Essentials
of the
Java
Programming Language

Joan Krone
Thomas Bressoud
R. Matthew Kretchmar
Department of Mathematics and Computer Science
Denison University

Chapter 1

Introduction

1.1 Preliminaries

1.1.1 Learning a Language

Programming a computer is both a creative activity and age®atructured by
rules. Computers arprogrammedor given instruction, through the use of pro-
gramming languages, so to program a computer, one must é&epragramming
language. The goal of this book is to introduce a programntanguage called
Java.

Learning a programming language has similarities to legr@ natural lan-
guage, such as English or Spanish or Japanese. Naturabggmhave &exicon
a syntax and asemantics The lexicon is the vocabulary and punctuation. The
rules of syntax dictate how the lexicon can be ordered to foomect sentences.
The semantics conveys the meaning when the chosen wordsmatgned in the
chosen syntax of each sentence. The semantics changesinsesia subtle ways,
depending on both the words chosen and the sentence syntax.

So too, a programming language has lexical elements, axsyartd a seman-
tics. The lexical elements are comprised of keywords in ttoggamming lan-
guage, symbols such as arithmetic operators or parentbebisces, and words
denoting identifiers by which we can name what is being opdrafpon. The
syntax specifies precise rules for how the lexical elemawrte@ered to form cor-
rect language statements and programs. The semanticsrisetiid@ng of the con-
structed language statements. In this context, the measiogerational, telling
the computer “what to do” as the statements are encountereadwell defined
sequence, in the execution of the program.

Learning programming languages and learning natural lagegi share other
similarities. First, the typical method for learning a laage is a spiral approach.

3

4 CHAPTER 1. INTRODUCTION

We start with a very limited vocabulary, a few simple syntacbnstructs and their
semantics. We then build our repertoire, adding vocabusamtax, and semantics,
and often returning to previously covered topics. Seconastering a language
takes practice through active participation. You shoukitpice by repeating each
example and by working out the exercises and problems pagkd book. Finally,
memorizatiorof example patterns is no substitute for understandinggheastics
associated with each syntactic structure. As the syntarge®s we must under-
stand the corresponding change in the semantics.

1.1.2 The Program and the Computer

Learning a programming language, and particularly legrryiour first program-
ming language, is intimately tied with learning how a congpuworks. Under-
standing how a computer works involves understanding hawbaus and charac-
ters and aggregate data may be encoded and stored in the ynafritter computer,
and how the data stored in memory can be operated upon byritralgerocessing
unit (CPU) executing millions of very simple instructions.

Programming languages such as Java, C, or C++ are knowiglagevellan-
guages. They allow specification of program instructions imanner closer to
natural languages, but without the ambiguity and lack otigren. Computers,
on the other hand, are only capable of executing exceedpraghitive instructions
in a low-levellanguage known as the computemsachine language We bridge
the gap by translating a high-level language into a lowdléseguage through a
program known as eompiler.

1.2 Problem Solving through Programming

Programming is abousolving problems Regardless of the language used, this
activity proceeds through a set of well-defined stages dutie development of
the program.

Design In the design stage, a careful problem statement is artezjlandicating
the desired outcomes of the program. The problem statemémen refined
by listing a set of steps designed to accomplish the goal.s€hef steps is
called analgorithm, and may be presented in English or in some other ap-
propriate notation. The design stage does not require &efus computer.

Edit In the edit stage, a program is created in a text editor angédto one or
more files on disk. These files are known as the progsaurce code

1.2. PROBLEM SOLVING THROUGH PROGRAMMING 5

Compile During the compile stage, the compiler translates the piragsource
code in the source file(s) into the machine code appropraatthé machine
on which the program will execute.

Execute The execute stage is the time when the compiled programdgtbftom
disk into its execution environment and the machine caoigghe instruc-
tions.

By its very nature as a human endeavor, problem solving &yaompletely suc-
cessful on the first attempt. Some or all of the above phasgdbmeevisited as we
refine and iterate toward a correct solution.

The above development description applies to any progragntanguage, not
just Java. It is worthwhile to make some additional obséwuat about program
development specific to Java.

e The source code for a Java program are contained in text fiis tine
Java extension.

e The Edit, Compile, and Execute stages of program developosnsome-
times be brought together in the context of a computer prodgtraown as an
Integrated Development EnvironmeiDE). Such IDEs vary in power and
facilities provided to the developer, and many are ovefiilla student’s first
introduction to a programming language. There are two Jags lthat are
well suited to a new studerdr. Java[l] andBlue J[2].

e Many common programming subproblems have already beerdalrvd it
is not necessary to build these again. For Java, an extesetivaf libraries
is available and is part of the what is known as Jaga Platform TheJava
Application Programming Interfac@AP1) defines the facilities available for
use from our Java programs.

o Different hardware platforms, such as Intel x86, Mac G4/55G1 MIPS,
have different machine languages. For Java to be able to ithowt mod-
ification on multiple platforms, the Java platform includegava Virtual
Machine(JVM). This is a computer program that simulates a machiaeish
specific to Java. The machine code for the JVM is cabigitcodeand when
we compile a Java program, the compiler generates the ligemad places
it in a file with a.class extension.

e During the Execute stage, the class file for our program idddanto the
JVM, and combined with the class files that realize the Javia AP

6 CHAPTER 1. INTRODUCTION

The remainder of this chapter is a short tutorial, introdgcyou to a small
set of elements of the Java language. The intent is to giveayoinitial flavor
of programming in Java without getting immersed in too maetails and formal
rules. Think of it as your very first increment of vocabulayntax, and semantics
of the language. The goal is to quickly get to the point whene gan write simple,
but complete, programs. Subsequent chapters of the bob#edik into all of the
elements touched upon here, and in much greater detalil.

1.3 A Java Tutorial

This tutorial will lead you through a sequence of Java pnograesigned to intro-
duce some basic concepts of Java programming. We begin wigipalication to
print a welcome message.

1.3.1 Welcome Application

Design

Your first application\WelcomeApp, has the simple problem statement:

Print the string of characters “Welcome to Java Programthitga
text console window.

As we shall see, part of the Java system API includes a Jaearstat that allows
us to print strings of characters as output to the text censoidow. Thus we can
complete our design stage with a single step:

1. Print the stringWelcome to Java Programming!"

Edit

The following Java language code accomplishes the goalrdirstprogram. The
line numbers on the left are included only for our referericey are not part of the
source program itself.

| **

* The WelcomeApp class implements a simple application
+ that prints a welcome message to the standard output.
* |

public class WelcomeApp {

OO WNE

10
11
12
13

15
16
17

1.3.

}

A JAVA TUTORIAL

/I The WelcomeApp class consists of a single method,
/I namely the application entry method called 'main’.

public static void main(String[] args) {

/I Invoke a system-provided method to
/I print a String argument to standard output.

System.out.printin("Welcome to Java Programming!");

}

Successful completion of the edit stage requires the omaif the source
code text file whose contents are the Java code given abowe fil@hmust end
in the .java extension and, due to requirements discussed laiestbe named
WelcomeApp.java

DR. JavAa

The edit, compile, and execute stages may all be accomglistikin the Dr. Java
Integrated Development Environment. First, you must lauhe Dr. Java appli-
cation. Depending on how Dr. Java was installed, there masg axshortcut or
desktop icon that may be used to launch the application.

Once the application is launched, you will see three prim@ndow panes in
the Dr. Java window. On the left side is tRites Pane a pane that will display the
set of Java source files that are currently active in Dr. J&l@zon initial launch,
there are no active source files, afuthtitled) should appear in this window
pane indicating an empty unnamed Java source file is readnfoy of code. The
largest window pane, on the right, is tBefinitions Paneand displays the content
of a single active source file. Since we have not entered amyciale yet, this pane
will be empty. The window pane across the bottom of the apfitio window starts
in the tab for Dr. Java Interactions, and is referred to adrtezactions Pane

Click in the Definitions Pane and enter the given Java codetlgxas it appears
above (but without the listing line numbers). When you malaifications to a
source file, the condition of having an unsaved source filedEated by a*’ ap-
pearing next to the source file in the File Pane. As you type @othe Definitions
Pane, you may note that parts of the code will be displayedferent colors. This
is calledsyntax highlightingand is used to show different parts of the vocabulary
of the Java language and their place in the syntax of the sdilec

8 CHAPTER 1. INTRODUCTION

Once the Java code has been entered, the source file mustdoe Jéws op-
eration writes the text source file out to the file system ondis& of the com-
puter. From thd=ile menu, select th&ave menu item. You can also click the
Save button on the button bar that appears underneath tha Man This will
result in a Save dialog box. The ‘File Name’ and the ‘Files gp& items will
be filled in with “WelcomeApp” and “Java source files”. Thege #he correct
entries and should not be changed. This is specifying tleah#tme of the file is
WelcomeApp.java . Use the upper portion of the Save dialog box to navigate
to the folder/directory where you want the source file (arnately the bytecode
file) to reside. Then click th&ave button. Upon successful completion of the
save, the File Pane will change\fdelcomeApp.java

Compile

If you have successfully entered and saved the Java soudesegactlyas it ap-

pears, then the compile stage should be very straightfdrwalte only have to
specify the source file to the compiler, which will, withouryafurther interaction,
generate the output bytecode file. Problems arise in the &roompiler errors
if typographical errors have resulted when the code wagahtelf this occurs,
compare your code carefully with the given code; correctemgrs, and retry the
compile step given below.

DR. JavAa

Ensure that WelcomeApp.java appears and is highlightethénFiles Pane and
that the Java source code that you entered appears in thatioefirPane of the
Dr. Java application. This should be the current state afraffollowing the Edit
stage. If Dr. Java had been closed after the Edit stage, yotetarn to this point
by selecting thedOpen menu item from theFile menu and navigating to, and
opening, the WelcomeApp.java source file from the prior.step

Compile the source file by clicking thEools menu and selecting either the
Compile All Documents or the Compile Current Document menu
itemt. During compilation, the bottom pane will switch to the “Cpifer Output”
tab and display the message “Compilation in Progress, @least ...". If there
are no syntax errors, the completion of the compilation dlindicated by the

These two are equivalent when there is a single file listetiénFiles Pane. They differ when
more than one source file is active, and thus the Files Pari@insmmore than one entry.

1.3. AJAVA TUTORIAL 9

message “Last compilation completed successfully” in tben@iler Output tab of
the bottom pane.

Execute

Now for the moment of truth. It is time to execute your firstal@vogram.
DR. JavA

Again, ensure that th&VelcomeApp.java appears and is highlighted in the
Files Pane and that the Java source code that you entereatgppthe Definitions
Pane of the Dr. Java application. Now, from fheols menu, select th&®un
Document’'s Main Method menu item. The bottom pane should change to
the “Interactions” tab, and you will see, at the’prompt of the Interactions pane,
the following command:

java WelcomeApp

This should be followed by the outputVelcome to Java Programming!"

in your console window. This is the result of the successkacation of your
Java program. Alternatively, you can click on the “Inteiags” tab of the bottom
pane and manually type thava WelcomeApp command. When you press
Enter/Return, the program will execute and display 'ttAéelcome to Java
Programming!" output.

A Closer Look at the WelcomeApp Java Code

Now for some explanation of the source code. This first progeahibits four ele-
ments of the language: comments, class definition, methfaditit;n, and method
invocation. All four of these elements will be common to aghevery Java pro-
gram.

A comments free-form text that adds description to a program sugtdbt
helping a reader to understand what parts of the programesigried to do. Lines
1-4 together form a syntactic unit that is delimited at thgibweing by the char-
acter sequence *+ ' and at the end by the character sequendg.’ This defines
a multi-line comment in Java. Between the beginning of comindelimiter and
the end-of-comment delimiter, the programmer may type aqyence of charac-
ters available from the keyboard. Lines 7, 8, 12, and 13 a® Jva comments,

10 CHAPTER 1. INTRODUCTION

but these are single-line comments. The comment beginsthatithe character
sequence// ’ and continues until the end of the current line. In this eplanthe
single line comments are the only element on the line, bstgtjle of comment
is often used following some non-comment Java syntax anded to explain the
Java on the line on which it resides.

Lines 6, 9, 11, and 13 are blank lines. The use of blank linestaa use of
indentation to show nesting of syntactic structures imesahe readability of the
source code, but has no impact on the instructions that withtecuted. Neatness
and readability count when we are writing programs.

The ability to cope with problems of any significant size rieggithe ability to
organize and break a problem up into smaller, more managesitiproblems. All
high-level languages have some facilities for accompighhis, and in Java, the
fundamental facilities are the notions of a class and of daotetAmethodgathers
together a set of program steps that define an action in tlhggro Aclassis a
collection of methods.

Line 5 begins the definition of the class naméglcomeApp. In that line
public andclass are necessary Java keyword§elcomeApp is providing
the name of the class, and thg is known as adelimeterthat begins the contents
of the class. The}’ on line 17 is the corresponding closing delimeter endirgy th
class definition.

Line 10 begins the definition of the method namedin. The keywords
public ,static ,andvoid are required syntax in the definition of this method,
as is the syntax(String[] args) ' following main . Like defining a class,
the definition of a method delimits the beginning and endotdntents with the
symbols {" and ‘}".

Every Java program must consist of at least one class, angl itingst exist a
method namedhain declared as we see on line 10. Chapters 8 and 9 will treat the
concepts of class and method in much greater detail.

Now that we have covered all the syntax providing the regusteucture of a
class definition foiWWelcomeApp and itsmain method definition, we are left with
a single statement, on line 15, whose execution actuallyraptishes our goal.

| System.out.printin("Welcome to Java Programming!"); |

This Java statement is the invocation of the metBgsgtem.out.printin()

(Or, more simplyprintin()). A method invocation has the semantics of tem-
porarily suspending execution of the steps in the currenthateand executing
the steps defined in the invoked method. Once those step®emgate, execu-
tion continues in the current method at the point followihg method invocation
statement.

1.3. AJAVA TUTORIAL 11

In this example, the stringVelcome to Java Programming!" is the
parameter that is passed during method invocation tqthsin() method.
The printin method is defined as having a string parametettaenchethod handles
the output operation of printing the given string to the otiiponsole. The method
is also defined to end the output line and start the next lioghat subsequent
output is on a new line. By specifying different strings as ffassed parameter
to the printin() method, one can have any such string printed to the output
console.

Exercise 1.1 Create (i.e. Edit, Compile, and Execute) a new Java apptoat
class, called\él cone2 whose goal is to print the following output on the console:

Welcome
to Java Programming!

Exercise 1.2 Create a new Java application, call&i | | whose goal is to print
the following output on the console:

All the world’s a stage,

And all the men and women merely players:
They have their exits and their entrances;
And one man in his time plays many parts,
His acts being seven ages.

Exercise 1.3 Let us intentionally make some mistakes. One at a time, niake t
following changes to the original (correct) source f\&| coneApp. j ava and
then attempt to compile the modified program. Observe thersethat result:

1. Omitthe semicolon on the end of the line that be§yst em out . println
(line 15).

2. Omit the wordsoi d on line 10 before the wordai n.
3. Omit the symbol sequence ” on line 4.

4. Add the worchew between the wordgsubl i ¢ andcl ass on line 5.

Another method, name8ystem.out.print() (print()) is available
and is a variant of therintin method we have already seen. Like its cousin,
it also takes a given string parameter and prints the stonttpe output console.
However, it does not add the newline to begin the next linehef ¢donsole, but
leaves the current output point immediately following thnted string, so any
subsequent output will follow on the same line.

12 CHAPTER 1. INTRODUCTION

Using theprint() method, we can use multiple method invocations to achieve
the same effect as a single (longer) invocatiompntin() . So, the statement
seguence

System.out.print("Welcome to ");
System.out.printin("Java Programming!");

is equivalent to

| System.out.printin("Welcome to Java Programming!"); |

Exercise 1.4 Modify your firstWel conmeApp class so that the body of theai n
method uses the two statement sequenc@of at () followed by gri ntl n() .

Exercise 1.5 Modify yourWel comeApp class once again so that tHéAél cone
to " string inthepri nt () invocation leaves off the trailing space. What do you
expect to happen? Compile and Execute the application aad geu are correct.

