assembled and ready to
go.

This idea of encapsulation makes more sense if you consider that two kinds
of people are usually involved in an object. The class designer is like the car
manufacturer; they must know all the nuts-and-bolts details of their car. The class
user is like a driver. They don’t usually need to know much about how the car
actually works; they only need to know the basics of driving and they are ready
to use just about any automobile. Though you will be creatingand using your
own objects for now, try to think of yourself in these two roles; object oriented
programming makes more sense when seen in this light.

Closely related to encapsulation is the idea ofdata-hiding. A class typically
has two perspectives: the class’s public view and its implementation. The pub-
lic view, often called itsabstract data type, is intended for users of the class. It
describes what the class does and how the user can interface to the class. The
class’s implementation, however, is typically hidden fromview. Only the class’s
programmer/creator sees the implementation. The implementation contains many
details that are not relevant to the use of the class and thus are not part of the public
view; as long as the object works as advertised in its abstract data type, the user
should not need to know how the object actually accomplishesall its tasks. Re-

98 CHAPTER 9. OBJECTS

call the previous distinction between the abstract data type (public view) and class
(private implementation detailed in a blueprint).

When you drive an automobile, you are using the car’s public interface. You
know there is an ignition switch, a gear shifting mechanism,a steering wheel,
a brake pedal and accelerator, possibly a clutch, and an instrument panel. All
cars have these things and they all work pretty much the same way. However, the
internal workings of a car vary greatly. Your Jeep might havean inline 6-cylinder
engine while your Mazda sports car uses a rotary engine. These are details that you
don’t need to know in order to operate the car. Only your car’sdesigner, fabricator,
and mechanic really need to be aware of the car’s internal workings. These internal
workings – the implementation of its public interface – are hidden from the user’s
view. This is what makes driving a car a relatively easy task for all kinds of people,
especially those with limited mechanical experience.

Lastly we discuss the notion ofinheritance. Inheritance is the idea that instead
of creating a separate class for two closely related data types, we can often combine
the design and construction of classes by sharing their resources.

Consider that there are many different kinds of cars: sportscars, sedans, wag-
ons, sport-utility vehicles, etc. They all share common properties (see list above)
but they also have features in common within each category (sports cars are typi-
cally low to the ground and fast). Instead of creating completely separate classes
for each type of car, we first might create a generic class called car that contains
those things in common (steering wheels, engine, ...). Thenwe can create separate
”extension classes” for each type of car that inherit all thebasic properties of a car.
In this way, we are not duplicating the same common attributes everywhere. In-
heritance is one feature of object-oriented programming that will not be addressed
further in this text.

9.2 Class Basicis

In this section we create our first class. We’ll look at the java specific syntax of
how classes are declared while we keep in mind the terminology and class design
philosophy discussed previously. We use a deck of cards for an illustrative exam-
ple.

9.2.1 The Abstract Data Type

Before we write any code or discuss class syntax, we first needto think wholis-
tically about the deck of cards as an object. Take a moment andjot down a few
ideas on scratch paper. Try to think about how you interact with a deck of cards.

9.2. CLASS BASICIS 99

What important features do decks have? In what ways do you usethem? Are there
some uses that are generic to all decks? Are there others thatare specific to one
particular use (say dealing seven cards for Go Fish)? Returnback to this discussion
when you have spent a few minutes building your own list.

Our list consist of the following:

• A deck has 52 cards.

• There are four suits (clubs, diamonds, hearts, and spades).

• There are thirteen cards in each suit (2, 3, ..., 10, Jack, Queen, King, and
Ace).

• We often want to deal cards (extract one card at a time) from the deck.

• We’ll need to shuffle the cards in a random order.

• We may need to recollect all the cards and start over by placing them all in
the deck.

Our list is fairly short. Every time I think about adding something else, I hes-
itate because I want my list to contain only those things shared by all decks and
common uses. Specialty things (like jokers or like the ability to add cards back to
the deck) can be accomplished later by extending the class via inheritance. Good
object designers (ie class designers) tend to be minimalists; they include only those
things which are necessary and inherent in the object.

For now, you can imagine our list above as the beginnings of anabstract data
type (ADT) for the deck of cards. Think of the ADT as a contractwith the class’s
user: these are the things I promise my deck class will accomplish. At this point, an
experienced java programmer would probably want to write a fully specified ADT
document; this would help guide them in the creation of theirobject, especially if
multiple people are involved in the effort. Since this is ourfirst spin with objects,
we’ll forgo this step and start the class design in java-specific syntax.

9.2.2 Syntax Rules for Classes

Every java class has a class name. Though any valid java identifier will do, the
convention is to use a capital for the first letter in each wordand to make the class
name a noun. Good examples areVictorianHouse andSportsCar . We’ll
useCardDeck for our class name.

100 CHAPTER 9. OBJECTS

Every java class must be created in a separate text file. The name of the file
must be identical to the class name except that.java is appended to the file-
name. We open a text editor (Dr. Java will do) and create a new file with the name
CardDeck.java for our deck class.

As shown in the code segment below, each java class begins with the keyword
class followed by the class name. A pair of braces then enclose the contents of
the class. Often the keyword modifierpublic precedes the class definition as is
shown below.

1 public class Deck
2 {
3 // instance variables are listed here.
4
5 // methods are listed here.
6
7 } // end of Deck class

Classes typically contain two things: data structures and methods. The data
structures are used to store the data for the object. These can consist of primitive
typed variables, arrays or more user defined types. They are sometimes called
instance variablesfor the class. The second major component in each class is a list
of methods that provide the usable features of the class. It is typical to list the data
variables first and then the methods, though this is not strictly required1.

9.2.3 Access Modifiers

Classes make extensive use of two access modifiers:public and private .
These words precede both instance variable declarations and method declarations.
Use them to restrict access to certain parts of your class design. For example, we
would want the method calledshuffle() to bepublic so that our class’s user
can call this method. But we might want the data structure that contains the list
of cards to beprivate so that the class’s user cannot subvert our interface and
change the cards around arbitrarily.

Referring back to the automobile analogy, we want our driverto use the public
interfaces such as the steering wheel and brake pedal. We do not necessarily want
them to pop the hood and start mucking with the fuel injectors. We’ll want these
to be private so that only trained professionals who know howthe whole car works

1Scoping rules will prohibit the use of instance variables inmethods that precede the declaration
of these variables. Thus it is usually a good idea to list the variables before all the methods.

9.2. CLASS BASICIS 101

can make any necessary adjustments. These access modifiers are important for
properly implementing the concepts of encapsulation and data hiding.

Most typically, instance variables and other data items areprivate while meth-
ods are public. But there may be some data items, especially constants, that we’ll
want to make public and there are often a few ”housekeeping” methods that we’ll
keep private since only other methods within the class should call them. Note that
by default, all things arepublic . But it is a good idea to use this word explicitly
so that your intentions are made clear.

9.2.4 Design Decisions

There are many ways to implement a deck of cards in java. Thereare choices to
make regarding the data structures; these will influence howeasy or difficult it is
to implement certain methods. Now is the time to make some of these decisions.

We decide to use integers for representing individual cards. We know there are
52 cards in the deck so we’ll use 0, 1, ... 51 to represent the different cards. Of
course our deck class’s user won’t ever have to know this; this detail is one of the
things we’ll keep private from the user.

Integers make it easy to compare cards by value. The typical order to cards is
to first rank them by kind and then suit. So all 2’s are the lowest, followed by 3’s,
then 4’s and so on up to Kings and then Aces which are the highest. Within each
kind, the suits are ranked according to clubs, diamonds, hearts, and spades (low to
high). This means that the 2 of clubs is the very lowest card (the 0 card) while the
Ace of spades is the highest card (card number 51).

Some simple modular arithmetic can be used to convert a card number into its
suit and kind. Spend a few moments thinking about how you might do this. Hint:
use the mod and div operators along with 4 and 13 (four suits, thirteen kinds). Read
on once you have solved this problem yourself.

We can obtain the card’s kind by taking its number and dividing by four:

kind = cardNum/4;

Similarly, the card’s suit is obtained by taking its number and ”mod”ing by four:

suit = cardNum%4;

Of course, this gives us a ”suit number” from 0 to 3. We’ll haveto convert this to
an appropriate string using aswitch statement.

102 CHAPTER 9. OBJECTS

We choose to use an array ofint ’s to store the card numbers. The order of
numbers in the array determines the order of the cards in the deck. By rearranging
(permuting) the numbers in the array we can shuffle the deck. To deal cards, we
can extract them from the front of the array. We’ll need an index counter so we
can keep track of which card is currently on the top of the deck(i.e. which array
location represents the current top index).

Our class is starting to take shape:

1 //=== ======
2 // Matt Kretchmar
3 // August 1, 2005
4 // Deck.java
5 //
6 // Abstract Data Type description should go here.
7 //=== ======
8
9 public class Deck

10 {
11 // We use integers 0..51 to represent the cards.
12 // kind = cardNum / 4;
13 // suit = cardNum % 13;
14 // Array spots [index .. 51] are used to stored cards.
15 // This implies that the index keeps track of the
16 // current top of the deck. Array locations
17 // [0..index-1] are unused (cards have already been
18 // removed from the deck).
19 private int cards[]; // cards stored by number
20 private int index; // index = current top deck
21 public static final int NUM_CARDS = 52;
22
23 //--- ---
24 // shuffle
25 // Shuffles the cards in a random order.
26 //--- ---
27 public void shuffle ()
28 {
29 }
30
31 //--- ---
32 // draw

9.3. CONSTRUCTORS 103

33 // Returns (and removes) the next card in the deck.
34 //--- ---
35 public String draw ()
36 {
37 return null;
38 }
39
40 } // end of Deck class

Notice we have included extensive comments detailing the specifics of our im-
plementation. We should probably include a copy of the ADT document in the
comment heading at the top of the class. In addition to the private instance vari-
ables, we have also added blank methods for shuffling and drawing; we’ll add the
code to them shortly2. In future installments, we’ll remove some of the comments
so that the code fits within this book more easily.

We have placed apublic final int in the instance variable section named
NUMCARDS. This is a constant specific to the class (recall the keywordfinal im-
plies a constant). We use the convention for constants of alluppercase letters using
an underscore to separate multiple words; this makes it easyfor someone reading
our code to know thatNUMCARDSis a constant variable without having to look
for its declaration. We make it public so that users of our class can access this
constant.

9.3 Constructors

If you were attentive, you might have noticed a problem with our class. In the
instance variable section, wedeclaredan array to hold the deck. But we did not
allocateany memory for the array yet; we have a reference that does notyet point
to an actual array. In the instance variable section, we can only declare variables.
We cannot execute regular java statements including array allocations. So how is it
that we can create an array before the user starts calling shuffle and other routines
that won’t yet work without an array?

The answer is a special method called a constructor. Aconstructoris a method
that is secretly called when a new object of this class type iscreated. The class
designer uses the constructor to properly initialize the class right before it gets
used. This includes allocating memory for arrays and other object types as well as

2Thereturn null; statement inside thedraw() method is to allow our temporary class file
to compile. Thedraw() method must return a string, so this statement is necessary to avoid an
error. We’ll remove it later.

104 CHAPTER 9. OBJECTS

initializing variables with certain values. In ourCardDeck class constructor, we
need to (1) allocate the array, (2) place the cards in the array, and (3) initialize the
index to the top of the deck.

A constructor method has the same exact name as the class name. It is a unique
method in this respect. Here is our deck class constructor method (we show only
the method here though a constructor is typically the first method in the list after
the instance variable section).

1 //-----------------------------------
2 // Default constructor
3 // Creates a new deck in sorted order
4 //-----------------------------------
5 CardDeck ()
6 {
7 cards = new int[NUM_CARDS];
8 for (int i = 0; i < NUM_CARDS; i++)
9 {

10 cards[i] = i;
11 }
12 index = 0;
13 }

This is called thedefault constructorsince it takes no arguments. You can have
other constructors with input arguments if it makes sense for your particular class.
We could have a constructor with an inputint that tells us how many cards to start
our deck with (though this seems not in keeping with our common and minimalist
goals for the class). Notice the constructor never has a return type.

9.3.1 Finishing shuffle() and draw()

Now that we have our constructor finished, we can fill in the code for theshuffle()
anddraw() methods.

1 //--- ----------
2 // shuffle
3 // Shuffles the cards in a random order by using an exchange
4 // shuffle algorithm.
5 //--- ----------
6 public void shuffle ()
7 {
8 for (int i = NUM_CARDS-1; i > index; i--)

9.3. CONSTRUCTORS 105

9 {
10 int spot = (int)(Math.random() * (i-index+1)) + index;
11 int temp = cards[i];
12 cards[i] = cards[spot];
13 cards[spot] = temp;
14 }
15 }
16 //--- ----------
17 // draw
18 // Return the next card at spot index. Move index to the next
19 // card. It is an error to draw from an empty deck.
20 //--- ----------
21 public String draw ()
22 {
23 if (isEmpty())
24 {
25 System.out.println("Error: deck empty");
26 System.exit(1);
27 }
28 int card = cards[index];
29 index++;
30 return cardToString(card);
31 }

Thedraw() method is the easiest to follow. Recall that theindex instance
variable is used to hold the position in the array of the current top card in the deck.
To draw a card, we need only to access the card at the location specified byindex
and then increase the index to the next array spot. Of course,we’ll need to handle
the error condition that occurs when a draw is made on an emptydeck. Figure 9.3
depicts how thedraw() method works.

Notice that indraw() we call two other methods. BothisEmpty() and
cardToString() are methods that we’ll need to define in our class. TheisEmpty()
method will bepublic so that the user can access it too whilecardToString()
will be private since this is one of those details that we want to hide from the
user. Can you fill in the code for these two methods on your own3?

Theshuffle() method works by making random exchanges between cards
in the deck. Do you think each card has the same probability ofbeing permuted to
the same destination by this algorithm? This would be an important property for a

3The code for these methods is shown at the end of the chapter.

106 CHAPTER 9. OBJECTS

x x 3c Kh 5s 3d Ac 7h 10c 5d 4h

index= 2

0 1 2 3 4 5 6 7 8 50 51

x x Kh 5s 3d Ac 7h 10c 5d 4h

index= 3

0 1 2 3 4 5 6 7 8 50 51

x

card returned = 3c

Figure 9.3:draw() method

blackjack application otherwise good players might learn to exploit the statistical
distribution of cards in our not-so-good shuffling algorithm.