1.3.2 A Conversion Application
Design

The second application of this tutorial has slightly morg@ttethan the simple
printing of output. We are going to use the computer to perfeome calculations
in our program as well.

Consider the problem of converting distances. Some of th& cmmmon dis-
tances used in road races include 5K, 10K, and occasionéliyite race. We wish
to convert the kilometer distances to miles and the mileagjantes to kilometers.
This will be the goal of our next application, with the prablstatement:

Compute and print the conversion of 5K, and 10K to their gpoad-
ing mileage distances, and 5 miles to its correspondingrigler dis-
tance.

This problem statement can be refined into the followingsstep
1. z miles = 5K * 0.6214 miles/K
2. Print the string5K = " and thenr and then the strinfj miles"
3. y miles = 10K * 0.6214 miles/K
4. Print the string10K = " and theny and then the striny miles"
5. z K=5 miles * 1.609 K/mile

1.3. AJAVA TUTORIAL 13

n

6. Print the string5 miles = and therz and then the strinfy K" .

Note the introduction of the variables y, andz during the enumeration of steps
so that we have a way of naming and talking about a computeutitpu#o use in
subsequent steps. At this point, these variables havermpthido with a computer
program. They are simply tools used in the same way that wevaisables in
algebra.

Edit

The following Java language code accomplishes the goakas¢bond program of
our tutorial.

1 K

2 * The ConvertMilesK class implements a simple application wh ose
3 * purpose is to convert the distances of 5Km and 10Km to miles, a nd
4 * to convert 5 miles to Km.

5 */

6 public class ConvertMilesK {

7

8 /I The ConvertMilesK class consists of a single method defin ition,
9 /I namely the application entry method called 'main’.

11 public static void main(String[] args) {

13 double milesValue; /l variable for miles in conversion

14 double kilometersValue; // variable for kilometers in conv ersion
16 /I Convert 5Km to miles and print result

18 kilometersValue = 5.0;

19 milesValue = kilometersValue * 0.6214;

20 System.out.printin("5Km = " + milesValue + " miles");

22 /I Convert 10Km to miles and print result

24 kilometersValue = 10.0;

25 milesValue = kilometersValue * 0.6214;

26 System.out.printin("10Km = " + milesValue + " miles");

28 /I Convert 5 miles to Km and print result

30 milesValue = 5.0;

31 kilometersValue = milesValue * 1.609;

32 System.out.printin("5 miles = " + kilometersValue + " Km");

14 CHAPTER 1. INTRODUCTION

Using the skills acquired during the last application of thi®rial, create the
ConvertMilesK.java source file based on the Java code given above as ap-
propriate to your development environment.

Compile and Execute

Compile the create@onvertMilesK.java and then execute. You should ob-
tain output similar to the following:

5Km = 3.1069999999999998 miles
10Km = 6.2139999999999995 miles
5 miles = 8.045 Km

A Closer Look at the ConvertMilesk Java Code
Note the similarities between this program and the eafllelcomeApp program.

e Both source files begin with a comment that describes theoserpf the
class, and is often a restatement of the problem statement.

e Line 6 of ConvertMilesK.java beginning the class definition is almost
identical to Line 5 oMWelcomeApp.java . The difference is simply in the
name of the class being defined.

e The beginning of thenain method definition on line 11 is identical to the
corresponding line 10 aiVelcomeApp.

As we examine the Java instructions withiain method (lines 12 through 32)
in theConvertMilesKk class, we can readily observe a correspondence between
the Java code and the steps enumerated during the design Istagrticular, lines
16 through 32 correspond to the conversion and print for Km,510Km, and 5
mile conversions.

We can create variables in a programming language that wessafor naming
and manipulating values during the steps of the program.hikgrogram, we
define and use two variables, nammadesValue andkilometersValue

Lines 13 and 14 areariable declaration statemen(also called simplylecla-
rations) for variablesmilesValue andkilometersValue . A variable dec-
laration statement associates a programmer suppliedblam@ame, oidentifier,
with a unit of storage in the memory of the machine.

1.3. AJAVA TUTORIAL 15

A declaration also associates a data type with the declaagdble. In pro-
gramming languages, thgpeof a variable determines the set of valid values that
are permitted to be stored in the variable. The type of botlesValue and
kilometersValue is given by the keywordlouble . The typedouble for a
variable specifies that the variable may have real numbeesalwhere real num-
bers are numbers that contain decimal points (e.g. 1.53,-8.2).

In general, a variable may be declared using the followingasy:

<type> <identifier>;

substituting the appropriate data type fotype>, and the desired variable name
for <identifier>.

In line 18, we assign the constant real number value 5.0 tovdhiable that
was declared in line 14&ilometersValue . This is our first example of an
assignment statementThe assignment statement is a fundamental construct of
programming. It updates the storage unit associated witdriable with a value.

The syntax of an assignment statement is the following:

<identifier> = <expression>, ‘

The symbol £’ is the assignment operator For the expression side of an assign-
ment statement, we can have expressions that are as singptmastant value, but
can be considerably more complex. Arithmetic and more cerm@kpressions will
be explored in Chapter 3.

The semantics of the assignment statement is the following:

1. Evaluate the right hand side of the assignment. Use therdwalues asso-
ciated with any variables that appear and combine them Wwéloperators
and constants and obtain a final value and type for the coeplgtression.

2. Store the computed value at the location associated gthdriable named
on the left hand side of the assignment.

Line 19 demonstrates another assignment statement. Byethargics given
above, the current value d&ilometersValue , which is 5.0 because of the
previous statement, is multiplied by the constant valu@146 The result is stored
in the variablemilesValue

Then, on line 20, we see a statement invokingghatin() method. The
difference from what we have seen before is that the striggraent to the method
is specified in pieces. We have the constant string véki€s= " and" miles"
When working between operands that are strings, theperator performs string
concatenation, which appends two string together into gposite string. The use

16 CHAPTER 1. INTRODUCTION

of the variablemilesValue , whose type islouble , in a string expression like
this causes the current valueroflesValue to be converted to a string, so that
the final result is a string argument that can be passedmdn

The remaining lines of the program, lines 22 through 32, aefiee same kinds
of assignments and print statements. Note that it is pdyfeoe to reuse variables.

Exercise 1.6 Study the remainder of the ConvertMileaidi n method definition,
looking for the similarities and differences between theseaining sections and
the section discussed.

Exercise 1.7 Modify the ConvertMilesK program to perform conversionsifek,
25K, 10 miles, and the official marathon distance of 26 mB&s, yards.

Exercise 1.8 Create a new class calleGonvert Ft oCto convert between tem-
peratures in Fahrenheit and their corresponding tempeestn Celsius. Convert
the values 80F, 72F, 32F, and OF. Be sure and use appropriataes for your

variables.

Chapter 2

User Interaction

2.1 Console Based User Interaction

2.1.1 An Application to Add Two Integers Input by the User
Design

The next example application addresses the need to intertct user, getting
their input in order to achieve a goal. Say that we want to addriumbers. How-
ever, we don’t know ahead of time what those numbers will b& n&ed some
mechanism in our program to ask the user for some input, ardtthretrieve the
user’s response. We will use tipeint() method to print the question asking
for input to the user, but we need a corresponding input naetbaetrieve the
response.
Our problem statement:

Add two integer numbers input by the user, and print the cdetpu
sum.

can be realized by the following steps:

1. Prompt the user for the first integer.

2. Retrieve the first integer, denoted

3. Prompt the user for the second integer.
4. Retrieve the second integer, denoted
5. Computez = x4y

6. Print the stringSum is " followed by the value of.

17

18 CHAPTER 2. USER INTERACTION

Edit

Java (J2SE) 5.0

When programming in Java 1.5.0 (J2SE 5.0) and later, thewiolly Java pro-
gram satisfies the requirements of this application.

1 | *%

2 * The AddTwolnts class implements a simple application
3 * whose purpose is to input two numbers entered by the
4 * user, compute the sum, and print it out to the console.
5 *

6

7 import java.util.Scanner; // program needs the Scanner
8 /I class for console input
9 public class AddTwolnts {

10

11 /I The single method of the AddTwolnts class, main.
12

13 public static void main(String[] args) {

14

15 int firstNumber;

16 int secondNumber;

17 int sum;

18

19 /I In J2SE 5.0, can use the Scanner class

20

21 Scanner consoleln;

22 consoleln = new Scanner(System.in);

23

24 System.out.print("Enter first integer: ");

25 firstNumber = consoleln.nextint();

26

27 System.out.print("Enter second integer: ");

28 secondNumber = consoleln.nextint();

29

30 sum = firstNumber + secondNumber;

31 System.out.printin("Sum is " + sum);

32

33 }

2.1. CONSOLE BASED USER INTERACTION 19

Create thdddTwolnts.java source file based on the given code as appro-
priate to your development environment.

Compile and Execute

Compile the createdddTwolnts.java and then execute. You should obtain
output similar to the following:

Enter first integer: 34
Enter second integer: -12
Sum is 22

where the boldface values of 34 and -12 are the input typetiduser.

A Closer Look at the AddTwolnts Java Code

Themain method ofAddTwolnts begins with three variable declarations, for
the variablegirstNumber ,secondNumber ,andsum(on lines 13-15). These
associate the given variable names with a unit of storagendihda data type of

int . Theint data type is used for whole numbers, which have no fractional
part. Compare these to the declarations ofdbeble variables in the example in
Section 1.3.2.

Java (J2SE) 5.0

Themain method continues with another variable declaration andsaigia-
ment statement. The variable declaration uses a data typeapiner and a vari-
able name otonsoleln . The behavior of &canner as a data type is given
by theScanner class of the Java API. Using classes to define types allows mor
complex data structures and methods to be created, and iceibe, defines the op-
erations needed to get user input. Just as with the prinigpwes ofdouble and
int ,thisScanner variable is uninitialized, and its initialization is thenpose of
the following statement. The expression on the rhs of thigiasgent creates a new
Scanner object based on the console input streaystem.in . Once the object
is created, we have access to the methods defined i&daener class through
that object.

Line 17 outputs a string to the console. Note the usprift() instead of
printin() so that the following user input is on the same line as the ptom

20 CHAPTER 2. USER INTERACTION

The next line is an assignment statement in which the rightlteade is an
expression made up of a method invocation. Unlike the metinaatations we
have seen up to this point, the method must return a value areldn associated
data type in order for the assignment statement to followrigscribed semantics.

Java (J2SE) 5.0

The methodconsoleln.nextint() is defined to retrieve input typed by
the user, convert the user’s keystroke sequence up to th&nex into an integer,
and return the integer as the value computed by the methoden\Wie invoke
a method, we pass any paramters needed by the method insigmtbntheses
following the method name. In this case, there are no argtspand so we simply
have () .

The next two lines, lines 20 and 21, of the Java program regheaprocess
of prompting the user for an integer and then retrieving tipui from the user
through a method invocation and assignment into the varsddondNumber .

Once the two values to be added are stored in the varidipggslumber
andsecondNumber , we are ready to compute their sum. This is accomplished
on line 23 with an assignment statement whose target is thabl@sum and
whose computation is given by the expression, evaluatiegcthrrent values of
firstNumber andsecondNumber , and adding them together to get a value.

In similar fashion to earlier examples, the value of thealaslg sum is then
printed out to the console.

Exercise 2.1 We have seen the use of integer variables and the corresmpndi
methods to retrieve an integer (typet) value as input from the user. We may
also wish to retrieve @oubl e value as input from the user.

Java (J2SE) 5.0
TheScanner class includes a method calleext Doubl e() for input of a

doubl e value from an object that has ty@eanner , such axonsol el n from
the previous example. Itis used in exactly the same manneeas] nt () .

Create a new application class callédtldTwoDoubl es that declares the vari-
ablesfi r st Number andsecondNumber andsumto be of typedoubl e and

2.2. DIALOG BASED USER INTERACTION 21

modify the method invocations to retrieve the user inputaib tbesedoubl e-
based methods. Neither the addition operation nor giné nt | n of the result
needs to change.

Exercise 2.2 Create a new application program to convert a single valuarir
Celsius to Fahrenheit. The type of the value should deabl e and it should be
input by the user. Use appropriate variable names and a ptdhgt informs the
user of what is being asked for.

2.2 Dialog Based User Interaction

For current students, who have grown up with computers awvel been using com-
puters for word processing, web browsing, building spreadts, and so forth, the
console-based input and output of Section 2.1 may well sadta &preign and
even primitive. Users of today are much more accustomedapl@cal User Inter-
faces (GUIs), in which computer programs use windowingesyistand a collection
of graphical interfaces such as menus, menu items, toglaadsdialog boxes in
which to display information to the user and to gather infation from the user.

Graphical User Interfaces use a model of programming, d&lent-driven
programming that is at level of sophistication beyond the initial & of a stu-
dent learning their first programming language. This is wieybegin by demon-
stating interaction with the user through input and outgw& text console.

However, many students may desire a more graphical apprddetremainder
of this chapter introduces the use of a simple but relatipelyerful collection of
system-provided APIs for dialog boxes. These can be usdwbutitforcing the
programmer into an event-driven model, and can be used piaglisnessages to
the user, as well as gather information from the user, sefficior the types of
interaction required through the rest of this book.

2.2.1 Basic Operations

The Java API provides a class call@@ptionPane , which allows user interac-
tion through dialog boxes. To allow a program to use thesitias, the program
must include the statement

| import javax.swing.JOptionPane; |

before the class definition begins.

22 CHAPTER 2. USER INTERACTION

?’{ Message

I} Welcome to Java

Figure 2.1: JOptionPane Message Dialog

Displaying a Message to the User

A dialog box displaying a message to the user is comparallertose ofSystem.out.printin
We wish to construct a message string and have a dialog bplagid with the
message, and an ‘OK’ button, by which the user may dismisegssage.

The method)OptionPane.showMessageDialog() provides this facil-
ity. The method takes two parameters, but the first is only uisea full GUI, so
we use the keywordull to indicate our standalone use. The second parameter is
a string specifying the message.

The following statement

| JOptionPane.showMessageDialog(null, "Welcome to Java") ; |

results in the display of the dialog box shown in Figure 2.1.

User Confirmation

Another common interaction with a user is to ask a questigpeeting a response
of "yes” or "no” or "cancel”. The methodOptionPane.showConfirmDialog()
provides this facility. LikeshowMessageDialoghe method takes two param-
eters, and we use a valuenafl to indicate our standalone use. The second
parameter is a string specifying the question.

The method interprets the button push of the user and mapssi bvtton press
to the integer value 0, a "No” button press to the integer edluand a "Cancel”
button press to the integer value 2. It is this integer vahag is “computed” and
returned as a result when the method is invoked.

The following code declares a variable namserValue of typeint and
then invokes theshowConfirmDialog() method, assigning the result to the
userValue variable. The resulting dialog box is shown in Figure 2.2.

int userValue;
userValue = JOptionPane.showConfirmDialog(null, "Do you wish
to continue?");

2.2. DIALOG BASED USER INTERACTION 23

}Q’{ Select an Option

IE‘ Do you wish to continue?

| Yes || Mo ||Cance||

Figure 2.2: JOptionPane Confirm Dialog

If the user pressed the “No” button, theerValue variable would have the
value 1 as a result.

User Input

General input can be retrieved from the user by displayin@igl box that has a
text entry area.JOptionPane.showlnputDialog() is a method that pro-
vides this general input. In its simplest form, it also hae farameters, aull

for its standalone (non-GUI) use, and a string specifyingampt displayed to
the user. SincehowlnputDialog() is a general facility, it simply collects the
string of characters typed by the user in the text entry anélareturns that string
as the result of the method invocation.

Just as we have strings of characters that we enclose inelqubtes to use in
our programs, we can have variables whose tyj@nsg and that we can use to
manipulate strings. In the following code, we declare aaldd, userAnswer
to have a data type @tring and then use thehowlnputDialog to retrieve
the string of characters from the user and assign it to thiaudetvariable.

String userAnswer;
userAnswer = JOptionPane.showlnputDialog(null,
"Enter your name:");

Figure 2.3 shows the result of this invocation and after a hes typed in the
characters “Susan” into the text entry area. Note that tlee dees not type the
double quote marks.