9.4 Objects and Memory

Though we have discussed the memory differences between primitive types and
objects in the arrays chapter, it is worth revisiting that discussion here since the
concept is so critical to the proper design and use of objects.

Suppose we have the following code in our program:

int num;
num = 1;
CardDeck deck1;
deck1 = new CardDeck();

The variablenum is of typeint which is a primitive type. The first statement
declares and allocates space for the integer. There is no value in this memory
location yet4. The second statement assigns the value of 1 to the variable.

4Technically speaking, there might already by some latent data in this memory location sonum

9.4. OBJECTS AND MEMORY 107

The variabledeck1 is of type CardDeck (our newly designed data type).
The third statement only declares a reference to someCardDeck but does not yet
actually allocate any memory for theCardDeck . In Figure 9.4, the declaration
statement creates the reference box (upper right) but does not yet allocate an object
(lower right box). The fourth statement above does the actual allocation. It creates
a memory location for the newCardDeck object (lower right box in Figure 9.4)
and then assigns the reference to ”point” to this memory location.

num1 1

deck1

Deck

data

Figure 9.4: memory for objects

Java does automatic memory management. When you allocate space for a
variable, java will search computer memory and find some space for you. If this
space is for an object, it will set the object variable’s reference to point to this
space. When you are done using the variable, java will automatically detect that
the memory is no longer used and free up that memory space for other variables to
use.

9.4.1 Copying objects

Consider the following code segment:

int num1 = 1;
int num2 = num1;
Deck deck1 = new Deck();
Deck deck2 = deck1;

Can you draw a memory model that illustrates these statements? Figure 9.5
shows the resulting memory model. Notice that two separate variables for the

probably already has a value. In fact, java initializes new integers to 0 but you should not rely on
this. Instead explicitly initialize the variable to 0 with an assignment statement.

108 CHAPTER 9. OBJECTS

integers are created. The assignment statement in line 2 above copies the value
from one variable to the other. You can change the value of onevariable (say
num1) and it won’t affect the value of the other variable (num2).

However, there is only oneCardDeck object. The assignment statement in
line 4 above merelycopies the referenceof one variable to the otherCardDeck
variable. Now both variables refer to the same piece of memory. If you make
changes todeck1 , the same changes will be made todeck2 as well because
both variables share the same object. This is a critical difference between primitive
types and object types.

num 1 1

deck1

Deck

data

num 2 1

deck2

Figure 9.5: copying an object ?

If you do indeed want to make a separate copy of the object for asecond vari-
able, then you must design some type ofcopy() method in theCardDeck class.
This method would create a brand newCardDeck object and copy all the appro-
priate values into this newly created object.

9.4.2 Comparing objects

Notice that if you do indeed have two separateCardDeck objects (through two
separate allocation statements), you cannot compare them using the== operator.
While num1 == num2 will successfully compare the values of these two vari-
ables,deck1 == deck2 will not compare the decks. This latter statement only
compares the references. If both variables use the same reference (i.e. point to the
same object), then this statement will return true. Howeverif both variables point
to different but identicalCardDeck objects, then the== operator will return false.
This is why you use the.equals() operator when comparing two strings. Most
useful classes will implement a.equals() operator so that the class’s user can
compare two objects.

9.5. EXTENDING THE CLASS: COMMON METHODS 109

9.5 Extending the Class: Common Methods

There are certain methods that are implemented in many classes. They have evolved
standard names within the java language. In this section, weexamine three such
methods.

As hinted in our previous section’s discussion, we need acopy() method
if we are to be able to make copies of ourCardDeck objects. Also important
is anequals() method for comparing toCardDeck objects. Finally, we will
implement atoString() method so that we can convert our deck to a string for
printing purposes.

Note that ”equals” and ”toString” are standard names for each of these oper-
ations. There are times when java will attempt to call these methods (if they ex-
ist) automatically. For example, suppose your class user tried to compile/execute
System.out.println(deck); . Secretly, java attempts to convertdeck to
a string by calling theCardDeck class’stoString() method. Thus it is a
good idea to implement at least this method. We also implement equals() and
copy() for illustration purposes though their use might not be practical enough
to warrant inclusion in our ADT.

Thecopy() method needs to accomplish two important tasks. First it needs to
create an entirely newCardDeck object. Second it needs to copy all the instance
variable data from the currentCardDeck object to the newly created one. A ref-
erence to the newCardDeck is returned. The complete code listing forcopy()
is shown in the next section.

For equals() , we need to compare first theindex of both decks. If these
are the same, then we compare card for card in the two arrays. Any sign of a non-
consistency between the two decks and we immediately returnfalse . If we find
no such inconsistency, then we returntrue indicating the two decks are the same
in every respect.

Finally for toString() we create an empty string and append cards one at
a time from the array to the string.

9.6 The completeCardDeck class

Here we list the completedCardDeck class. We have added some other pub-
lic routines (namely for starting over with a sorted deck) and added some internal
private methods to accomplish some useful tasks. We have left out many of the
comments to prevent the class from growing too large to printin this book. But
you should comment your class bountifully including addingthe whole ADT de-
scription to the top of the class.

110 CHAPTER 9. OBJECTS

Notice how we have reduced instances of repeated code by calling methods
within the class. For example, the constructor now calls theinitialize()
routine since the constructor needs to accomplish all thesesame tasks. Why have
a duplicate section of the same code within the constructor when you can call a
method and save typing/space?

1 public class CardDeck
2 {
3 private int cards[];
4 private int index;
5 public static final int NUM_CARDS = 52;
6
7 //--- --------------
8 // Default constructor
9 // Creates a new deck in sorted order

10 //--- --------------
11 CardDeck ()
12 {
13 cards = new int[NUM_CARDS];
14 initialize();
15 }
16
17 //--- --------------
18 // initialize
19 // Places the cards in sorted order first by suit, then by kind
20 // in ascending order (aces high).
21 // 2c, 3c, ... Kc, Ac, 2d, 3d, ..., As
22 //--- --------------
23 public void initialize ()
24 {
25 for (int i = 0; i < NUM_CARDS; i++)
26 {
27 cards[i] = i;
28 }
29 index = 0;
30 }
31
32 //--- --------------
33 // shuffle
34 // Shuffles the cards in a random order by using an exchange

9.6. THE COMPLETECARDDECKCLASS 111

35 // shuffle algorithm.
36 //--- --------------
37 public void shuffle ()
38 {
39 for (int i = NUM_CARDS-1; i > index; i--)
40 {
41 int spot = (int)(Math.random() * (i-index+1)) + index;
42 int temp = cards[i];
43 cards[i] = cards[spot];
44 cards[spot] = temp;
45 }
46 }
47
48 //--- --------------
49 // toString
50 // Converts the deck to a string using 2,3,4...10,J,Q,K,A fo r kinds
51 // and c,d,h,s for suits.
52 //--- --------------
53 public String toString ()
54 {
55 String deckString = new String();
56 for (int i = index; i < NUM_CARDS; i++)
57 {
58 deckString = deckString + cardToString(cards[i]) + " ";
59 }
60 return deckString;
61 }
62
63 //--- --------------
64 // cardToString
65 // Converst a card number to a string for that card.
66 //--- --------------
67 private String cardToString (int cardNumber)
68 {
69 String cardString = null;
70
71 if (cardNumber >= 0)
72 {
73 int suit = cardNumber % 4;
74 int type = cardNumber / 4;

112 CHAPTER 9. OBJECTS

75 cardString = new String();
76
77 switch(type)
78 {
79 case 9 : cardString = cardString + ’J’;
80 break;
81 case 10: cardString = cardString + ’Q’;
82 break;
83 case 11: cardString = cardString + ’K’;
84 break;
85 case 12: cardString = cardString + ’A’;
86 break;
87 default: cardString = cardString + (type+2);
88 break;
89 }
90
91 switch(suit)
92 {
93 case 0 : cardString = cardString + ’c’; // clubs
94 break;
95 case 1 : cardString = cardString + ’d’; // diamonds
96 break;
97 case 2 : cardString = cardString + ’h’; // hearts
98 break;
99 case 3 : cardString = cardString + ’s’; // spades

100 break;
101 }
102
103 }
104 return cardString;
105 }
106
107 //--- --------------
108 // drawCard
109 // Return the next card at spot index. Move index to the next
110 // card. It is an error to draw from an empty deck.
111 //--- --------------
112 public String drawCard ()
113 {
114 if (isEmpty())

9.6. THE COMPLETECARDDECKCLASS 113

115 {
116 System.out.println("Error: deck empty");
117 System.exit(1);
118 }
119 int card = cards[index];
120 index++;
121 return cardToString(card);
122 }
123
124 //--- --------------
125 // getNumberCards
126 // Returns the current number of cards left in the deck.
127 //--- --------------
128 public int getNumberCards ()
129 {
130 return NUM_CARDS - index;
131 }
132
133 //--- --------------
134 // isEmpty
135 // Returns true if deck is empty, false otherwise.
136 //--- --------------
137 public boolean isEmpty ()
138 {
139 return getNumberCards() == 0;
140 }
141
142 //--- --------------
143 // equals
144 // Returns true if decks match completely, false otherwise.
145 //--- --------------
146 public boolean equals (CardDeck other)
147 {
148 if (other.index != index)
149 return false;
150
151 for (int i = index; i < NUM_CARDS; i++)
152 {
153 if (cards[i] != other.cards[i])
154 return false;

114 CHAPTER 9. OBJECTS

155 }
156
157 return true;
158 }
159
160 //--- --------------
161 // copy
162 // Returns a copy of the Deck object.
163 //--- --------------
164 public CardDeck copy ()
165 {
166 CardDeck newDeck = new CardDeck();
167 newDeck.index = index;
168 for (int i = index; i < NUM_CARDS; i++)
169 newDeck.cards[i] = cards[i];
170
171 return newDeck;
172 }
173
174 } // end of CardDeck class

9.7 Summary

This chapter is a brief introduction to classes and objects.The topic is extremely
extensive and diverse both technically and philosophically. Indeed, professional
computer scientists who have programmed with objects for years are still debat-
ing many of the key philosophical issues. Newly trained programmers can only
develop a feel for these debates after some extensive practice designing and using
their own objects.

From this chapter, you should be familiar with the key terms such asobject
andclass. You should know the syntax for declaring and creating a class in java
(though you will probably need to look back at existing classes for syntax help
until you develop several of your own). Most critical is the understanding of how
memory is treated differently between objects and primitive types. We also intro-
duced constructors and several other common methods for printing, copying and
comparing objects.

As you design your own objects, be sure to start to think aboutstyle. There are
design decisions to make; poor decisions result in complex,messy, and inflexible
objects that are error prone. Good design decisions promoteflexibility and expand-

9.8. EXERCISES 115

ability. They almost always seem to have fewer errors to fix aswell. Most critical
to the design process is to spend extensive time thinking about your class before
you ever start to write code. Think about programmingelegantly! You should
view your class designs with the same satisfaction that an artist might receive from
a good painting.

9.8 Exercises

Exercise 9.1List three ways in which user-defined objects differ from primitive
types.

Exercise 9.2Explain why there is both a declaration step and an allocation step
when using object variables. What does each step accomplish?

Exercise 9.3Define the following terms:

• class

• object

• abstract data type

• instance variable

• constructor

Exercise 9.4Define the following terms:

• encapsulation

• data hiding

• inheritance

Exercise 9.5What are the absolute rules for choosing names for java classes?
What are the conventions for choosing class names and why arethey important?

Exercise 9.6What does the keywordprivate do to an instance variable? To a
method?

Exercise 9.7What does the keywordpublic do to an instance variable? To a
method?

116 CHAPTER 9. OBJECTS

Exercise 9.8 In this exercise we’ll trace through the execution of theshuffle()
method to see how it works. To make our life easier, suppose wehave a deck where
NUM CARDS = 10 instead of 52. Suppose you start with the array given below
(again cards are stored as integers 0..9). Suppose thatindex = 0 so that we
haven’t drawn any cards yet. Run theshuffle() method and show what hap-
pens to the array each pass through the outer for loop. You canmake up random
numbers for the calls toMath.random() but be sure to list them along side the
array to help illustrate the results.

0 1 2 3 4 5 6 7 8 9

Exercise 9.9 What is the purpose of including a method namedtoString() in
your class design?

Exercise 9.10What is the purpose of including a method namedequals() in
your class design?

Exercise 9.11Why can’t the comparison operator== be used to see if two objects
are the same?

Exercise 9.12Consider the following block of code:

CardDeck deck1 = new CardDeck();
CardDeck deck2 = new CardDeck();
boolean same = deck1.equals(deck2);

What will be in the boolean variablesame after execution? Will it always be the
same result everytime you run the code?

Exercise 9.13 In the game of Go Fish, each player is dealt seven initial cards from
a shuffled deck. Programmer Bob attempts to implement one of these deals with
the following block of code. Does this code correctly deal seven cards for one of
the Go Fish players? Explain.

for (int i = 0; i < 7; i++)
{
CardDeck deck = new CardDeck();
deck.shuffle();
System.out.println(deck.draw());
}

9.8. EXERCISES 117

Exercise 9.14 In Vegas, casinos use a seven deck stack for playing Blackjack (to
make it harder for the patrons to count cards). Make a new class calledVegasDeck
that works exactly the same as ourCardDeck class except it contains seven full
decks (that’s7 × 52 = 364 cards with seven copies of each card).

Exercise 9.15Design an abstract data type (no code) for a class that a bank can
use to handle a generic car loan.

Exercise 9.16Building from your ADT in the previous exercise, design a class for
the car loan. Some of the design decisions are made for you here:

• List the loan by social security number only. To make life easier, you don’t
need to include anything else about the client such as name, address, phone,
etc.

• Make the interest rate a constant in your program of 8%.

• Allow the term to be selected from among 24, 36, 48, and 60 month periods.

• Keep track of the current balance.

• Have a default constructor that assumes each person is borrowing $20,000
(initial principle).

• Have a second constructor that specifies the starting principle.

• Have a method that allows the banker to enter/change the social security
number.