While the demonstrated usage is adequate for user inputiogst what do
we do when we require other data types, like an integer § or a real number
(double)? The answer is that we use the same method and retrievag som
the user, but we then need to convert the string into the medjdiata type.

Suppose we want to use dialog-based input for the applicafi®ection2.1.1.
For each integer, we want to prompt the user for the integdrthen store the
number into a variable. We begin as we did in the last example:

24 CHAPTER 2. USER INTERACTION

> Input
EI Enter your name:
[Suzan |

Figure 2.3: JOptionPane Input Dialog (of a string)

> Input
EI Enter first integer:
24 |

Figure 2.4: JOptionPane Input Dialog (of an integer)

String userAnswer;
userAnswer = JOptionPane.showlnputDialog(null, "Enter f irst
integer:");

This results in the dialog box of Figure 2.4, with the userihguyped “34” in the
text entry area.

We then declare our integer variabdlestNumber , and perform a conver-
sion. The Java API provides a collection of methods relatethé integer data
type, and among these, there is a method to conv@tiiag into an integer. The
methodinteger.parselint() takes a single string parameter and converts the
given string into an integer, returning the result. Thedwihg code accomplishes
this for our example:

int firstNumber;
firstNumber = Integer.parselnt(userAnswer);

2.2.2 Dialog-based User Application

Let us put together what we have learned into a complete cgian.

Design

The following application will interact with the user by ¢gjag the user’s name,
and then retrieving two real numbers to add together. Itishthen compute the

2.2.

DIALOG BASED USER INTERACTION 25

sum and display the result in a user-personalized manner.
Our problem statement:

Add two real numbers input by the user, and print the compsiten,
using a personalized approach.

can be realized by the following steps:

1.
2
3.
4

5.

Ask the user for their name, and retrieve the resultinggte.

. Prompt and retrieve the first real number, denated

Prompt and retrieve the second real number, denpted

. Computez =z +y

Display the stringHi " followed by the value of, followed by", your
sum is " followed by the value ot.

The Program

CoOoO~NOOTR,WNE

| **

* The AddDoubles class adds two real numbers (doubles)
* together, demonstrating user interaction through

+ dialog boxes.

*/

import javax.swing.JOptionPane; // Tell Java where to find

/I JOptionPane

10 public class AddDoubles {

/I The single method of the class, main.

public static void main(String[] args) {
double sum; /I sum of firstNumber and secondNumber
double firstNumber; //

double secondNumber; //

String userName; /I user entered name
String userAnswer; // string with number to be converted

/I Get user name

CHAPTER 2. USER INTERACTION

userName = JOptionPane.showlnputDialog(null,
"Enter your name:");

/I Retrieve the two numbers from the user
userAnswer = JOptionPane.showlnputDialog(null,
"Enter first real number:");
firstNumber = Double.parseDouble(userAnswer);
userAnswer = JOptionPane.showInputDialog(null,
"Enter second real number:");
secondNumber = Double.parseDouble(userAnswer);
/I Compute the sum
sum = firstNumber + secondNumber;

/I Display result in a friendly way

JOptionPane.showMessageDialog(null,
"Hi " + userName + ", your sum is " + sum);

Chapter 3

Arithmetic

Computers are well known for their fast and accurate arittmoemputations. The
Java language provides support for arithmetic using rastdimiliar to all of us.
For example:

int x = 5;
inty = 2;

int z 4:

z = zly;

X = X*y + Z;
y = xx(y + z);

O Ul WN PP
I

In lines 1 - 3 of this example, we have introduced the idea itlization in
Java. When a variable is declared, the programmer may inatedylassign a value
to it on the same line as the declaration. On line 1, we havemigtdeclared to
be an integer, but we have assigned it the value of 5. Goodaruyging dictates
that it is a good idea to initialize every variable before ye it.

Using the Interaction window in DrJava, you can type line8 bf the example
code and then write:

1 System.out.printin(z);
2 System.out.printin(x);
3 System.out.printin(y);

to get an immediate result of what the code does in the iiziéibn lines. You
can then type lines 4 - 6 followed by System.out.printinestegnts for each of the
variables again to see what happens as a result of thosetioperalt is also a
good idea to try out a variety of assignments to help undedstehat results can

27

28 CHAPTER 3. ARITHMETIC

be obtained using addition, subtraction, multiplicatidivjsion, and parentheses.

In the example, variables namgd y , andz are declared to be integers and
are assigned initial values. Note that the equal sigiis used in Java to mean
assign to. This is different from the meaning of the equah slgmathematics. In
an assignments = 5; , the meaning is not that x is equal to 5, but rather that x
should be assigned the value 5.

On the fourth line, the value of divided byy is assigned to the variable
On the fifth line, the variable is assigned the value obtained by first multiplying
the values of x and y and then adding the value of z to the reblatice that we
use thex symbol to indicate multiplication, since writing xy would bndistin-
guishable from a variable named xy. Finally, on line 6, thealdey is assigned
the value obtained by first adding the values of y and z and theltiplying the
result by the value of x. This is exactly the way we would iradécthis operation
in mathematics.

Just as in standard mathematical practice, any compusaéinolosed within
parentheses are carried out before other computationsr pdrentheses, multipli-
cation and division are done in the order in which they appat finally, addition
and subtraction are completed in the order in which they apféese rules about
what operations should be done before which others aredddléerules of prece-
dence in mathematics. Figure 3.1 lists operations in therdrdwhich they are
performed in the left column. The right column contains sw&out where to start
the evaluations and the left column tells whether to prodewd right to left or left
to right or inside out to do the evaluations. For examplewé&ealuating expres-
sions enclosed in parentheses, when some expressionssted mside others, the
rule requires that whatever is in the innermost parenthgsasld be done first.

Consider a more complex expression: 3*(-5 + (2 - 6)*2) -10%®/3: Using
the table, we see that we need to start by evaluating whatyeession(s) lie
inside parentheses. Moreover, we should start with therinost parentheses. In
this case, we need to evaluate the (2 - 6) first, resulting .in\M& now need to
evaluate the newly formed expression 3*(-5 + -4*2)-10%3+3Mext we evaluate
the expression -5 + -4*2, which requires us to first multiplyby 2 and then add
the -5 to the result, yielding -5 - 8 which is -13. Now all thegraheses have been
processed and we continue by carrying out multiplicatiavisibn, and taking the
remainder as they appear, moving from left to right on theatgd expression 3*
-13 - 10%3 + 8/3. So we first multiply 3 by -13 getting -39. Next vake the
remainder when 10 is divided by 3, which yields 1, and theiddig 8 by 3 we
get 2. Note that all of the values in this example are integer so the division
omits anything that is not an integer. Now we have the expes89 - 1 + 2 and

3.1. TYPES 29

Operator| Associativity
() inside out
unary - | right to left
* [, % left to right
+, - left to right

Figure 3.1: Operator Precedence and Associativity

following the table, we complete the subtraction and addithoving from left to
right yielding -40 + 2 which equals -38.

3.1 Types

When writing mathematical expressions or formulas, werofise a variety of
number types, such as natural numbers (non-zero only rstesgeh as 3, 10, or
357), integers (whole numbers both postive and negative aac25, 78, or 0),
rational numbers (written as fractions or decimals such/4s.25, or 234.5678),
and real numbers (written in decimal notation such as 123.@833, or 3.14). We
use the same operation symbols when we mix these differenbers in the same
expressions or formulas. For example, we might write theesgioon 3*(4.5).
Here we are multiplying an integer by the difference betwaeational number
and a real number. Human beings have no problem sorting tiiara figuring
out that since all of the numbers involved are in the real remdet, the answer
will be a real number, as opposed to an integer or rational.

Division poses an interesting phenomenon. Suppose we havetegers, 12
and 10. If we divide 12 by 10, the answer is not an integer. Weged an approxi-
mation to the answer, namely 1, but the exact answer is ttmehthumber 1.2.

Although people automatically reason about such situat@md make their
own choices about whether they are satisfied with approiomst exact answers,
or at least a more precise answer, computers need peoplditatin their choices.
For this reason we make explicit distinctions among thesmws mathematical
types and use the type names to indicate what we want.

We will be able to write most of our Java arithmetic using twypes: a type
calledint , standing for integer and a type calldduble to use when we want
real numbers. The term "double” has to do with precision,nitmber of digits on

30 CHAPTER 3. ARITHMETIC

the right hand side of the decimal point. Here are some icistms to try out using
ints and doubles:

int x 8;

int y = 6;

int quotientl = x/y;
System.out.printin(quotientl);
double z = 8.0

double w = 6.0;

double quotient2 = z/w;
System.out.printin(quotient2);

00 ~NO O~ WN P

On the third line, the integer variablguotientl is assigned the result of
dividing the value ofx by the value ofy. Note that the result turns out to be 1.
This is because both andy are integers and so when you divide their values, you
lose all but the integer part of the answer. On line 7,gbetient2 s assigned
the result of dividing the value of by the value ofy again, and this time all the
variables have been declared to be of typeuble) and so the value includes
the decimal part, yielding 1.3333333333333333.

The next question we want to explore is "What happens wherxaression
has a mixture of types. What type will the answer be?

Here are the rules Java uses to address the issue of whahey/pealuation of
an expressioma <op> b will be. By <op> we mean some operation such as +, -,
* 1, or %. Examples illustrating the rules will follow.

1. If aand b are of the same type, the result is of that same type

2. If aand b are different types the operand is promoted tgtbater operand
and then the evaluation is done.

3. Java does not permit assignment of a greater type to beadesser type.

4. Promotion of a lesser type to a greater type will happearaatically when
an assignment is called for.

When we talk about lesser and greater, we refer to the faligwirogression
from lowest to greatesthar ,int ,float ,double .

3.1. TYPES 31

Here are some examples illustrating the rules:

lL.intx =3 ;inty =4 ;
Herex + vy isthe integer 7 Since bothandy are the same typat , the
sum is of typant .

2.int x = 3 ;
double y = 4.5;
If we want to add these, x + vy, first x is promoted to double by 12l and
then the addition takes place, resulting in the double 7his &xample illus-
trates rule 2.

3.int x = 0;
double y = 5.2;
X = y; Thisis an error by rule 3.

4. int x = 3;
double v;
y = X; Thisis alright. y gets the value 3.0. This illustrates rule 4

Sometimes we may have variables that we would like to treamtagers in
some parts of a program, but as real numbers elsewhere. &opéx, we might
get the ages of three people as whole numbers of years buwidr@no compute
the average as a real number. Java allows us to convert betwedlifferent data
types by an operation called “casting.” To cast an integex dsuble, we put the
worddouble enclosed in parentheses in front of the integer. Here is ample:

1 int x = 8§;
2 double y = (double)x;
3 intz=x

We have declared an integerand a doubley and then assigned the value of
x toy. In order to make the assignment, we castxhe be treated as a double.
Note that the variabl& does not change to a double, so on line 3, the assignment
puts the integer value of into the integer variable.

The typeint can be used for integers between -2,147,483,648 and 2831847 .
Although these numbers are large enough for many composatsmmetimes we

32 CHAPTER 3. ARITHMETIC

Type Value Range

boolean| true, false
float +3.4 x 10738 to 3.4 x 10738 with 7 digits of accuracy

byte -128to 127

int -2,147,483,648 to 2,147,483,647

char ascii characters

long -9,223,372,036,854,775,808 to 9,223,372,036,854,085,8

double | 1.7 x 1073% to 1.7 x 1073% with 15 digits of accuracy
short -32,768 t0 32,767

Figure 3.2: Primitive Types

may need even larger integers. For example, suppose we wéimdtout how
many times a person’s heart will beat during an averaganifet Currently, life
expectancy is 80 years and the average heartrate is 70 leeatsnute. To get the
number of beats in a lifetime, we need to multiply 80 by 70 ts/tkamber of min-
utes in a year. This multiplication results in a very largeger. To accommodate
such large numbers, we can use a type cdtiad.

1 long lifetimebeats = O;

2 long minutesperyear = 0;

3

4 minutesperyear = 60 * 24+ 365;

5 lifetimebeats = 70 * minutesperyear * 80;

6 System.out.printin("Average count of heart beats in a life time: "
7

+ lifetimebeats + ".");

There are additional types in Java that we may use later. dar€i3.2, we
present a table of several types in Java. We will introducamptes of types
throughout the text as we need them.

3.2 Special Math Methods

Some mathematical computations require more than just glesisum or product.
For example, suppose we want to solve a quadratic equation 5z — 3 = 0.
One way to do this is to use the quadratic formula solutionctvimequires us to

take the square root @b — 4 = 1 x (—3). The formula solves the general equation
az? + bz + cis g = =bEvbi—dac Vzli_‘lac.

3.3. BUILDING EXPRESSIONS 33

Java provides commonly needed mathematical functionsimghted as meth-
ods collected together into a class called Math. We can wstmethods in the
programs we write by importing the Math class at the begmmhour program
and then calling the methods such sxgt , to suggest square root. The * in
Line 5 of the program indicates that we want all of the avddabnethods in the
class calledava.math To indicate that the method comes from the Math class,
we write Math.sqrt() on the line of the program in which we use the square
root method. On Line 13 we assign the value thitath.sqrt() computes to
the variable solution. This can happen because the mettied &&ath.sqrt()
produces a value consistent with the type of the variablation . Example:

1 | **

2 * This program computes part of the quadratic formula
3 */

4 /lget the Math functions to use.

5 import java.math. *;

6

7 public class MathUsage

8 |

9 public static void main(String[] args)

10 {

11 double solution = 0O;

12 /I factor: 0 = X2 + 5x - 3

13 solution = Math.sqrt(25 - 4 * 2% (-3));
14 System.out.printin(solution);

15 }

16 }

Some other mathematical operations that Java providesodtior include
abs() for absolute value, the typical trigopnometric functiosisy(), cos(),
tan() , as well as functions to compute the maximum and minimomax()
andmin() respectively. There is also a function that produces a mrandgalue,
random() .

3.3 Building Expressions

We have seen how various expressions are written and esdlaatording to rules
of precedence and associativity by looking at examples. @Vewant to see the
rules for how to build a larger expression from smaller congras. At the simplest

34 CHAPTER 3. ARITHMETIC

level, expressions can be constants, variables, or metivodations. An example
of a constant i8. We have seen and used many variables with names sucHras
our quadratic formula we used the method invocadtath.sqrt()

In formal notation, letting<E> represent an expression, we say this as follows:

<E> := <constant> | <variable> | <method invocation>

The| mark means “or.”
Using the same notational forms, we can show how other esiores can be
built:

<E> = (<kE>) | <E> + <E> | <E> - <E>
| <E> * <E> | <E> /[<E>

In other words, we can build complicated expressions franpk ones using
parentheses and arithmetic operator symbols.

Exercise 3.1 Write a progam to compute a student’s gpa. You should allav th
user to input a grade between 0.0 and 4.0 for each of four @suasd then compute
the gpa and print it out in an appropriate message. The inpatgs should be
between 0 and 4.0.

Exercise 3.2 Write a program to find the weekly earnings for an employe&k As
the employee what the hourly wage is and how many hours tisepéias worked.
Print out the earnings in appropriate form with a dollar sign

Exercise 3.3 Write a program that inputs a number, either positive or riega
and prints out the absolute value.

Exercise 3.4 Write a program that inputs a number of degrees in Fahrenhied
prints out the number of degrees in Celsius. To get this vatweneed to multiply
5/9 by (F - 32) where F means the number of degrees in Fahrenhei

Exercise 3.5Write a program that inputs ages of three people and thentgrin
out the average age. Declare the ages to be integers, but uentipe average to
include the fractional part.

Chapter 4

Conditionals

A lot of what computers do for us is what we call “event driVanganing that the
computer responds to some external event such as an inputiggr.aOf course,
what the computer should do upon receiving an input usuayedds on what
that input is. For example, if you are getting input via a aigbox and you ask
the question “Do you want to continue with this program?&rtta negative reply
means that the user wants the program to stop, but if the agsfy®s,” you want
the program to continue doing whatever it has been writtetotdHere, a decision
has to be made based on an input value.

Sometimes a decision must be made based on a computatiorex&ople,
in the previous chapter, Expressions, we computed the nuailieearbeats for a
person who lives an average lifespan. Suppose we want toderésr those who
are interested, not only the number of heartbeats, butladésoumber of minutes in
the average lifespan. We can ask the user to choose whethet loe/she wants to
know the number of minutes as well as the number of heartbBatsending on the
response, the program will provide both statistics or oné/riumber of heartbeats.
Look at the example that computes number of heartbeats aridahout how you
could print the number of minutes for those users who reqgiebtt omit that
information for those who do not. Using only sequential colnfior what happens,
we have no way to skip some statements, so we either give agenboth values
or we don't. Before modifying this program to satisfy the uggment that we
provide number of minutes only for those who want to see itheed to find out
how Java allows code to be skipped.

Java supports decision making by what are called “conditiastatements and
by “switch” statements. The conditionals are usually usbdmthere are only two
choices and the switch when there are several choices. Howather can be used
whenever different actions are associated with some result

35

36 CHAPTER 4. CONDITIONALS

4.1 if Statements

An if statement takes the form:

if (<boolean expression>)

{

<stmt>
}
<stmt>

The first statement sequengestmt> , is executed only when the boolean ex-
pression evaluates toue . It is skipped otherwise. The second statement se-
guence is carried out in either case.

Here is the modified example for finding real solutions to gaad equations.

A typical Boolean expression is a relational expressiom ltlha two parts sep-
arated by a comparison symbol and evaluates to either “su&alse.” Here are
some examples:

1. x<3
If x has a value less than 3, the expression evaluates to “tfuefids value
3 or greater, the value of this expression is “false.”

2.4>7
Note that this expression will always evaluate to “falseliisTtype of state-
ment doesn’t usually appear in a program since it is alwags fa

3. 500<=x+Yy
The value depends onandy.

4. x==
This syntax evaluates to true wherandy have equal values.

5 wl=y
This checks to see W does not equal.

6. -456>=x*y -w
Here some computation must be done in order to determinegutievalue
of the expression.

4.1. IF STATEMENTS 37

< | less than

> | greater than

<= | less than or equal to
>= | greater than or equal tp
I= | not equal
== | equal

Figure 4.1: Symbols and Meanings

Figure 4.1 is a list of the possible relations and their negsti

When used in an expression each of these symbols result isaduadon to
“true” or “false.” We call the type whose values are “true”“alse” boolean ,
one of the primitive types in Java. Each boolean expressasralvalue of this type.
Notice the "equals comparison” has two equals signs A single equals denotes
an assignment statement, you must use the double equatsnfigacing two items
in a boolean expression.

We are now ready to modify the program that computes hedstlseathat it
also prints number of minutes for those who want to know both:

1 | **

2 * This program computes the average number of times a heart bea
3 * in a lifetime. For those who want to know, it also displays the
4 * number of minutes in an average lifespan.

5 */

6

7 import java.util.Scanner;

8

9

class HeartBeats

17

10 {

11 public static void main(String[] args)
12 {

13 long lifetimebeats = 0;

14 long minutesperyear = 0;

15 long minutesperlife = 0;

16 int response = O;

18 minutesperyear = 60 * 24+ 365;

19 minutesperlife = 80 * minutesperyear;

ts

38 CHAPTER 4. CONDITIONALS

20 lifetimebeats = 70 * minutesperlife;

21

22 System.out.print(

23 "The average number of times a heart beats");
24 System.out.printin(

25 " in a lifetime is " + lifetimebeats + ".");

26 System.out.print(

27 "Would you like to know the number of ");

28 System.out.printin(

29 "minutes in an average lifespan?");

30 System.out.printin("Enter 1 for yes and 0 for no");
31

32 Scanner consoleln = new Scanner(System.in);

33 response = consoleln.nextint();

34

35 if(response == 1)

36 {

37 /I This output occurs only when the response is 1.
38 System.out.print(

39 "The number of minutes in an average lifespan");
40 System.out.printin(" is " + minutesperlife + ".");
41 }

42 }

43 '}

44

This program computes both the number of minutes in an agdif@gpan and
the number of heartbeats. However, after it prints the nurobédneartbeats, it
asks the user whether he/she also wants to know the numbeinofes If the
repsonse is in the affirmative, the program provides the murabminutes, but if
the response is negative, the output line is skipped andrtigram ends.

Here is another example of tiife statement:

System.out.printin(
"The target for next month is $75000.");

1 if (sales > 75000)

2 |

3 bonus = 1000;

4 System.out.printin("Your bonus is $1000.");
5 1}

6

7

4.2. IF ELSE STATEMENTS 39

In this code segment, the conditional statement checksetdf see sales value is
greater than 75000. Ifitis, a message is printed out awgmimonus. Whether or
not the sales value exceeds 75000, a message is printed tehiat the target for
next month will be. Notice that the steps which must be exatuthen the boolean
expression evaluates taue are enclosed within a pair of braces. When there is
only one statement to be done, the braces are not requirethrkany number of
statements greater than one, the braces are needed.

4.2 if else Statements

Often, there are two distinct actions desired upon evalgatiboolean expression,
one action to take place if the expression is true and andthés false. For exam-
ple, if we want to find the larger of two numbers, we can compaeto the other
and then choose to output the larger one based on the rektlits @mparison:

1 int x =5

2 inty =17,

3 if(xx>y)

4 |

5 System.out.printin(x + " is larger than " + vy);

6 }

7 else

8

9 System.out.printin(y + " is larger than or equal to " + X);
10 }

In this program segment, the valueofs compared tgy. Sincex fails to be
greater thary, the control flow will cause the program to skip the first otitime
and go to the line following thelsepart.

The form of anif else statmentis:

if (<boolean expression>)

{
}

else

{

<true stmt block>

40

CHAPTER 4. CONDITIONALS

<false stmt block>

We are now ready to modify the program we did for getting $ohs to quadratic

equations by checking to see whether the solutions are real:

© 00O ~NO UL WN P

W W WWWNDNDNDNDNNMNNNNNRPRPRPRPRPERPRPRPEPERPRPPERPRPRPE
A OWODNPOOONOOOPR,WNPEPOOONOOUGMWDNLEO

[+ This programs allows users to enter coefficients for the

* (uadratic equation a *X'2 + b *xx + c. |If the solutions are
* real, the program computes them and prints them, but if

* the solutions are not real, the prpogram prints an

* appropriate message for the user.

* [

import java.math. *;
import java.util. Scanner;

class QuadSolutions

{

public static void main(String[] args)

{
double a, b, ¢ = 0.0;
double solutionl, solution2 = 0.0;

Scanner consoleln = new Scanner(System.in);
System.out.printin("Enter your value for a: ");
a = consoleln.nextDouble();

System.out.printin("Enter your value for b: ");
b = consoleln.nextDouble();

System.out.printin("Enter your value for c: "),
c = consoleln.nextDouble();

if (b b - 4+axc < 0.0)
System.out.printin(

"Your solutions are not real numbers.");

else

4.3. COMPOUND BOOLEAN EXPRESSIONS 41

35
36
37
38
39
40
41
42
43

solutionl
solution2

(-b + Math.sqgrt(b *b - 4*axc))/2 *a;
(-b - Math.sgrt(b *b - 4 xaxc))/2 =*a;

System.out.printin("The solutions are
+ solutionl + " and + solution2);

In this modified version of the quadratic program we set upatées to hold
the values of the coefficients of the quadrati€ + bz + ¢ and variables to hold
the solutions if they exist. Before doing the computatioa pnogram checks the
value of the square root to see if it might be negative. If itegative, the program
produces a message indicating that the solutions are HoBudf the value of the
square root is not negative, the program computes both amotprints them out.

4.3 Compound Boolean Expressions

Sometimes there may be more than one condition controllingt\action is to be
taken. For example, in a particular company, it may be thgoa® who makes
more than 10 sales or who sells a total amount of at least $85@ll receive a
bonus of $2,000. In this case we need to check two expressiditating that if
either one or the other evaluates to true, the salesperssithgebonus. To express
anor we use the symbdl].

1 double totalSales = 0.0;

2 int numberSales = 0;

3

4 |/l insert code here to enter values for

5 /I totalSales and numberSales

6

7 if (totalSales >= 85000 || numberSales > 10)
8

9 System.out.printin("*You get a bonus of $2,000.");
10 }

11

12 /I the rest of your program goes here

We have omitted parts of the program to retrieve inputtéoalSales and
numberSales .

42 CHAPTER 4. CONDITIONALS

Xy | X]|]| y|x&&y
T|IT|T T
TIF|T F
F|TI|T F
FIF|F F

Figure 4.2: Evaluation of Compound Boolean Expressions

If you need to confirm that more than one condition must evalt@ true in
order for certain code to be executed, we use the sy@&olFor example, suppose
that students who are under 19 and who have at least a 3.@avam eligible for
the junior debate team. We can indicate this as follows:

1 if (age < 19 && gpa >= 3.0)

2 |

3 System.out.printin(

4 "You are eligible for the debate team.");
5 1}

The rules for how to evaluate compound statements are showmeitable,
Figure 4.2.

4.4 switch Statements

It is possible by using multiplg else combinations to handle situations that
involve several actions depending on the evaluation of omease boolean expres-
sions. For example, depending on what year of college ecpéatistudent is in, a
different status will be assigned. Assuming a student mhe value of year as 1
or 2 or 3 or 4, the following code illustrates how status wdugdnoted:

1 switch(year)

2 |

3 case 1:

4 System.out.printin("Freshman.");
5 break;

6 case 2:

7 System.out.printin("Sophomore.");

4.5. NESTED CONDITIONALS 43

10
11
12
13
14
15
16
17

break;
case 3:
System.out.printin(*Junior.");
break;
case 4:
System.out.printin("Senior.");
break;
default:
System.out.printin("Not a valid year.");

The wordswitch is a keyword in Java. The worgkar in the parentheses

is the variable name on whose value the control flow dependsase is a key-
word followed by a particular value thgear might receive as input. For each
case, some statement or sequence of statements follovahgéabe indicate what
action(s) must be taken for that case. The keywobdeak is used to termi-
nate the switch statement. This is important here, so theg¢ anparticular case
has been determined, the correct action is taken and therottieol flow passes

to the next statement following the switch statement. Witltbe break , con-

trol would pass through all the cases, evaluating them die [ast case listed is
one called default . This allows the programmer to handle the situation when
the user has given as input some value that none of the otkerstatements has.

In this example, in the event that a user gave any value ottzar the four val-

ues allowed, a message will make that clear to the user. ihp®itant to note
that the value on which theswitch statement depends must be discrete, such
asint, char, long, byte, boolean, and short not a value which
might need to be an approximation, such atoable . For example, it’s alright

to make the switch statement depend on an integer, but not on a real number
(double in Java).

45 Nested Conditionals

There may be more than one way to make sure your program fliog control
sequencing needed. For example, instead of using a swétdnstnt for printing
out a message telling whether a student is a Freshman, Sopaodunior, or Se-
nior, it is possible to use a series of if-else combinatiadDse of the exercises in
this chapter asks you to do so.

For more complicated situations, one might consider ptpoimeif statement

inside the body of anothef statement oif else statement to express what

44 CHAPTER 4. CONDITIONALS

needs to happen in a convenient way. This is called “nestirgL's consider the
following problem:

A bank wants to screen potential borrowers online by askiegitsome ques-
tions to see if they qualify for a loan before making an appoant to spend time
discussing loans with the customer. The bank requires tpatson be employed
in order to be eligible for a loan, but the bank also wants thtemtial borrower to
earn at least $25,000 per year. If a person fails to meet thpfogyment require-
ment, the bank wants the person to receive a message sagtragghrson must be
employed in order to be considered for a loan. If the persamiployed but fails
to meet the $25,000 requirement, the bank wants the pers@téive a message
telling the person that their income is not high enough.

Let’s follow the steps we saw in the first chapter for prepgarprogram for the
bank. For the design stage, we have a problem statementimahieus paragraph
that describes what the bank wants the program to accompliskt we need to
make a sequence of statments that will satisfy those reqainés.

1. Prepare a message to display to potential borrowersgeatiem what infor-
mation they will need to provide and in what form they shoutdvide it.
Let's plan to tell the customers that they will need to telletifer or not they
are employed and whether or not their income exceeds $25,000

2. Ask whether the customer is employed and provide a variabivhich to
store the responses.

3. Ask whether the customer has an income above $25,000 andi@ra vari-
able in which to store the respone.

4. Check to see if the customer is employed.

e If the customer is employed, then check to see if the inconsses
quate.

o If the customer is employed, but the income is not adequaplay a
message saying so.

5. If the customer is not employed, display a message saging s

Let’'s look at what code would be entered when you use youpetht write
the code. We have chosen to call our program class “Loanfiyadion.” In the
main method we have declared two integensployed andincome and initial-
ized them to 0. On line 11, we alert the user to answer questiging al for
an affirmative answer andl for a negative answer. The first question concerning

4.5. NESTED CONDITIONALS 45

employment is output on line 13. On line 14 the variabfeployed is assigned
the input.

Line 16 asks about income and on line ihéome is assigned whatever the
user enters.

On line 19 we begin our firsf statement. The expression to be evaluated
checks the value adhcome to see if it is equal td.. If so, anotheiif statement
is introduced to see if thincome value isl. We call this a “nestedif because
the secondf is processed only when the fiift expression evaluates tae.

When the first boolean expressigefiployed == 1)) evaluates tdrue
but the second onencome > 25000)) isfalse ,theelse section is exe-
cuted, producing the message about income.

Note that if the user inputs @ indicating that the user is not employed, then
the income check does not occur, but rather the control jumiase 32, producing
the message about the need for employment.

The use of the nesting is a convenient way to produced theedassults. It is
important to note that most conditional situations may beea®d in a variety of
ways, some more cumbersome than others. It is a good ideagagme thought
to what you need to accomplish to determine which of the ptssionditional
statements would suit your situation best.

PR R RRRERERR R
©oO~NOUNWNLERO

1 | **
2 * This program determines whether a potential lender
3 * qualifies for a bank loan or not.
4 */
5 import java.util.Scanner;
6
7 class LoanQualification
8
9 public static void main(String[] args)
{
int employed, income =0;
Il retrieve user data from keyboard input
Scanner consoleln = new Scanner(System.in);
System.out.printin(
"Answer the following questions with 1 " +
"for yes and 0 for no.");
System.out.printin("Are you employed? ");

N
o

46

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

CHAPTER 4. CONDITIONALS

employed = consoleln.nextint();

System.out.printin(
"Is your income above $25,000 per year? ");
income = consoleln.nextint();

/I We check to see if the user is employed.
if (employed == 1)

{
/I Only if the user is employed do we check
/I whether the income is adequate.
if (income == 1)
{
/I If both expressions are true,
/I the user qualifies for the loan.
System.out.printin(
"You qualify for a bank loan.");
}
else
{
/I the user's income is inadequate.
System.out.printin(
"Your income is not high enough " +
"to secure a loan.");
}
}

/I only print this message if user is unemployed.
else

{
System.out.printin(
"You must be employed to qualify " +
"for a loan.");
}

4.6. EXERCISES 47

4.6 Exercises

Exercise 4.1 Write a code segment that inputs an amount representing essal
person’s total sales for a month. If that input is greaterrti€b000, the program
should print a bonus of 1000. In any case, the program shotittt p message
encouraging the salesperson to work toward next monthé&ssal

Exercise 4.2 Write a method that inputs two numbers and outputs the smaflle
the two.

Exercise 4.3 Write a program that asks the user to input the number of hours
worked during the past week and the hourly rate of pay. If thealmer of hours

is 40 or less, the amount earned is that number of hours nfiellipy the rate.

If the number of hours is greater than 40, then the amounteazhia 40 times the
rate plus time and a half for the number of hours over 40. Tlogm@m you write
should print out an appropriate message that includes thewarhearned.

Exercise 4.4 Write a program that asks for a child’s name and age and thielshi
readiness score. If either the age is greater than 6 or thelireess score is greater
than or equal to 85, the program should print a message gjatiat the child is
ready for first grade. Otherwise, there should be a messagagtthat the child
should try again at a later time.