• Have a method that can be called at the end of each month to update the
balance according to the interest rate (remember to divide the annual interest
rate by 12 for use as a monthly interest rate).

• Have a method that allows the balance to be lowered when the user supplies
a payment.

• Have a method that returns the current balance.

Exercise 9.17People shuffle decks quite differently than our exchange algorithm.
People split the deck into two pieces (a top half and a bottom half). Then they
interleave some cards from each half. That is, they take a fewcards from the top
half, then a few from the bottom, then a few more from the top, then a few more
from the bottom, and so on until the cards are gone. The relative orders of cards of

118 CHAPTER 9. OBJECTS

cards in each half does not change on any one shuffle operation. Watch someone
shuffle or shuffle yourself and think hard about how the operation works.

Implement this type of shuffle algorithm in ourCardDeck class with the fol-
lowing steps:

1. Split the deck into two equal halves: a top half and a bottomhalf.

2. Pick a random number from 0 to 4, select this many cards (in order) from the
top of the top half and place them on the new pile (on the bottomof the new
pile).

3. Pick a random number from 0 to 4, select this many cards (in order) from the
top of the bottom half and place them on the bottom (underneath) of the new
pile.

4. Continue alternating steps 2 and 3 until all the cards are placed in the new
pile.

Note, you will need to call this routine at least 7 times in a row to make sure the
deck is fairly well shuffled.

Chapter 10

Files

We have seen a variety of ways to input data to Java programs. One way to do this
is to use theCS171In methods which allow one to enter several different kinds
of data, such as integers, doubles, and strings by typing them at the keyboard.
Another way is to use dialog boxes, again using the keyboard to enter the data.
These are useful ways to enter data, particularly when the amount to be entered is
small. However, if we have a program that requires a large data set or if we have
a program that might be used for a lot of different data sets, it would be useful to
have a way of telling Java that the input will be found in a file.

10.1 Reading from a File

Suppose for example that each student in a class has a text fileof their quiz scores
and would like to get the average grade for those quiz scores.Since the scores are
already stored, it would eliminate a time consuming step to have the computer get
the scores directly from the file, rather than have the student look them up and then
enter them at the keyboard.

Here we see the contents of a file named “scores.dat” with 10 quiz scores in
it. As in our previous examples, the lines are numbered to make it easy to refer to
them.

1 78
2 82
3 94
4 69
5 88
6 79

119

120 CHAPTER 10. FILES

7 90
8 85
9 87

10 84

The scores are written in the file one score per line, which will allow us to read
them one line at a time.

Java uses two class types for processing data from a file — one type called
FileReader and a second calledBufferedReader . A FileReader object
can establish an association with a text file. This is called “opening” the file. The
BufferedReader is constructed using theFileReader as a building block. Each
line of the file is interpreted as typeString , and so, just as we do with Dialog Box
input, if we want to use the entries as numbers, the program will need to convert
them to integers or real numbers as their use requires.

In the next example, we see a program that reads scores from the file called
“scores.dat” and finds the average value of the scores therein. The “.dat” extension
is used to suggest “data.” It is also permissable to use a “.txt” extension after the
file name to suggest text.

1 // The "FileAvg" class.
2 // Input a sequence of scores entered one to a line
3 // from a file whose name is to be read in from the keyboard
4 // and find their average.
5
6 import java.io. * ;
7 import java.util.Scanner;
8
9 public class FileAvg

10 {
11 public static void main (String [] args) throws IOException
12 {
13 String fileName; // Name of file to be processed
14 String line = " "; // A single line from the file
15 int score = 0; // Data value from a line of the file
16 int sum = 0; // Accumulated sum of scores
17 int count = 0; // Count of numbers (scores) in the file
18
19 Scanner consoleIn = new Scanner(System.in);
20
21 System.out.println ("Name of the file of integers? ");
22 fileName = consoleIn.nextLine(); //Read the name of the fil e

10.1. READING FROM A FILE 121

23
24 // Create a FileReader object based on the given filename, an d then
25 // create a BufferedReader for the input stream from that.
26
27 FileReader inputFile = new FileReader(fileName);
28 BufferedReader inputReader = new BufferedReader(inputFi le);
29
30 line = inputReader.readLine (); //Read single line from the file.
31
32 while (line != null) { // readLine returns NULL at EOF
33
34 score = Integer.parseInt (line); // Convert line to an integ er.
35 count=count+1; // Increment the counter
36 sum = sum + score; // Update the cumulative sum
37 line = inputReader.readLine (); // Read next line.
38
39 } //end the loop
40
41 inputReader.close(); //close the file
42 System.out.println ("The average of your " + count +
43 " scores is " + (double)sum/count);
44 } // main method
45 } // FileAvg class

The first line of the program imports the types and methods needed by Java to
carry out file manipulations, while the second line allows usto use theScanner
class. Something new appears on the line where themain method begins,throws
IOException . This is what we write in Java to indicate that there are some
exceptional conditions that might arise when input or output are attempted. For
example, it might happen that the user wants to read from a file, but makes a ty-
pographical error when entering the name of the file. The userneeds a message
alerting him/her to the fact that the file requested does not exist. When the user
sees the error message, he/she can retype the name of the file,correcting the typo.

Inside the main method we declare aString variable calledfileName to
receive the name of the data file to be entered by the user at thekeyboard. Theint
score will be used to hold each score as it is read from the file. The variablesum
will act as an accumulator adding each score to the existing sum as the score is
read.count keeps track of how many scores have been read so far. When all the
scores have been read, the average can be computer using the value ofcount .

We use our usual keyboard input method to get the name of the file to be
used. It will be necessary for the user to type the full directory path name for
the file. For example, if the user has a file named scores.dat ina directory on the

122 CHAPTER 10. FILES

C drive named History, when prompted for the file name, the user should input
C:/History/scores.dat .

The declaration ofinput to be a FileReader both identifiesinputFile to
be the given class type and opens the file that the user has specified. The Buffere-
dReader declaration ofinputReader also both identifies the class type and asso-
ciates the new instance with theinputFile . When these two declarations have
been executed, the program is ready to read from the designated file. The data from
the file is read one line at a time using thereadLine method, which is provided
by the BufferedReader class.

Once a line has been read, thewhile loop begins to process the file. The
check for stopping the loop is the boolean expressionline != null , which is
equivalent to checking to see whether the line is empty. In other words, if the line
read in has anything but the null string in it, the loop continues, but once the end of
the file is reached, the loop will stop. Hence, we do not need toknow how many
entries are in the data file in order to process it, but we do need to count the number
of entries so we can compute the average when the sum has been found.

The steps of the loop that are to be repeated include converting the string that
was read into an integer. TheInteger.parseInt(line) accomplishes this
at line 31. The count is incremented to indicate that anothervalue has been read.
The sum adds on the newly read value ofscore , possible because the input string
has been converted to an integer. The last step of the loop is the reading in of
another line from the file.

When the boolean expression that controls the loop becomes false, i.e. the file
has been completely read, the loop stops and the file is closed. Finally, the average
is computed and printed.

10.2 Writing to a File

One way to prepare a data file that can be processed from a Java program is to use
any editor and put data elements one per line in the editing window. Then save the
file with a .dat or .txt extension. However, it is also possible to prepare a file by
using a Java program. One advantage of writing the file from a Java program is
that helpful messages can be printed for the user allowing the user to make entries
directly into the Java program which can store them in a file named by the user.