Exercise 4.5 Write a program that inputs two real numbers and then allolss t
user to ask for any of the following: the sum, the differertbe, product or the
quotient of the numbers. Hint: You may want to have the uger ttye letter “S”
for sum, “D” for difference, etc. To do this you will need toeua type callectchar
that allows variables to have ascii values.

Exercise 4.6 Wrtie a program that allows a user to input 3 grades betweend a
100. The program finds the average and outputs both the noaleverage and
an appropriate letter grade. Assume that grades are assigmea 10 point scale
where below 60 is “F,’ 60 to 69 “D,’ etc.

Exercise 4.7 Write a program that inputs a student’s year as an integer toah
prints out Freshman, Sophomore, Junior, or Senior dependmwhether a 1 or 2
or 3 or 4 is entered. Use a succession ofori f el se statements, rather than
a switch statement for the purpose of showing that it can lmedo

48

CHAPTER 4. CONDITIONALS

Chapter 5

Repetition

We have seen how it is possible to transfer control withincg@am by evaluating
a boolean expression and then either executing or skip@rtgin code segments.
Sometimes it is particularly useful to control the flow ofiantin a program by re-
peating some collection of statements over and over agdiirsome task has been
accomplished. For example, suppose you want to find thedavgkie among four
numbers. You could declare four variables and assign a waleach and then start
using conditional statements to compare those numbers aitampt to find the
largest. However, such a program would not only be cumbezstomvrite, even
worse, it would defeat the purpose of automating the taskl,asiace it would
probably be quicker to just process the numbers withoutgusicomputer at all.

Our code would like this:

1 | **

2 * This program finds the largest in a set of 4 integers
3 * using a different variable for each integer.

4 */

5

6 import java.util.Scanner;

7

8 class FindLargest

9

10 public static void main(String[] args)

11 {

12 int a, b, ¢, d = 0;

13 int largest = O;

14 Scanner consoleln = new Scanner(System.in);

49

50 CHAPTER 5. REPETITION

15

16 System.out.printin("What is your first number?");
17 a = consoleln.nextint();

18

19 System.out.printin("What is your next number?");
20 b = consoleln.nextint();

21

22 System.out.printin("What is your next number?");
23 ¢ = consoleln.nextInt();

24

25 System.out.printin("What is your next number?");
26 d = consoleln.nextint();

27

28 largest = a;

29

30 if(lb > largest)

31 largest = b;

32 if(c > largest)

33 largest = c;

34 if(d > largest)

35 largest = d;

36

37

38 System.out.printin("The largest is " + largest);
39 }

40 '}

Even with four numbers to process, the program gets long apéititious.
Think of what would need to be done if we needed to find the Ergmong 100
numbers or more. Next we will see a way to find the largest amd@fgnumbers
by using far fewer than 100 variables by using a new constatéd a “loop.”
There are several kinds of loop constructs. We will examwvdf them. The first
we will consider is thavhile loop.

The syntax for thevhile loop is given by:

while (<boolean expression>)

{
}

<stmt>

Semantically we note two parts of the construct: First,ghgithe question of

51

how many times the body of the loop should be executed. Thigtesrmined by
the boolean expression. The second part is the code to beeiefrepeated). This
is called the “body” of the loop.

In thewhile loop, the boolean expression determines the flow of contsl.
long as that expression evaluatedriee , the statements in the loop are executed
over and over. The repetition stops only when the boolearessfpn evaluates to
false . Here is an example of a code fragment that finds the largesh@rhO
integers (it would be trivial to modify the program to find tleegest among 100
integers, but this takes too long if you want to actually thetprogram) :

1 | **

2 * This program finds the largest of 10 integers.

3 */

4

5 import java.util.Scanner;

6

7 class FindLargest10

8

9 public static void main(String[] args)

10 {

11 /I holds one number at a time as it is read.
12 int number = O;

13 /I holds the largest number entered so far.
14 int largest = O;

15 Il keeps track of how many have been read.
16 int counter = 1,

17

18 Scanner consoleln = new Scanner(System.in);
19 System.out.printin("What is your first number?");
20 /I note: first input is automatically the largest
21 /[number seen so far

22 largest = consoleln.nextint();

23

24 while (counter < 10)

25 {

26 System.out.printin("Enter next number: ");
27 number = consoleln.nextint();

28 if (number > largest)

29 largest = number;

52

30
31
32
33
34
35

counter

}

CHAPTER 5. REPETITION

counter = counter + 1;

}

System.out.printin("The largest is
+ largest + ".");

When control reaches thghile construct, the boolean expression is evalu-
ated. When this point of the program is encountered for tlsétfine, the value of

is 1 and so the boolean evaluatednoe . This means that the state-

ments between the braces will be executed once. During #uggn of the loop
body, a number is input and assigned as the valuadatber . That value is com-
pared to the current value tdrgest and if the new number is bigger than the
current value ofargest , the value oflargest is changed to be whatever the
newly input value ohumber is. Note that before the loop begins, the first of the 10
numbers is read into the variable calledgestand so when the loop has executed
once, the larger of the first two numbers is already storedheénviariable called

largest

and so at that point, the value lafrgest is the biggest of the values

because it is the only value. The last statement in the loo@inentscounter

by 1, making it 2. At the end of the loop code as indicated byaadyrthe boolean
expression is again evaluated. Of course, since the valgewfter is now 2
and is still less than 10, the loop executes again. So a thincber is input and
compared against the valuelafgest

Remember thallargest holds the larger of the first two numbers, so if the
value ofnumber is still bigger, it will replacelargest . If not, largest will
remain as is, now being the maximum of the first three numb&rgs process
continues. Each time the loop is executedunter increases, the boolean ex-
pression is checked, and as long as the valw®ohter remains less than 10, the
loop steps are executed. However, once the counter reabhésslmeans all the
numbers have been read. Now the boolean expression ewatafdése and the
loop steps are skipped entirely, bringing control to thgpotustatement. Since the
value stored in the variablargest is the largest of all 10 numbers, it is printed
out.

5.1 for Loops

When the programmer knows exactly how many times a codeosentiust be
repeated, an alternative to thile loop is a construct called for loop. A
second example finds the largest number among 10 numberscenng dor
loop, the same job we did previously withwdnile loop.

5.1. FORLOOPS 53
1 | **
2 * This program finds the largest of 10 integers.
3 */
4
5 import java.util.Scanner;
6
7 class FindLargestForLoopl0
8 {
9 public static void main(String[] args)
10 {
11 /I holds one number at a time as it is read.
12 int number = 0O;
13 /I holds the largest number entered so far.
14 int largest = 0O;
15 /I keeps track of how many have been read.
16 int counter;
17
18 Scanner consoleln = new Scanner(System.in);
19 System.out.printin("What is your first number?");
20 /I note: first input is automatically the largest
21 /[number seen so far
22 largest = consoleln.nextint();
23
24 for (counter = 2; counter <= 10; counter++)
25 {
26 System.out.printin("Enter next number: ");
27 number = consoleln.nextint();
28 if (number > largest)
29 largest = number;
30 }
31 System.out.printin("The largest is "
32 + largest + ".");
33 }
34 }

In this example, the code section preceding the loop is theesss we used
earlier. We simply set up variables to use for keeping trd¢kenumber currently
under consideration, the variable used to store the larggsber, and a variable to
use for counting how many numbers have been read in. As beferead in the
first number and immediately identify it as the largest, siitgs the largest so far.

54 CHAPTER 5. REPETITION

In the loop, the keywortbr is followed by a pair of parentheses in which there are
three parts. The first part, the loop initialization, telleewe to start. In this case
we have chosen to start counting at 2, since we already reti ifirst number.
The second part, the boolean condition, tells what booleg@nession should be
checked each time the loop is entered. If this boolean dondi$ true, the loop
will be entered again. It will continue to be entered unté ttondition is false. In
this particular case we want the program to continue readimgbers until 10 have
been read. The third part, the loop update, tells how to keepdunter variable up
to date. This update statement is always executed at thef endny loop iteration.
Note thatcounter++ is a shorthand way of writingounter = counter +

1 but means exactly the same thing.

The code segment to be repeated is enclosed between brstcasijuthe while
loop. Note that we do not need to increment the counter ingpeated segment,
since the loop update part of tfi@r-loop inside the parentheses takes care of
that.

An obvious question concerns when to usefsle loop and when to use
afor loop. It turns out that any loop can be written with either stomct, but
there is a definite convention that should be followéat. loops should be used
any time that you knowthe exact number of loop iteratiorisefore entering the
loop. Otherwise, you should usenile loop construct. In our largest-among
10 integers problem, &r loop is the correct choice because before the loop
executes, we already know that we need exactly 10 iteratldowever, if we were
to prompt the use to keep entering numbers until they enterveeOvould need
awhile loop since the exact number of interations is not known —jiteahels on
what the user enters inside the loop body.

5.2 Nested Loops

Just as it was possible and sometimes convenient to put taorali statements
inside other conditionals, there are times when we will neegdut loops insider
other loops. Before doing an application of this techniquis, useful to see what
happens when we write a program that illustrates what happtien one loop is
nested inside another.

1 | **

2 * An example of nested loops. Can you
3 * guess what is printed?

4 */

5 class NestedLoop

5.3. APPLICATON: A MULTIPLICATION TABLE

© 00 N O

10
11
12
13
14
15
16
17
18
19
20

public static void main(String[] args)

{
int ij = O

for (i

{

0; i < 4; i++)
System.out.printin("i is " + i);
for = 0;] < 3; j++)

{

}

System.out.printin("j is " + j);

55

This short program serves to show how a loop inside anotlogr beehaves.

We often call the first loop (with thé loop control variable) theuter loopand
the second loop (with thg loop counter) theénner loop When the outer loop is
first reached, the value of the loop counteis set to 0, the boolean expression is
evaluated, and since the value is true, the inner loop ihezhdts control variable,

j is setto 0, the boolean expression is evaluated, and siroathe istrue |, the
body of the second loop is executed. At the end of one iteratfdhe inner loop,

j is incremented and the boolean expression evaluted witmetevalue ofj .
Since that value is stitrue the inner loop body is executed again. This repetition
of execution, incrementing, and expression evaluatiotilmoes until the boolean
expression finally evaluatdéalse whenj reaches 3.

It is only when the inner loop finishes that control revertshe outer loop,

incrementing the (now to the value of 1), evaluating the boolean expression to
see ifi isless than 4 and then upon an evaluatiotrwé |, repeating the loop body
once again. Since the loop body contains the inner loop, wbatrol reaches the
inner loop, the value df is set back to 0 and the whole porcess begins again.

The result is that for each of the four iterations of the oldep, the inner loop

goes through 3 iterations. Run the program to confirm thatywlerstand how the

control flows. Try to guess the output before you enter andharprogram.

5.3 Applicaton: A Multiplication Table

In this application we use one new idea besides nested Idogsovide flexibility
so you could print a table for any number of values, not justwWe introduce

56 CHAPTER 5. REPETITION

the idea of a constant. The integer representing the higladst whose pairs we
want the product for has the word final in front of final int MAX = 9;

Final means that the value is set in the declaration and car be changed in the
program. In this case we have set the value at 9, remembdratdhte digits go

from 0 to 9. It is common convention to use all uppercaserkefta a constant so
that they are easy to identify in the code.

Problem Statement: Write a program that will produce a iplidation table
for all 10 digits, showing the product for each pair of digk®ep the program flex-
ible so if we wanted a multiplication table for just 5's or s any other number,
we could just change the line of the program where we declsireR

Design:

1. Choose variables to represent the digit pairs whose ptasivequired.

2. Choose a variable to represent the maximum digit for wiiehwant the
table of product pairs.

3. Display a heading for the table.

4. For each digit, find the product of it with every other digitd display the
products on a single line labeled by that digit.

1 | **

2 * This program produces a multiplicaton table
3 + for pairs of digits.

4 * |

5

6 class MultTable

7 A

8 public static void main(String[] args)

9 {

10 int i

11 int j;

12 final int MAX = 10;

13

14 /[print the top header row

15 System.out.print(" * | "),

16 for = 1; j <= MAX; j++)

17 {

18 System.out.print(" " + j + " "),
19 }

5.4. EXERCISES 57

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

System.out.printin();
for (= 1; j <= MAX; j++)
{

}
System.out.printin();

System.out.print("------ ");

/[print the table
for (i = 1; i <= MAX; i++)

{
System.out.print(i + " | ");
for (= 1;] <= MAX; j++)
{
System.out.print(" " + i)
}
System.out.printin();
}

5.4 Exercises

Exercise 5.1 Write a program that allows a user to input as many numberdas t
user wants to enter and then outputs the number of valueswvidyat entered.

Exercise 5.2 Write a program that asks how many numbers a user wants to add
and then allows those numbers to be entered. After all thebewsrare entered,
the program outputs the sum.

Exercise 5.3 Write a program that finds the average of however many nunters
user may want.

Exercise 5.4 Write a program that allows a user to input as many numbers as
the user wants to enter and then outputs the maximum and thiemomh numbers
among the entered numbers.

Exercise 5.5 Write the same programs again using the other kind of loom ftioe
one you used the first time.

58

CHAPTER 5. REPETITION

Chapter 6

Strings

We have been using examples of strings throughout our pragthus far. This
chapter takes a closer look at the syntax and semanticsiatesbevith creating
and manipulating the data type 8fring in the Java language.

We first note that the typ8tring is not one of the primitive types listed in
our table of Figure 3.1. We do see the typbar ' in that table as having a value
of ASCII characters. Intuitively, &tring is a sequence of characters grouped
together. For instance, the sequence of characters ‘J"Va’and ‘a’ can form
the String "Java” . This more complex type has its own class definition, and is
referred to as alass typeWe shall learn to create our own class types in Chapter 9,
but the focus of this chapter is on how tisethe String class type to greater
effect in our own programs.

We begin by reviewing some of the concepts from earlier intée

6.1 String Syntax and Semantics

6.1.1 String Constants

We have already seen that we can introdu&rang constant into our program
by simply putting the desired sequence of characters betdeable quotes. For
instance, our first program used the const&tring , "Welcome to Java
Programming!" as a parameter to tl&ystem.out.printin() method.

A string constant, just like a variable defined as (classg §ping , is an
expression whose type &tring and whose value refers to the sequence of char-
acters that make up the constant. As such, a string constanbe used in any
case where a string expression is appropriate. We havelssén the use of string
constants as parameters to methods, sugitindn and on the right hand side

59

60 CHAPTER 6. STRINGS

of assignment statements.

6.1.2 String Declarations and Initialization

In a manner similar to the declarations statement for theifivie data types of
int ordouble ,we can declare a variable to refer t&&ing . The syntax

String <identifier>;

is exactly the same as that introduced in Chapter 1. The rd¢ida creates the
variable <identifier> and associates storage in the memory of the machine with
that <identifier>. It also associates the data typeSifing with <identifier>,
constraining the valid values that may be stored in the blgia

We can also initialize &tring variable when it is declared. The syntax is

String <identifier> = <string-expression>;

where the<string-expression is most often a<string-constant, as defined above.
For example, we can declare and initial@&ing variablefirst andsecond
as follows:

String first = "Now is the time *;
String second = "for all good persons";

and now | can use the variablésst andsecond anywhere that &tring is
appropriate. We have already seen the usBtohg variables in the context of
user interaction.

6.1.3 String Concatenation

We use the+’ operator withString s to form longer strings that are the concate-
nation of theString operands. Continuing our example from above, the string
expressiorfirst + second results in a newstring whose value iSNow

is the time for all good persons" . This string expression could be
assigned to a ne®tring variable:

‘ String third = first + second; ‘

or it could be used as tigtring argument to an output statement:

| System.out.printinfirst + second); |

6.2. STRING MANIPULATION 61

or anywhere else a string expression is appropriate.