To accomplish this task, we need writing counterparts to theFileReader
and BufferedReader classes that we used for reading from files. From the
samejava.io. * classes we can get just what we need. To create and open
a file for writing there is a class calledFileWriter which is the writing ana-
log to FileReader. Instances of class typeFileWriter can establish a con-

10.2. WRITING TO A FILE 123

nection to a file for writing. The writing counterpart toBufferedReader is
PrintWriter which allows a user to write to a file using the methods named
print andprintln and which act the same as theprint andprintln we
have used previously inSystem.out output.

In our next example we allow the user to designate a file name toreceive the
data that is input from the keyboard. When the program ends, the data will still exist
in the file. As we know, data that is entered from the keyboard,but not written to a
file, disappears when the program ends, because that data is kept only temporarily
in main memory. Data written to a file is kept on the hard drive which retains its
data even when the computer is turned off.

1 //This program prompts a user for a file name to store some sco res.
2
3 import java.io. * ;
4 import java.util.Scanner;
5
6 class outFile
7 {
8 public static void main(String[] args) throws IOException
9 {

10 String fileName; //the name of the file
11 int numScores = 0; //the number of scores
12 String score; //a variable to hold each score as it is entered
13 Scanner consoleIn = new Scanner(System.in);
14
15 System.out.println("How many scores do you have? ");
16 numScores = consoleIn.nextInt(); //get the number of score s
17 consoleIn.nextLine();
18 System.out.println("What do you want to call your file of sc ores? ");
19 fileName = consoleIn.nextLine(); //get the name of the file
20
21 //open the file
22 FileWriter fwriter = new FileWriter(fileName);
23 PrintWriter outFile = new PrintWriter(fwriter);
24
25 //get the data and write it to the file
26 for (int i = 1; i <= numScores; i++)
27 {
28 System.out.println("Enter a score: ");
29 score = consoleIn.nextLine();
30
31 outFile.println(score); //read the score as a string
32 }
33
34 outFile.close();

124 CHAPTER 10. FILES

35 System.out.println("Data written to file.");
36 }
37 }
38
39

As before we begin by importingjava.io. * . In the main method we de-
clare aString to hold the name of the file we want to produce. The delcaration
String score sets up a variable to hold each score as it is entered. The pro-
gram prompts the user for the number of scores to be placed in the file and then
asks what the user wants to call the file.

Once the name of the file has been read, aFileWriter varible is declared
and initialized. APrintWriter is declared using theFileWriter variable as
parameter and the effect of these two declaratons is to open afile of the required
name for writing. Thefor loop reads the scores, asStrings , one at a time from
the keyboard and then writes them as strings, one per line, tothe file. When the
loop has read and stored all of the scores, the file is closed. Amessage informs the
user that the data has been written to the file.

10.3 exercises

Exercise 10.1Write a program to allow a user to enter as many car prices as the
user wants and then stores those prices to a file called “carPrices.”

Exercise 10.2Write a program that reads from the “carPrices” file and finds the
average price of a car, the maximum cost, and the minimum cost.

Chapter 11

Searching and Sorting

Two of the most common and most important actions that computers do for us are
searching stored materials to find what we need and putting our stored materials
into whatever order we want them. Of course, to be really helpful, these activities
need to be fast. For example, when we want to find books covering a particular
subject from our media center, we want to be able to tell the searching program
what the topic is and then to get a list of available materialsquickly. Often, seach-
ing facilities will allow the user to tell what order the userwants results displayed.
In the media center example, the usual default is to display the findings in reverse
chronological order, but users can choose to have them displayed in other ways.
For example, when doing a web search, we usually want the items to be displayed
in their order of popularity, meaning that those items whichhave been used by
others most often will be shown first.

11.1 Searching

11.1.1 Searching Randomly Stored Data

Suppose we have a file of healthful foods and we are just about to choose an apple
as a snack. We want to confirm that apple is on the list, so we need to search the file
to see if apple is there. Assuming that the food names are stored as they were tested
by the FDA for healthfulness, they do not appear in any particular order. So our
search will need to start at the beginning and move through the food names to see if
we can find apple. We call such a search ”linear” because, if weconceptualize the
data as being laid out in a line, the linear search moves through the data by going
along the line.

The following example shows a linear search that searches anarray of integers

125

126 CHAPTER 11. SEARCHING AND SORTING

that have been entered randomly. The method returns the index of the first posi-
tion where the desired value (given on the paramter list) is found. If the value is
not found, then the method returns -1. The calling program can then generate an
appropriate message.

1 static int linearSearch(int[] v, int w)
2 {
3 int NOTFOUND = -1; // value to return if not found
4 int index; // index of current element of search array
5
6 // Loop through all valid index values of the array
7 for (index = 0; index < v.length; index++) {
8
9 // Check for a match

10
11 if (v[index] == w) {
12 return index; // If a match is found, return index within arra y
13 }
14 }
15
16 return NOTFOUND;
17 }

When the data is stored in a random fashion, we have no choice but to examine
every entry of the designated items in the order in which theyare kept. To shorten
the search, we could stop upon finding the value we are searching for. You will
do this as an exercise. Another interesting problem is to findall the positions that
hold the given data. Still another is to count how many such positions there are.
For example, if you wanted to check a random number generatorto see how good
it is, you could generate a large file of random numbers and then count how many
of each there are. We would expect a fairly uniform distribution of the numbers.
Unusually large or small numbers of a particular value mightgive us reason to
believe that the random generator in not doing a proper job.

11.1.2 Searching Ordered Data

Let’s now consider how we might speed up a search in the case where the data is
stored in a particular order. A good example of this idea is a phone book. In a
phone book the names are written in alphabetical order, so ifwe are looking for
some name, such as Miller, we would probably not start at the beginning of the

11.1. SEARCHING 127

book, but rather, open to approximately the middle. At the middle we would check
to see which names are there and if the one we want isn’t on thatmiddle page, we
would decide whether to go back toward the front of the book ortoward the end of
the book, depending on whether the name we want comes before or after the ones
on the middle page.

We can apply this idea to computer data that is stored in numeric or alphabetic
order. Give a sequence of data stored in order, if we need to look for a particular
value, we can look first at the middle element and then, if the middle element is the
one we want, stop. If the one we want is not the middle one, we can then apply the
same approach to half the entries, since we can tell whether we need to look in the
first half of the data or the second half.

Here we will see two versions of binary search methods. The first is an iterative
version. In this version, the methoditbinsearch receives four paramaters.
The first isint[] v , which is an array of integers to be searched. The second
parameter isint w , the value to search for. The third,int first is the index of
where to begin the search, and the fourth,int last is where to stop the search.
When the method is called,first will probably be0, the first index into the array,
andlast will be the one less than the size of the array.

The major part of the method is awhile loop that is controlled by whether
the value offirst is less thanlast . Of course, unless the array has only one
entry, that will be the case when the method is first called, and so the loop body
will execute. The value of the middle index of the array is computed,mid . If the
entry in the array at that index isw, then the method returnsmid , the index of
w. Otherwise, the values offirst and last are updated so that the search will
continue only in half of the remaining unexamined entries. The same process is
iterated until all appropriate parts of the array have been examined. If the required
vale is found, the index of it is returned. Otherwise, a valueof -1 is returned
indicating that the value was not found anywhere in the array.

1 static int binarySearchIterative (int[] v, int w, int first , int last)
2 {
3 int mid = 0; // index of the midpoint of the search space
4
5 while (first <= last) // iterate while the search space is non -empty
6 {
7
8 mid = (first + last) / 2; // compute middle index
9 if (w == v[mid]) // look for a hit at mid index

10 return mid;
11

128 CHAPTER 11. SEARCHING AND SORTING

12 // Determine which half should be considered for continuing search
13
14 else if (w < v[mid]) // if desired value is less than the middle value,
15 last = mid - 1; // change the right end of the search space
16 else // otherwise,
17 first = mid + 1; // change the left end of the search space
18
19 } // end while
20
21 // This point is reached only if the value was not found and the
22 // search space became empty.
23
24 return -1; // so return our "not found" sentinal of -1
25 }
26

11.1.3 Recursive Methods

There is another common way to write a binary search method. Many programmers
think that this new way, called recursive, is a natural way towrite the binary search.
A recursive method is one that calls itself. When doing a binary search, once we
have checked the middle element and figured out whether to look next only in the
lower half or only in the upper half, we want to carry out exactly the same steps
we did with the whole sequence, but apply those steps only to half of the elements.
The only changes we want to make are the values offirst or last .

So, informally, what we want to do is to call the method with0 asfirst and
one fewer than the number of elements aslast , find the middle value, and then
change eitherfirst (in the case where we need to look only in the upper half) or
last (when we need to search the lower half). The rest of the work isto apply the
same algorithm to whichever half we have identified. We do that by making the
call to the method with the updated values forfirst andlast on the parameter
list.

The big question that remains is ”How can we get this process to stop?” This is
always an important challenge in every recursive procedure. The way we address
it is to put a check right at the beginning of the method that checks to see if the
value offirst is greater than the value oflast . When that happens, the method
just stops and returns whatever value it currently has inindex . Notice that we
used the clause ”When that happens,” rather than ”If that happens.” That’s because
eventually, since at each call to the method, either the value of first increases or
the value oflast decreases. Hence, at some pointfirst will overtakelast .

Here is the code for doing a binary search in the recursive style:

11.2. SORTING 129

1 static int binarySearchRecursive (int[] v, int w, int first , int last)
2 {
3 int NOTFOUND = -1;
4
5 int mid = -1; // index of midpoint of search space
6 int index; // index of found value
7
8 // Base case of an empty search space, indicated when first > l ast
9

10 if (first > last)
11 return NOTFOUND;
12
13 // Base case of search value found at middle index
14
15 mid = (first + last)/2; // compute middle index
16
17 if (v[mid] == w) // on match, return middle index
18 return mid;
19
20 // Recursive cases of search value above or below middle valu e
21
22 if (w < v[mid]) // Search value less than middle value
23 { // ... search left half by adjusting last
24
25 index = binarySearchRecursive(v, w, first, mid-1); // recu rsive call
26 }
27 else // (w > v[mid]) Search value must be greater than middle v alue
28 { // ... so search right half by adjusting first
29
30 index = binarySearchRecursive(v, w, mid + 1, last); // recur sive call
31 }
32 return index; // index as computed by one of recursive branch es
33 }

11.2 Sorting

In order to be able to use either the iterative or the recursive binary search, both
of which shorten the search significantly, it is necessary that the data be stored in
some designated order, such as small to large, large to small, alphabetical, or some
other user specified order. This leaves us with the problem ofhow the data can
be arranged in order. Of course, one way to get the data in order is to enter it in
ordered form, but this means that someone has to get it in order before data entry

130 CHAPTER 11. SEARCHING AND SORTING

takes place. Since putting things in order is a task for whichit’s easy to write an
algorithm, it would be a foolish waste of time for a human to dothe ordering.

As computing has developed over the years, several algorithms for sorting data
have been found, each with different performance characterisitics. Some algo-
rithms are designed to work best on random data, while otherssave time when the
data is partially ordered or in some particular form. Here, we will examine two
ways for sorting data, both intended for use when the data have been entered with
no special pattern.

11.2.1 Bubble Sort

The first algorithm we will consider is one called ”bubble sort.” In this case we
assume we have a sequence of data elements. The strategy is tomake several
passes through the sequence of data, so that each pass results in the next highest
entry “bubbling” to the appropriate position. This means that after one pass through
the data, the largest element will be at the end of the sequence. After the second
pass, the second largest entry will be next to the end, etc. Ofcourse, one can change
“largest” to “smallest” for reverse order or rephrase in terms of alphabetizing if the
data consists of text material, rather than numbers.

Having seen the overall strategy, we now look at the detaileddescription of a
single pass through the data. During a pass, we begin at the first position in the
sequence and compare it to the second element. If those two elements are not in
order already, then we excange them, getting those two elements in the right order.
Next, we compare the element now in the second position to theone in the third
position and, again, exchange them if they are not already inthe right order. We
continue comparing pairs of entries until we have reached the end of the sequence.
Since each comparison in this pass causes the larger of the two elements to move
into the correct position for the two entries being compared, by the time the pass
is completed, the largest of the elements being compared is in the correct position
relative to the entire sequence.

To see how this works, let’s look at a sequence of eight integers to see what
happens during the first pass thorugh them as shown in Figure 11.1. The top line
of the table has the indices of the entries. The next line shows the original data.

Note that the first comparison results in no change to the order, since4 is al-
ready less than7. However, when the next comparison is made between7 and2,
those two values need to be exchanged to get them into the correct order. Sub-
sequent comparisons and exchanges in this first pass thorughthe data result in7
landing at the end of the sequence, just where it belongs. This figure illustrates two
important results: The first pass makes sure that the largestelement is in the righr
place, and one pass is not enough to get all the elements into the right positions.

11.2. SORTING 131

1 2 3 4 4 6 7 8
4 7 2 3 5 4 1 3
4 7 2 3 5 4 1 3
4 2 7 3 5 4 1 3
4 2 3 7 5 4 1 3
4 2 3 5 7 4 1 3
4 2 3 5 4 7 1 3
4 2 3 5 4 1 7 3
4 2 3 5 4 1 3 7

Figure 11.1: First Pass in a Bubble Sort

Be sure to carry out a second pass on the given data to confirm that after the
second pass, the5 ends up where it belongs. Continue making passes until all the
elements are in place.

Now we need to plan how to implement our algorithm. A natural way to store
a sequence is in an array, so we will set up an array to hold our entries. Rather
than limiting ourselves to eight entries, as we have seen previously, we can allow
the number of entries to be filled in by the user, hence making our program flexible
enough to handle any size sequence.

Using a loop we can write code to compare array entries to eachother in pairs,
exchanging when necessary. But we have already seen that a single loop through
the array will succeed in getting the largest element in place, but does not guarantee
that the rest of the entries are in order, so we need to repeat this loop mulitple times,
i.e., we need a nested loop.

To promote efficiency, we observe that, once the last elementin in place, there
is no need to look at it ever again. Similarly, once the secondform the largest is in
its place, there is no need to look at it again. This means thateach pass through the
data can be shorter than the previous pass.