The string concatenation operator in Java is also frequersitd to help us
convert numbers and other data types iBtang s. If either of the operandsf a
‘+’ operator is a string, then the other operand is autométicahverted to a string
as well, and then both strings are concatenated. We haveusaenthis property
from some of our earliest programs in Chapter 1. For exangoippose we have
the following sequence of code:

int age = 25;
String prefix = "My age is ";
String myage = prefix + age;

In the third statement, singarefix on the right hand side of the assignment
statement is &tring , the integerge is converted from the value 25 to the two
character string sequent@5" . Then the two string&My age is " and"25"
are concatenated together to form the sttibly age is 25"

String concatenation also works with non-numeric typespp®sge | want to
combine a primitive typehar with aString . | can use the same technique:

char letterS = 's’;
String animal = "frog";
String plural = animal + letterS;

to yield the valué'frogs" for the variableplural

6.2 String Manipulation

When we increase the complexity of a data type, we often vashanipulate and
access some of the simpler types that make up the more cortyplex This is
certainly true for the class typggtring . For instance, one attribute of any string
is its length. The length of the strin§Velcome to Java Programming!"

is 28. Note that we include the characters that are spacepwanduation, ... ,
they are part of the string. The quote marks, however, arelimgy are part of the
syntax that we use to denote a string constant.

When a class type is defined, the designer of that type mayedefethods
that operate on instances of this type so that we can queryramipulate the
constituent attributes of the complex type. For instarntoe ctass type obtring
has a method callegtngth() that returns the length of a particul&tring
instance. We invoke a method for a particular instance oassdype by using the
syntax:

<i nstance>. <met hod>(<par anet er s>)

62 CHAPTER 6. STRINGS

So if | have theString variable namedlural as defined aboveplural
refers to the instance of @tring , andplural.length() would invoke the
length() method on the string, and return the value of 5. | can use Xuses-
sion anywhere that an integer experssion is appropriaténdgtance:

| int n = plural.length(); |

6.2.1 Character Positions and Accessing Individual Charders

When we wish to access an individual character of a stringjseehecharAt()
method of theString class. ThecharAt() method takes a single parameter
that specifies the position of the desired character in tiregstWe begin number-
ing character postions of a string at index 0, so for thegtliava" ,the ‘J'is at
index position 0, the ‘a’ at index 1, the ‘v’ at index 2, and theat index 3. The
index of the last character of any string is equal to the lemdtthe string minus
one.

Consider the following declarations and initialization:

String line = "Let it be!”

int lineLength line.length();

char firstChar = line.charAt(0);

char lastChar = line.charAt(lineLength - 1);
char middleChar = line.charAt(lineLength/2);

In this example, the length of the string, stored in the \deéineLength
is 10. In the second line, we pass an integer 0 as the requeisieacter position
in the invocation ofcharAt() and so the variabl@rstChar has the value
'L’ . Inthe next statement, we retrieve the last character ofttiveg by comput-
ing the final index position ofineLength - 1, or 9. This yields the value
" in the variabldastChar . Finally, we compute the position of the charac-
ter about halfway through the string with the expresdinaLength/2 , which
evaluates to 5, and is passecctmrAt() to getthet’” assigned to the variable
middleChar

Note that it is an error to invoke theharAt() method with a parameter
whose value is outside the valid range of indices for theamst string on which it
is operating.

6.2.2 Other Useful String Methods
Finding the position of a substring

Another frequent operation required in programs is to $efimca substring within
a larger string. Th&tring class provides a method for accomplishing this. Say

6.2. STRING MANIPULATION 63

that we have a string variable declared and intialized dovist

String quote = "All the world’'s a stage";

If we wish to find the index position of the substrittpe™ within this string, we
can use thindexOf() method:

int pos = quote.indexOf("the";

This returns the index within the instance string of the facturance of the spec-
ified string. In this case, the variabpes would be assigned the value 4. If the
substring were not found in the instance string, the metbtatms a -1.

Extracting a substring by position

At other times in our programs, it may be necessary to exaastbstring from

a given string. The methoslubstring() accomplishes this task for us. For
example, if we with to extract the substring from index posit8 through index
position 12 (inclusive) of thguote string instance, and assign the substring to a
newString variable, we could write:

‘ String subl = quote.substring(8,12);

This would result irsubl referring to a new string whose value"isorld" . It
is an error for the beginning index to be greater than thergnidideX, or for either
the begiining index or ending index to be outside the rangelid indices for the
string.

Comparing two strings

We often wish to compare two strings to see if they have theessequence of
characters. For primitive types, we can simply use the tomparison operator,
but for class types, we require an operation that “looksdeisand compares the
elements within. For instances of tB&ing type, we can invoke thequals()
method, that takes a single string parameter specifyingtiiireg to compare the
instance string to. The method returnd@olean (true or false) that indicates
if the instance string is identical to the parameter stringqia@t. By returning a
boolean , we can use this method invocation anywhere a boolean esipreis
appropriate, such as in the condition ofiistatement.

Say that we have a string input from the user and want to deterifthe user
typed the string "stop”. The following code exemplifies tb@@mmon scenario:

64 CHAPTER 6. STRINGS

Scanner input = new Scanner(System.in);
String answer = input.nextLine();

if (answer.equals("stop")) {

< stop-statenents >

}

Since the method invocation is a boolean expression, we pply &oolean op-
erators to it. For instance, we can change the above exampgeetute a block
of statements whenever the user's answerais'stop” by using the codeif
(fanswer.equals("stop™))). The parameter to thequals method need
not be a string constant. It could be any string expression.irfstance, we could
comparestring strl with String str2 by usingstrl.equals(str2)

It is equivalent to interchange the instance string and t&rmpeter string, so
str2.equals(strl) will return the same result.

If, in the above example, the user typ&top" instead of'stop” |, then the
equals() method would returifialse because the upper case 'S’ is not the same
character as the lower case ’s’. This will probably resultmexpected behavior of
the program. Th&tring class defines a method nameglialsignoreCase()
to address this case. As the method name suggests, this @ grainstance
string with a string parameter, but ignores differencesaisecin the two character
seguences.

A final comparison method of clasdring comes into play when we wish
to determine the lexicographic ordering of two strings.rnkhof the lexicographic
ordering of strings as their ordering by standard dictigrstyle alphbetical order-
ing. In applications such as sorting or searching a cotiaabf elements, we need
to compare two strings and see which should occur earliertti@other in this or-
dering. We want to be able to tell that the string “Jones” &htwe ordered before
“Smith” and that “Smith” should be before “Smithson”, whishould be before
“Smithy”.

ThecompareTo() method of theString class gives us this ordering abil-
ity. We compare an instance string, through which we invdie method, to a
string passed as a parameter. There are three possibleras#do this compar-
ison. If the instance string occuleforethe parameter string in a lexicographic
ordering, the method returns a negative integer. If the tivogs areequal the
method returns zero. And if the instance string ocaiftsr the instance string in
the ordering, the method returns a positive integer. Fomtbst part, we need
not be concerned with the magnitude of the value returned fmmpareTo ; we
primarily interested in whether the result is negative s or zero.

The following program illustrates the use efualsignoreCase() and
compareTo() in a way that allows you to experiment and see for yourself the

6.2. STRING MANIPULATION 65

way the methods work.

1 /=

2 * The CompareStrings class illustrates the use of the compare To
3 * and equalsignoreCase methods of the String class by repeate dly
4 * comparing two strings and reporting the outcome of the compa rison.
5 * [

6

7 import java.util.Scanner;

8

9 public class CompareStrings {

10

11 /I The single method of the class, main.

12

13 public static void main(String[] args) {

14

15 String answer; /I Hold the answer from the continue question

16

17 String stringl;

18 String string2; /I Hold the two strings entered by the user

19

20 int retval; /I Return value from compareTo invocation

21

22 Scanner consoleln = new Scanner(System.in);

23

24 System.out.printin("Do you wish to continue [yes/no]? ");

25 answer = consoleln.nextLine();

26

27 while (answer.equalsignoreCase("yes")) {

28

29 System.out.printin("Enter the first string: ");

30 stringl = consoleln.nextLine();

31

32 System.out.printin("Enter the second string: ");

33 string2 = consoleln.nextLine();

34

35 retval = stringl.compareTo(string2);

36 if (retval < 0) {

37 System.out.printin("compareTo is negative: " + retval);

38 System.out.printin("so stringl (the instance string) is");
39 System.out.printin("before string2 (the parameter strin a):");
40 System.out.printin(" " + stringl + " < " + string2);

41 } else if (retval > 0) {

42 System.out.printin("compareTo is positive: " + retval);

43 System.out.printin("so stringl (the instance string) is");
44 System.out.printin("after string2 (the parameter string):");

45 System.out.printin(* " + string2 + " < " + stringl);

6.3

CHAPTER 6. STRINGS

} else {
System.out.printin("compareTo is zero: " + retval);
System.out.printin("so stringl (the instance string) is t he");
System.out.printin("same as string2 (the parameter strin a):");
System.out.printin(* " + stringl + " = " + string2);

}

System.out.printin("Do you wish to continue [yes/no]? ");
answer = consoleln.nextLine();

Writing a Loop over a String

In Chapter 5, we learned the syntax and semantics of writingd in Java, allow-
ing us to repeat a set of actions a number of times. When we tegmérform
the same set of steps for each character in a string, a looptenaes over the
sequence of characters, one character at a time, is thdaigor the job.

To illusrate, we will develop a complete program to solve dipalar problem.
Suppose we wish to count the number of words in a sentencéstimgiut by the
user. This will serve as our problem statement.

As we think about our solution to the problem, we note thag well-formed
sentence, each word is followed by either a space charamténe sentence ter-
minating punctuation character. For simplicity, let usuass that all of our input
sentences end in a period, and the sentences are all sirpdmses (so no com-
mas, colons, or other punctuation in the sentence interidrs gives us our basic
algorithm: examine each character in the input string. déf tharacter is either a
space or a period, increment a counter keeping track of thrauof words.

The steps to solve our problem may be enumerated as follows:

1.

2.

Prompt the user for an input sentence.

Retrieve the input sentence from the user.

. Begin with the word count, denoted set to zero.

. Examine each character, denotedh the input sentence.

(a) If the current characteris either a space or a period, then increment
the word count.

CoOoO~NOUIA~AWNE

6.3. WRITING ALOOP OVER A STRING 67

(b) Otherwise, continue.

5. Output the final word count result, to the user.

| *x

* The WordCount class retrieves an input sentence from the use r and

* then combines a loop with String functions to examine the cha racters
* and count the words in the sentence.

*/

import javax.swing.JOptionPane; // Tell Java where to find
/I JOptionPane

public class WordCount {
/I The single method of the class, main.
public static void main(String[] args) {
int wordCount = 0; /I Running count of number of words

String sentence; /I User entered sentence
int sentenceLength; // Length of user entered sentence

/I Prompt the user for the sentence and retrieve input.

sentence = JOptionPane.showlnputDialog(null,
"Enter a simple sentence:");

/I Number of iterations of the loop is the number of
/I characters in the sentence.

sentencelLength = sentence.length();
/Il Loop index: 0 <= i <= sentenceLength - 1
for (int i=0; i < sentencelLength; i++) {
/I set variable to the character at the current index (i)
char currentChar = sentence.charAt(i);
/I check to see if it is a space or period
if (currentChar == '’ || currentChar == ") {

/I if so, increment the word count

wordCount = wordCount + 1;

}

/I nothing else to do in the loop

}

/I Display result in a friendly way

JOptionPane.showMessageDialog(null,

"Sentence word count is "

CHAPTER 6. STRINGS

+ wordCount);

Chapter 7

Arrays

Often we need a collection of closely related variables. iRstance, suppose
we wanted to perform an operation on four exam scores fordhgpater science
course. We could declare and initialize four separate bhaalike this:

int scorel = 90;
int score2 = 78;
int score3 = 86;
int score4 = 100;

In Chapter 5, we saw how a loop can allow you to process a sariegiables
by repeating the same action over and over. However, oncikesagon of the loop
is over, any information in the loop variables is replacedrduthe next iteration
of the loop; essentially, none of the specific data is stoneblcan be accessed after
the loop terminates. Suppose instead we needed to procgssoae twenty exam
scores. Nobody wants to declare twenty separate varighle® is a better way.

An array is a list or collection of variables. All the individual vables in
the array must be the same type (all s or alldouble s, for example) referred
to as thebase typeof the array. The individual array variables are now called
array elementsand we use a single variable name to refer to the entire tioltec
of elements. In the following example, we illustrate an wrtalledscores of
integer elements:

scores \ 90\ 78 \ 86 \ 100\

Figure 7.1: An array of exam scoi® variables

69

70 CHAPTER 7. ARRAYS

7.1 Basics

In Java, arrays are declared by stating the base type of thg dollowed by a
pair of brackets, and then an identifier or name for the areaiable. Here is an
example of how to declare an array of exam scores:

int[] scores; /I declare array
scores = new int[4]; // allocate memory space

There are two steps needed to prepare an array variable.r$hing declares
a variable namedcores to be an array of integers (the base type). This tells the
Java compiler to associate the variable naswates with an integer array. The
second line tells the compiler to allocates memory for faegers in the array.
The keywordnew is used to allocate new memory space for the array.

Unlike primitive types, arrays and objects require both elatation and an
allocation step which will be discussed thoroughly in Clea@ Both the decla-
ration and allocation steps are necessary though mostgmogers will combine
them into a single statement as follows:

| int[] scores = new int[4]; // declare and allocate |

Thesizeor lengthof the array is specified in the allocation step. In the above
example, the length of thecores array is four; there are four integer elements
in this array. We can substitute any integer constant, @mtegriable or integer
expression for the size specification.

Though the array name refers to an entire collection of enggve access each
integer element individually. Each element in an array deked by an integer
location; in Java, the first element has index 0 instead airid Syntactically, we
use brackets again to denote the index of the element in thg &raccess. In the
code below, we illustrate the basic assignment statemeintg arrays.

/I accessing integers in the array
public class SimpleArrayExample2

{

public static void main (String args[])

{

gabhwNPE

7.2. PROCESSING ARRAYS WITH LOOPS 71

6 int [] scores; /I declare array

7 scores = new int[4]; // allocate memory space
8

9 scores[0] = 90;

10 scores[1] = scores[0] - 12;

11 scores[2] = 86;

12 scores[3] = 99;

13 scores[3]++;

14

15 /I compute the average of the scores

16 double average = (scores[0] + scores[1]

17 + scores[2] + scores[3]) / 4.0;
18 }

19 }

Notice thatscores[0] s the first element indexed in the array (sobres[1])
andscores[3] s the last element in the array. It is an error to attempt tess
an array at an index outside this range. Because it is easygetfto start number-
ing at 0, a common beginning mistake is to attempt to accessray one past the
last entry. Try it out to see what error message you receive.

int[] scores = new int[4];

scores[0] = 90; // first exam score
scores[3] = 100; // last exam score
scores[4] = 100; // out of bounds exception

7.2 Processing Arrays with Loops

Itis quite common to perform the same operation to every efgnm an array. The
for-loop is the natural construct that makes this an easy taghis next example,
we declare an array of twentouble s and initialize each element in the array to
a random number (between 0 and 1). Remember that Java reegaick variable
(including each entry in an array) be initialized before.ua&e then compute and
print the average of the numbers in the array.

| *x

* Create twenty random numbers
* Compute and print their average
*/

public class AverageTwenty

72 CHAPTER 7. ARRAYS

{
public static void main (String args[])
{
double numbers[] = new double[20];
for (int i = 0; i < numbers.length; i++)
numbers[i] = Math.random();
double sum = O;
for (int i = 0; i < numbers.length; i++)
sum += numbers]i];
double average = sum / numbers.length;
System.out.printin("Average is " + average + ".");
21 }
22}

There are several new concepts here. First notice the synitmbers.length
online 12. With alength appended to the variable name of an array, we can ac-
cess the length (number of items) of the array; in this exapmpimbers.length
has a value of 20. This is useful because if we change the &ihe array in the
allocation step on line 10, we do not need to change the fgr-bs well; it will
automatically adjust to whatever lengtiimbers happens to be.

Lines 12 and 13 use a for-loop to assign a value to elmible in the ar-
ray; each array element receives a double value between 0 tiimdugh a call to
Math.random() . Lines 15-17 compute the sum of all numbers in the array. A
variable namegum is used to accumulate the sum. Line 17 uses the short-hand
+= operator to add the contents of each slot in the arraputu; this is equivalent
to

| sum = sum + numbers[i]; / same as sum += numbers[i] |

7.3 Initialization

There is a short-cut notation for declaring and initialigian array in one step,
useful for smaller arrays. Suppose we wanted to declarenétiaize an array with
the four single-digit prime numbers (2, 3, 5, and 7). Instefdsing four separate
assignment steps to put values into an array of four integeygan create, allocate
and initialize the array all in one step as shown in the foillmrexample.

7.4. MULTIDIMENSIONAL ARRAYS 73

1 /=

2 * Initialize an array with the four single digit primes
3 */

4 public class InitializeArray

5 {

6 public static void main (String args[])

7 {

8 int primes[] = {2, 3, 5, 7}

9

10 for (int i = 0; i < primes.length; i++)

11 System.out.printin(primes[i] + " is a prime number.");
12 }

13 }

o

The Java compiler determines there are four elements ingthensthe right
side of Line 8, automatically allocates an array of four getes and initializes the
array with the values in the set. Notice the use of the brazé®ld the comma-
delineated, initialization set. The for-loop on lines 1@dkl prints each prime
number.

7.4 Multidimensional Arrays

All the arrays discussed so far have been a sequence of dats. itWe call this

a one-dimensional arraypecause the sequence extends in one dimension (it has
length). We can also create arrays that are like tables;igh#tey have two di-
mensions (length and height). In the following code example create a two-
dimensional array of characters to implement a Tic-Tacgam®ae:

| *x

* A two-dimensional array to hold a game of Tic Tac Toe
*/

public class TicTacToe

{
public static void main (String args[])

char board[][] = new char[3][3];

/I initialize each board slot to a blank
for (int i = 0; i < board.length; i++)

POWOWOO~NOUITWNE

74 CHAPTER 7. ARRAYS

12 {

13 for (int j = 0; j < board[i].length; j++)
14 {

15 board[i][j] = '

16 }

17 }

18

19 /I put an X' in the upper right corner
20 board[0][2] = 'X’;

21 }

22}

With two dimensional arrays, we use two pairs of bracketsdieclaration,
allocation, and access. We typically think of the first seb@ickets (the left-most
pair) as specifying the rows and the second set of bracketsifiht-most pair) as
specifying the columns. For example,

| int array Il = new int[3][5] |

declares and allocates a two dimensional array with thress emd five columns.
To the Java compiler, a two dimensional array is really aayaof arrays; it is an
array whose base type is also an array. In the Tic-Tac-Tomebea the variable
board is an array where each element is a character array. Thigpbatarrays
within arrays is depicted in Figure 7.2.

board[0] — [board[0][0] board[0][1] board[0][2]
board = | board[l] — [board[1][0] board[1][1] board[1][2]
board[2] — [board[2][0] board[2][1] board[2][2]

Figure 7.2: Structure of a Two-dimensional Array

Here board refers to the outer-most array. Each elemenbdaard is an
array and is depicted in Figure 7.2 as a row. Noboard.length provides the
number of rows in théoard array and thaboard[0] accesses the first element
of board (which is the array in the top row) whileoard[2] accesses the last
element otboard (which is the array in the bottom row).

7.5. AN APPLICATION EXAMPLE 75

We access the length or a particular element of an inner &wydire follow-
ing syntax: board[0].length gives the length of the first inner array while
board[1][2] refers to the middle inner arrapdard[1]) and accesses the
last element from that middle row.

Onlines 11-17, nested for-loops (one loop inside the othérlize each char-
acter in the array to a blank space. The outer for-loop (wéh an index counter)
goes row by row while the inner for-loop (withas a loop counter) processes col-
umn by column. You might wish to trace through this code exentiy executing
each statement and noting the valueg ahd j as you fill blanks into the table
(two-dimensional array). Just as single for-loops are taedard way to operate
on each element of a one-dimensional array, nested foslaopthe obvious way
to perform an operation on each element of a two-dimensiamayy.

The last statement on line 20 makes a move for Player 1 in #meeg The spot
in the first row (row = 0) and last column (column = 2) is markdthvan’X’ . This
assignment statement puts’®h in the upper right corner as Player 1’s first move
of the game. Recall that the array basetypehiar and thatX’ is a character
constant.

You can also create arrays of three or more dimensions thihege are rarer.
Can you guess the syntax for declaring and accessing suchas? a

7.5 An Application Example

Consider the following problem:

Construct a program that searches through a sequence géist®
find the smallest number.

Design

To store the sequence of integers, we opt for an array. She@roblem state-
ment (above) did not specify exactly how many integers al@tim the sequence,
we have a few choices. First we could declare a constant diet@ning of our

program and use this value throughout; this makes it easpdaoge the number
integers quickly and in only one place in our program. Al&ively, at the start
of the program we could prompt the user for the number of emMggThis second
option allows the program to adapt to the user without hatengecompile. Let's

76 CHAPTER 7. ARRAYS

opt for this second choice here.

After we receive the number of integers from the user andadeflllocate our
array, we must fill it with data. In this program, we have therienter the sequence
of integers using the dialog boxes of a previous chaptempting the user for the
numbers is convenient for small arrays and for quickly testiur program, but to
handle larger data sets, we would probably want to read aalags from an input
file or create them automatically (randomly, for example).

Finding the smallest value in an array is a little trickieathmight first appear.
At this point, we encourage you to see if you can sketch arridhgo to solve this
task yourself. It is a worthwhile programming exercise. Rea when you are
ready to see how we solve the problem.

We use the variablemallestSpot to keep track of the location of the small-
est item in the array. As we scan the array from start to endyiveompare each
new array element with what we currently believe to be thellgstdocation; if we
find a new item smaller, then we will update the smallest shas. critical to ini-
tialize smallestSpot to the first index (location 0) in the array before starting
the loop. Do you see why this step is necessary?

7.5.1 Edit

We enter the following program into Dr. Java and save it ineedidlledSmallArray.java

| **

* An application to find the smallest value in the array
* |
import javax.swing.JOptionPane;

public class SmallArray

{

public static void main (String args[])

{

OCoO~NOUILAWNE

PR PR
AWNRO

String answer = JOptionPane.showlnputDialog(
null,
"How many integers in your array?");

int num = Integer.parselnt(answer);

P
~N o o

/I create an array of NUM integers
int array[] = new int[num];

7.6. EXERCISES 77

18
19 /I fill the array with values from the user
20 for (int i = 0; i < array.length; i++)
21 {
22 answer = JOptionPane.showlnputDialog(
23 null,
24 "Enter integer " + (i+1) + "
25)i
26 array[i] = Integer.parselnt(answer);
27 }
28
29 /I find the location of the smallest integer in the array
30 int smallestSpot = 0; // assume the smallest int is in the firs t spot
31 for (int i = 0; i < array.length; i++)
32
33 if (array[i] < array[smallestSpot])
34 smallestSpot = i;
35 }
36
37 /I report the smallest value
38 JOptionPane.showMessageDialog(null,
39 "Smallest int is " + array[smallestSpot));
40 }
41 1}
7.5.2 Compile

If you didn't type the above program correctly, you may neafix your compile
errors.

7.5.3 Execute

Test the program several times with arrays of differentssemed values, and with
different locations for the smallest item. Developing thagh test cases is both a
science and an art form that helps eliminate bugs from the.cod

7.6 EXxercises

Exercise 7.1 Declare (only declare) an array of fifteen characters named d.

Exercise 7.2 Allocate memory for theor d array in Exercise 7.1.

78 CHAPTER 7. ARRAYS

Exercise 7.3 Declare and allocate an array of 100 integers for holding ttzene-
works grades of a very large class (assume one homework doadsach of the
100 students — a one dimensional array).

Exercise 7.4 Declare and allocate an array to hold all the lower case vawvel

Exercise 7.5 Declare, allocate and initialize an array to hold all the lewcase
vowels. Do this in at least two different ways.

Exercise 7.6 Declare, allocate and initialize an array to hold the firsufdetters
of the lower case alphabet. Do this in at least three diffexgays. Hint: can you
use a loop to initialize the array? Is it possible to usear type for a loop
counter?.

Exercise 7.7 Establish an array to hold the integers 1 through 10. Use @lto
initialize the array.

Exercise 7.8 Denison has 2000 students who will each take four coursesehi.
Allocate an appropriate array to hold the final grades for basgtudent in each
course. Hint: use a two dimensional array here.

Exercise 7.9 Assume the array of grades in the previous question has bdéen a
cated and filled-in. Write a nested loop that will compute®@#A for each student
during this term. You can assume the grades are all A, B, C,r[F, &tore the
GPAs in another array that you create, declare, and allocate

Exercise 7.10Again there are 2000 Denison students. Now allocate an array
that will hold the four course grades for each student durgagh of their eight
semesters. This is a three-dimensional array. As a chadlesee if you can write

a loop to compute the overall GPA for each student (assuntiagytades for all
eight semesters are present).

Chapter 8

Methods

A methodgathers together a set of program steps that define an actgorogram.
We have already used a number of built-in methods that ateop#ie Java API.
The System.out.printin() method prints messages to the console. The
Math.sqrt() method computes the square root of a number. In additioneto th
numerous built-in methods, we canconstruct our own thdbpartasks specific to
our program. In fact, we have already created a method caléed in each of our
application programs.

In this chapter we learn the basics of designing and usingwamethods that
will enable us to better manage the growing complexity of pnagrams. As we
shall discuss, methods are important for a number of reagdoasceptually, they
allow us to break apart long and complex programs into moneageable pieces.
Methods allow us to better re-use our own code and share ale with other
programmers; this reduces the amount of effort requiredutinl Inew programs.
Proper use of methods is important for isolating errors ogprms and promotes
faster debugging. We'll discuss the full implications oé$le factors after we have
learned the basics of methods.

8.1 Basics

We start with the syntax for defining a method:

<modifiers> <return-type> <method-name> (<parameter-li st>)

1
2

3 <statements for method body>
4

79

80 CHAPTER 8. METHODS

5 <return statement>

Here is an example of a method calleddTwoNumbers() in our own pro-
gram.

1 | *%

2 * This program illustrates a basic method.

3 */

4 public class MethodsExamplel

S A

6 public static void main (String args[])

7 {

8 int x = 5;

9 inty =3

10 int z = addTwoNumbers(x,y);

11 System.out.printin(x + " + " +y + " =" + 2);
12 }

13 [**

14 * A method to add two numbers and return the sum.
15 * [

16 public static int addTwoNumbers (int numl, int num2)
17 {

18 int sum;

19 sum = numl + num2;

20 return sum;

21 }

22 1}

23

Let us examine each part of the method separately.

e Method placement
Methods are created and listed inside the class definitidine ktlass is an ap-
plication, themain method is typically listed first. IMethodsExamplel.java ,
we have also created a method calsttiTwoNumbers() which is listed
inside the class but after timeain() method.

e Method name
We name each method so that we can call upon the method tapettie

8.1. BASICS 81

desired action. Since method names are identifiers, thevsyules for them
are the same as for identifiers used in other parts of our @anagsuch as for
variable and class/program names. It is conventional tostw@erbs for our
method names and to capitalize the first letter in each worlioimethod
name except for the first word. TlaeldTwoNumbers() identifier follows
this convention.

e Return type
Immediately preceding the method name on the first line,ag¢furn type.
The return type can be any valid primitive Java type, suéhtasor double
or any Java object (more about these in a later chapter). Wealsa use the
keywordvoid to indicate no return type.

For exampleprintin() is a method that does not return any type. Its job
is merely to print a message to the console. In contsagt() is a method
that returns an answer (specifically, the square root of aoeuyn Four our
addTwoNumbers() method, we specifint as the return type to indicate
that our method returns an integer answer.

Methods can return only one answer though you can returiysaemad ob-
jects which hold more than one single data item.

e Modifiers
You'll notice that theaddTwoNumbers() method starts on line 16 with
the keywordspublic static . These modifiers precede the return type

and affect how the method is accessed and how it behaves. dpt&ho
on objects, we'll examine the meaning of the modifiers, butnfov we'll
simply include them in the methods we write.

e Parameters
The last item on the first line of a method definition is frerameter list
The parameters are enclosed in a set of parentheses anstafmaiatched
pairs of types and variables. The parameters act much likables inside
the method but are also a conduit for information coming itht method
from the outside world. We'll further discuss the detailgpafameters later
in this chapter.

e Method body
The method body is a series of statements that perform th& wfothe
method and is enclosed in a pair of start and end braces. btethat return
values (the return type is other thaaid) contain a specialeturn state-
ment that indicates the exact value to be returned; theblar@ expression
in the return statement must match the return-type spedifige first line of

82 CHAPTER 8. METHODS

the method declaration. Methods of typeid may have return statements
where no return value is specified; commonly, these methadsthe re-
turn and the Java compiler automatically inserts a retuthekst statement
in the body. Notice oumain() method (of type void) does not contain a
return statement.

8.2 Invocation and Execution Order

Method calls alter the order in which statements are exdcuilke program starts
by executing the first statement inside thain method and then continues execut-
ing statements, one at atime, in the order they are listedieder, on line 10 of the
MethodExamplel.java program, we encounter the call to taédTwoNumbers()
method. The execution of statementsimin() will suspend at this point. The
program then "jumps” to the first line in treddTwoNumbers() method; it will
execute statements in the method body until it reaches tHeoeencounters a
return statement. Once execution of taddTwoNumbers() method is com-
plete, the program will then return back to theain() method at line 11 and
resume executing the remaining statements insids() .

8.3 Parameters and Passing Information

Parameters are the information passed in to the method. $tfagliish between
two different kinds of parameters, formal and actual patemseFormal parame-
tersare the variables in the method; on line h@m1andnum?2are the two formal
parameters for this methodctual parameterare the specific values being passed
to the method at the method call. These arextamdy parameters on line 10.

Actual parameters are matched to the formal parametersim#éthod’s pa-
rameter list; it is an error if the types of these matchingsrant consistent. Values
are copied from the actual parameters and passed to thelfpanmseneters. Thus,
the formal parametenuml1 receives a value from actual parameteand formal
parametenum?2receives a value from actual parameter

In order to understand the connection between formal anchbparameters,
we’ll need to outline how variables are stored in memory. siaer the following
shippet of code:

int num = 1;
int scores[] = { 90, 85, 100 };

For primitive data types such @& , java allocates a single location in mem-
ory. The variable namejum in this example, is associated with this memory

8.3. PARAMETERS AND PASSING INFORMATION 83

i scos I%I
90

85
100

Figure 8.1: Memory Allocation for Variables

location. The actual value of the variable is stored heréiduire 8.1, we see how
this segment in memory is reserved, how the variable namssiscated with this
location, and how the value is stored here.

Objects and arrays, calledference-typesare treated differently than primi-
tive types. Because objects and arrays typically contairertitan one data ele-
ment, they require more than a single memory location. Inesample, the array
scores s still allocated an initial single memory location. Hovegvinstead of
storing the whole array here (it won't fit), we store a refeeto separate, larger
segment of memory which contains all the data elements foathay. This also
explains why arrays (and objects) require two steps. Dulleglaration the array
name is associated with the single reference location. Brihgl allocation, the
reference points to a larger segment of memory which is vedefor the array.
This two-step concept is also illustrated in Figure 8.1.

Now that we have a basic understanding of how Java reservesomdor
primitive variables and arrays, we can explore how Javacestss formal and ac-
tual parameters. Java uses a concept called pass-by-vatnehange information
between formal and actual parameterspass-by-valugonly the value of an actual
parameter is copied to the formal parameter. The formalnpeter in the method
is a separate variable. The programmer is free to changeathe wof the formal
parameter inside the method, but any changes here do nascahanges to the
actual parameter in the method call.

We turn to another example program to help illustrate théls@ffects of pass-
by-value; seeMethodsExample2.java . In this program, the method named
doNothing() is an example of how primitive types are affected with pags-b
value. On line 8 of the main programimis assigned the value of 1 as is confirmed
by the firstprintin() statement. ThedoNothing() is invoked and variable
num, used as the actual parameter, is passed in by value.ddNething()
method receiveaums initial value and assigns it to the formal parameter named

84

X.