Here is some code to implement this idea:

1 static void bubbleSort(double [] v, int n)
2 // bubbleSort method receives an array of doubles and an inte ger telling
3 // howmany elements and sorts those doubles into numberic or der from
4 // smallest to largest.
5 {
6 int i, j = 0; // counters
7 double temp = 0; //to hold a value temporarily

132 CHAPTER 11. SEARCHING AND SORTING

8 for (i = n-1; i >= 0; i--)//start at the end of the array and work downward
9 {

10 System.out.println("The value of i is " + i);
11 for (j = 0; j < i; j++)//start at the beginning of the array and w ork upward
12 {
13 System.out.println("the value of j is " + j);
14 if (v[j] > v[j+1])//check each pair to see if any exchange sho uld take place
15 {
16 //swap values if necessary
17 swapEntries(v, j, j+1);
18 }
19 }
20 }
21 }
22
23 static void swapEntries(double [] A, int i, int j)
24 {
25 double temp = A[i]; // temporarily save the ith element
26 A[i] = A[j]; // give the ith element the value of the jth
27 A[j] = temp; // update the jth with the save ith
28 }

In the example, there are two methods. One is the method that does the bubble
sort, and the other is one which the bubble sort calls to do theswapping of values,in
this case, doubles, that need to be exchanged. TheSwapEntries method takes
an array and two indices and exchanges the values at the givenindices.

The bubbleSort method uses the outer loop to start at the last entry, and
after the inner loop puts the largest element into that last position, moves down-
ward so that the inner loop puts the next largest entry into the second from the last
position, etc. The outer loop works its way from the end of thearray down to the
beginning, each iteration putting one more element into thecorrect position. When
the outer loop stops, all the entries are in the correct position.

The bubble sort is not known for speed and efficiency. For example, in the ex-
treme case where all the elements are already in the requiredorder, the method in
our example continues to go through the array, checking to see if any values need to
be swapped. Multiple passes are made, each resulting in no change, thereby wast-
ing time. So one way to improve the bubbble sort is to stop the process of checking
for elements out of order if a pass through the data results inno exchanges, indi-
cating that all of the elements are now in order. Of course, inthe worst case, when
the elements are in reverse order, all of the passes must be made to get the correct
ordering. If there aren elements, there may need to be as many asn − 1 passes
for each, resulting in approximatelyn2 comparison operations to get the sorting

11.2. SORTING 133

completed.

11.2.2 Selection Sort

In the bubble sort we compared pairs of data elements and exchanged those that
were out of order, hence bubbling the largest value to the endof the sequence.
Ignoring the element(s) already in the right place, we continued that process, bub-
bling up the largest among the remaining elements until all the data were in order.
We turn now to another strategy for sorting. Given a sequenceof data to be put in
order, we start at the beginning of the sequence and hunt for the smallest element
among the data. We then exchange it with the first entry in the sequence. At this
point we know that the first entry is in the right place, so we can ignore it and look
at the remaining data. Starting with the second entry we examine the sequence
and find the smallest element among those entries and exchange it with the second
element. We continue this process until we have placed the second from the last
entry. The last entry, by default, is in the right position.

Here is an implementation of this strategy, called the Selection Sort, written in
Java:

1 static void swapEntries(int [] A, int i, int j)
2 {
3 double temp = A[i]; // temporarily save the ith element
4 A[i] = A[j]; // give the ith element the value of the jth
5 A[j] = temp; // update the jth with the save ith
6 }
7
8 static int getMinIndex (int [] v, int first, int last)
9 //find the index of the smallest element starting at first an d

10 //ending at last
11 {
12 int minInd = first;//start the min index at first
13 int i = first;//start i at first
14 while (i <= last)//repeat the loop from i to last
15 {
16 if (v [i] < v [minInd]) //check to see if any array values
17 //are less than the value at the minInd
18 minInd = i; //if so, replace minInd with the newly found index
19 i = i + 1; //increment i
20 }
21 return minInd; //return the found smallest index
22 }
23
24 static void selectionSort (int [] v, int n)

134 CHAPTER 11. SEARCHING AND SORTING

25 //put the n values of v in order using the selection approach
26 {
27 int i = 0; //to use as a counter
28 int minI = 0; //to hold the index of the smallest element
29
30 for (i = 0 ; i < n ; i++) //repeat for each element in the array
31 {
32 minI = getMinIndex (v, i, n); //use the method getMinIndex to find out where
33 //the smallest element is, starting at the ith entry
34 swapEntries(v, i, minI); //put the smallest entry into the r ight position
35 }
36 }

The swapEntries method is almost the same as the method by the same
name in the bubble sort example. The only difference here is that the entries are
integers, rather than doubles. We note that we have broken the selection sort strat-
egy into two methods. The first method,getMinIndex finds the index of the
smallest element in the arrayv , starting with the element in the positionfirst
and looking at all the entries inv up to positionlast , the end of the array. Of
course, when theselectSort method callsgetMinIndex for the first time,
first will be given the value0, since no members ofv have been checked for
order yet.

TheselectSort method initializes the variableminI to be 0, because we
start by assuming that the smallest element ofv needs to go at the 0th position.
Thefor loop checks throughv and finds the index of the smallest integer inv and
returns that index toselectSort asminI . Then the values at positioni and
minI are exchanged, putting the next smallest value in the ith position.

In this strategy for each position inv every element in positions higher than
the one currently being checked must be examined to find the index of the next
smallest value. This means that if the array hasn elements, then in worst case we
need to look atn− 1 elements to find the index of the next smallest, so we say that
we need approximatelyn2 comparisons to put the array in order.

It is useful to note that there are many other sorting strategies, some more effi-
cient that the bubble strategy or the selection strategy, and there are more advanced
courses in which such strategies are discussed. Here our goal is to see a couple of
sorting strategies and to challenge you to think of other possibilities.

11.3. EXERCISES 135

11.3 exercises

Exercise 11.1Write a program to search a file of 1000 random integers between
1 and 100 for the user’s choice.

Exercise 11.2Write a program that searches a file of 1000 random integers be-
tween 1 and 100 for the user’s choice, and stop when the first index with the re-
quired value is found.

Exercise 11.3Write a program to find all the indices where a particular integer is
found.

Exercise 11.4Write a program that checks to see if a given random file of 1000
integers between 1 and 100 seems to reasonably random. HINT:We would expect
to see approximately the same number of each integer.

Exercise 11.5Write a program that searches a file of names for the user’s choice
of a name.

Exercise 11.6Write 2 programs to sort a file of 1000 random integers between
1 and 100. One program should use the bubble strategy and one should use the
selection strategy.

Exercise 11.7Write 2 programs to sort a file of names. One should use the bubble
strategy and one should use the selection strategy.

Exercise 11.8Given a class that stores student records: name, major, and gpa,
write a program that sorts the records by name. Write anotherprogram to sort
them by major. Write another program to sort by gpa.

136 CHAPTER 11. SEARCHING AND SORTING

Bibliography

[1] ”JAVA PLT GROUP, R. U. Dr. java – a lightweight ide. http://www.drjava.org.

[2] K OLLING , M., AND BARNES, D. Bluej – the interactive java environment.
http://www.bluej.org.

137