CoO~NOUITAWNPE

CHAPTER 8. METHODS

Inside ofdoNothing() , we print the value ok (it is 1), then change the
value to 0, and print again (it is now 0). AfteloNothing() returns, we print
the value olnumagain in the main program. The valueraimis still 1 showing
that changes to the formal parameter insidd&othing()
to the actual parameteum.

do not cause changes

| *x
* This program illustrates parameter passing in methods
*/
public class MethodsExample2
{
public static void main (String args[])

{

int num = 1;

System.out.printin("‘num = " + num);
doNothing(num);
System.out.printin("num = " + num);

int scores[] = {90, 85, 100},

System.out.printin("scores[0] = " + scores[0]);
doSomething(scores);
System.out.printin("scores[0] = " + scores[0]);

}

| **
* |llustrates pass-by-value
* [
public static void doNothing (int x)
{
System.out.printin("x = " + Xx);
X = 0;
System.out.printin("x

}

| **
* |llustrates pass-by-reference
*/
public static void doSomething (int list[])
{
System.out.printin("list[0] = " + list[0]);
list[0] = O;
System.out.printin("listf0] = " + list[0]);

T

8.4. SCOPE 85

Fomal
Paamelors T

! M 0
1 copy value
! 85
100
Actual ' -
Paameters x 7| %0
(a) Pimitive Type (b) Rekerence Type

Figure 8.2: Nuances of Pass-by-value

This concept of having separate memory locations for thrm&band actual pa-
rameters is illustrated in Figure 8.2(a). We see how theevafiactual parameter,
num, is copied to a separate memory location for formal parameteChanges
made tox inside thedoNothing() = method do not affect the value faumbe-
causex has its own separate memory location.

However, this same idea of pass-by-value, affects arragobjects quite dif-
ferently. In Figure 8.2(b), we see the reference associatddthe formal array
parametersscores . This reference is copied via pass-by-value to the actual pa
rametefist . But notice, now there are two references pointing to theesaimink
of memory holding the array data! Because they are the samag any changes
that are made to this data through the actual parametist of are reflected back
to the array okcores . In reference types, pass-by-value creates an alias @noth
reference) for the same piece of memory; it is akin to hawng $eparate names
for the same data.

This concept is supported MethodsExample2.java by thedoSomething()
method. It accepts an array as input and changes the valbe fafdt element. This
change is retained back in the main program. Be sure to drniggrrogram, execute
it, and watch what is printed to the screen.

8.4 Scope

Now that we have more than one method in our programs, it isilplesthat we
may wish to use the same variable hame in different placea @avides a rule

86 CHAPTER 8. METHODS

about how to arbitrate naming conflicts among variables. Wstmlso understand
where in a program we can use different variables that weereall of these
issues fall under the heading of variable scope. Jt¢wpeof a variable is the part
of a Java program in which the variable can be accessed.

Java provides two different kinds of scope: class and lokahriable that has
class scopés declared within a class but outside any method; theseftare called
class variablesand can be used anywhere in the class (in any method within the
class). A variable that hdscal scopeis declared inside a method and can only
be used in that method. Since Java variables must be dedlaefexk they can be
used, local scope variables can only be used in statematt$ottow a variable
declaration inside that same method.

1] *=

2 * This program illustrates scope rules
3 */

4

5 public class Scope

6 {

7 static int x = 1;

8 static int y = 2;

9

10 public static void main (String args[])
11 {

12 int x = 3;

14 System.out.printin("x = " + X);
15 System.out.printin("y = " + y);
17 doNothing(y);

18 }

19 [%

20 * |llustrates scope rules

21 */

22 public static void doNothing (int x)
23 {

24 int z = 5;

26 for (inti=1;i <= 3; i++)
28 double root = Math.sqrt(i);
29 System.out.printin(root);

30 }

32 System.out.printin("x = " + X);

8.4. SCOPE 87

33 System.out.printin("y = " + vy);
34 System.out.printin("z = " + 2);
35 }

36 }

37

Scope.java is a Java program that would probably not be written othar tha
to illustrate various scope rules. Near the top of the progoa lines 6 and 7,
variablesr andy are declared outside any method; these are caléess variables
since they belongs to the class but not to a specific methdunatihe class. In
Chapter 9 we shall learn more about class variables. Thass cariables can be
used throughout the entire java program — they have claggsco

Lines 9-17 contain thenain() method. Line 11 declares a local variable
namedz. Variablex can only be used within the body afain() , specifically
on lines 12-17. Imain we have a name conflict. There is a class variabéad
also a local variable:. Which variable will be printed on line 13? In this case, the
local variableoverridesor hidesthe class variable; the local variabte £ 3) will
be printed on line 13 while the class variallés printed on line 14.

In the methodloNothing() we have two more local variables. One of them,
z, is easy to identify. The other is a parameter (also nameéormal parameters
act just like local variables inside a method except thay tue initialized with
values passed in from the method call. Again, local variableides the class
variablezx.

Just to make things more interesting, notice the methodadbNothing()
on line 16 inmain passes the value of instance variableThis value { = 2) is
assigned to the parameter/valueside thedoNothing method.

In doNothing() , we point out one more peculiarity of scope. The for-loop
on lines 26-30 contain two more variable declarations: tiop Icounteii and a
data variableroot . In this case, the for-loop creates an "inner block” of code
within the body of thadoNothing() = method. These two local varaiblds,and
root , have scope that is limited only to the for-loop block of 8r6-30. It would
be an error to attempt to use them outside this block. In fdttpcal variables
have scope restricted to the block in which they are definestven this block is a
whole method, or a smaller block created by a loop or a detistiatement.

Normally, a programmer would not write a confusing programhsas this.
A more judicious use of names will help anyone reading yoogmm to follow
the intent and execution more easily. We merely provide uhissual example to
illustrate the peculiarities of scoping rules.

88 CHAPTER 8. METHODS

8.5 Method Overloading

It is possible to have more than one method of the same namerdér to do
this, the parameter list must be different (specificallffedént types in different
orders). This way the java compiler will know which method#tsociate with each
method call. Having different methods of the same name isvkresoverloading
the method.

At first, you might think naming separate methods the sameads program-
ming practice because it adds confusion. However, therglgusible situation in
which using the same name is appropriate. Consider that vt to perform the
same operation but on different data types.Owerload.java , we have two
separateaddTwoNumbers methods, one for integers and one for doubles.

1 | *%

2 * This program illustrates method overloading.

3 */

4 public class Overload

5

6 public static void main (String args[])

7 {

8 int x = addTwoNumbers(2,3);

9 System.out.printin("2 + 3 = " + X);

10

11 double y = addTwoNumbers(2.5,3.1);

12 System.out.printin("2.5 + 3.1 = " + vy);

13 }

14 [%

15 * A method to add two integers and return the sum.
16 */

17 public static int addTwoNumbers (int numl, int num2)
18 {

19 return numl + numz2;

20 }

21 [%

22 * A method to add two doubles and return the sum.
23 */

24 public static double addTwoNumbers (double numl, double nu m2)
25 {

26 return numl + num2;

27 }

28 }

8.6. METHODS AND SOFTWARE ENGINEERING PRINCIPLES 89

The method call on line 8 has two integers as parameters. gRztag this,
the Java compiler associates this method call withetthdTwoNumbers method
on lines 17-20. Similarly, the method call on line 11 (withotweal numbers)
invokes theaddTwoNumbers method on lines 24-27. This is a better design
than having a method namextidTwolntegers and another method named
addTwoDoubles . Since both methods accomplish the addition, it is easier fo
the programmer using our methods to simply invekiel TwoNumbers .

8.6 Methods and Software Engineering Principles

The addition of methods allows programmers to adopt somedssaftware engi-
neering techniques.

e Modula design
We want to avoid having methods (especiatigin) become too large and
cumbersome. This makes it difficult to read and difficult tbutp The idea
of modular designs to break up large tasks into smaller, more manageable
units that each become a method, and then call each methaddmalish
the task.

e Code Reuse
Using methods makes it easier to re-use code we have alredttisnw If a
common task is written as a method, we can easily copy thatoddahto
other programs that we write. Later, when we study objecesyll learn
even better ways to organize our code to make it more flexieusable to
other software that we or others create.

e Isolation
We can view a method as a black box that accepts input and geecwut-
put. If we make methods that are small and compact, we caouesheth-
ods thoroughly to be sure they implement the intended apera®nce this
is done, we can then use this method in other parts of our anodreely
without having to worry about debugging the method. If thisran error,
methods make it easier to isolate and repair the bug.

Let us illustrate the principles in the following progransam.
Julie is taking a chemistry class and Megan is taking a biotdgss.

They each have received several midterm exam grades. Baseess
grades, determine who has the higher science class GPA?

90

CHAPTER 8. METHODS

Shown below inGPALl.java is the complete program without methods. Let

us now design a solution that uses methods and compare the two

OCoO~NOUTAWNBE

| **

* This program does not use methods to compute GPA's
* |

import java.util. Scanner;

public class GPAl
{
public static void main (String args[])
{
Scanner consoleln = new Scanner(System.in);
/I create array to hold Julie’'s scores
System.out.print("Enter number of midterms for Julie: ");
int numJulieExams = consoleln.nextint();
double julieScores[] = new double[numJulieExams];

/I create array to hold Megan’'s scores
System.out.print("Enter number of midterms for Megan: ");
int numMeganExams = consoleln.nextint();

double meganScores[] = new double[numMeganExams];

/I read Julie’'s scores

for (int i = 0; i < julieScores.length; i++)

{
System.out.print("Enter score " + (i+1) + " for Julie: ");
julieScores[i] = consoleln.nextDouble();

}

/I read Megan’'s scores

for (int i = 0; i < meganScores.length; i++)
{

System.out.print("Enter score " + (i+1) + " for Megan: ");
meganScores[i] = consoleln.nextDouble();

}

/I compute Julie’s GPA (average midterm)
double julieAverage = 0.0;
for (int i = 0; i < julieScores.length; i++)

{
}

julieAverage = julieAverage/julieScores.length;

julieAverage += julieScores]i];

/I compute Megan's GPA (average midterm)

8.6. METHODS AND SOFTWARE ENGINEERING PRINCIPLES 91

45 double meganAverage = 0.0;
46 for (int i = 0; i < meganScores.length; i++)
47 {
48 meganAverage += meganScores|i;
49 }
50 meganAverage = meganAverage/meganScores.length;
51
52 if (julieAverage > meganAverage)
53 System.out.printin("Julie has a better GPA.");
54 else if (meganAverage > julieAverage)
55 System.out.printin("Megan has a better GPA.");
56 else
57 System.out.printin("They have the same GPA.");
58 }
59 1}
8.6.1 Design

Themain() method inGPA1l.java is a bittoo long. It becomes difficult to read
and contains a number of different tasks. Throughuoain() , we also do the
essentially same task repeatedly to different data elesndntvould be better to
reduce the clutter by moving some code to methods.

Our first activity is to engage in modular design to think atdwaw to break up
the larger problem statement into subproblems. It seentgdhaach student, we
must prompt for the number of midterm exams, enter and reberchidterms, and
then compute their average. Finally, after completingehasks for each student,
we will compare their GPAs and print a message. Each of thdsasks is about
the appropriate size for a method so we create a method forozee

| Input number of examls

Problem/< | Input exam scorels

| Compute exam average

By moving each task to a method, we reduce the repetitive@afihe code in
the main program. IGPAl.java , we are repeating the same pieces of code for
each student. Methods reduce the amount of code by movingpdated sections
to a method body. Thus there is only one place in the progranctintains each
section; multiple method calls then invoke this code as ntimmgs as needed.

92 CHAPTER 8. METHODS

8.6.2 Edit, Compile, Execute

Below is the final program using methods. detArraySize , we decide to
pass in &tring containing the student's name. Thus the method can be used to
prompt for both students’ exam numbers. Notice we use thelpavalue feature
that allows methods to change values of arrays inrdsdArrayValues()

method. This method changes the values in the original dyayading values
typed by the user.

1 /=

2 * This program uses methods to compute GPA's

3 */

4

5 import java.util.Scanner;

6

7 public class GPA2

8 {

9 public static void main (String args[])

10 {

11 int size;

13 size = getArraySize("Julie");

14 double julieScores[] = new double[size];

16 size = getArraySize("Megan");

17 double meganScores[] = new double[size];

20 /I read Julie’s scores

21 System.out.printin("Enter Julie’s scores.");

22 readArrayValues(julieScores);

24 /I read Megan’'s scores

25 System.out.printin("Enter Megan’s scores.");

26 readArrayValues(meganScores);

28 /I compute Julie's GPA (average midterm)

29 double julieAverage = computeAverage(julieScores);
31 /I compute Megan's GPA (average midterm)
32 double meganAverage = computeAverage(meganScores);
34 /I compare GPAs

35 if (julieAverage > meganAverage)

36 System.out.printin("Julie has a better GPA.");

37 else if (meganAverage > julieAverage)

8.6. METHODS AND SOFTWARE ENGINEERING PRINCIPLES 93

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

}

System.out.printin("Megan has a better GPA.");
else
System.out.printin("They have the same GPA.");

}

/ x x sk
* Method to prompt for array size

* * *

public static int getArraySize (String name)

*%

** [

{
Scanner consoleln = new Scanner(System.in);
/I create array to hold name’s scores
System.out.print("Enter number of midterms for " + name + "
int num = consoleln.nextint();
return num;
}

/ x x x
* Method to read values in array

public static void readArrayValues (double[] array)

{

Scanner consoleln = new Scanner(System.in);
for (int i = 0; i < array.length; i++)

{
}

array[i] = consoleln.nextDouble();

}

/ x x x
* Method to compute average of values in array

public static double computeAverage (double[] array)

{

double average = O0;
for (int i = 0; i < array.length; i++)

{
}

return average / array.length;

average += arraylil;

*%

** [

*%

** [

94 CHAPTER 8. METHODS

8.7 Exercises

Exercise 8.1 Write a method calledax () that accepts two integers as input and
returns the value of the larger one.

Exercise 8.2 Override the method of the previous example to work with a qfai
doubl e inputs and return a double value.

Exercise 8.3 Write a method calledvor dCount () that accepts &tri ng as
input and counts the number of words in the string. Words aoems of charac-
ter(s) separated by white space (spaces, returns, tabsjimctpation.

Exercise 8.4 Name and describe the two different types of parameterse &iv
brief program and show/label each type of parameter witlwanyprogram.

Exercise 8.5 Name and describe the technique that Java uses to assooratalf
and actual parameters. Describe how this concept appligwitoitive types and
reference types differently; use both a program and alsoiatuge of memory to
support your description.

Exercise 8.6Is it an error to name a local variable using the same identifie a
method name elsewhere in the class? Try it out to see whaehapjtven if it is
legal, why should this not ever happen in one of your progfams

Exercise 8.7 Give at least three reasons why it is important to write a canim
at the top of each method that describes what the method #eep. in mind that
other people might be reading your code at some point.

Exercise 8.8 Using the discussion of how memory is allocated for refezdypes,
describe why arrays have both a declaration and an allocasitep. What happens
to the memory for an array during each step?

Exercise 8.9 Write a program that allows a user to play a game of Tic-Tae-To
against the computer. Use modular design to break the pragitawn into simple
tasks. Then write a method for each task. Have the computkerapi empty square
at random for its moves.

Exercise 8.10Write a program that will spell check text documents. Yowkho
be able to obtain a text dictionary on the internet or you cagate your own
mini-dictionary to test your program. Prompt the user of ypwgram to enter
filenames for both a text document and a dictionary. Then lpoéach word in the
text document to see if it is in the dictionary or not. Prinyyamords that are not
found.

Chapter 9

Objects

All data stored in a java program is either a primitive datzetgr an object type. We
have already encountered several primitive data typesdim@jint anddouble .
The object types are further divided into array types and-dséned types. In
Chapter 7 we encountered the array types. In this chapteakeea closer look
at the user-defined types. Figure 9.1 depicts the relatiprafhthe data storage
hierarchy in java programs.

all Java
types

primitive object
types types
user-defined array
types types

Figure 9.1: Java Data

There is often some confusion with the use of terminologyljeci-oriented
programming. Rightly so, because some terms have difféoemal and informal
meanings. Java uses the tectassto refer to a blueprint, or plan, for an object.
The class describes how an object is to be constructed andfedtares/methods
it implements. If you were in the house construction bugsinesclass is like a
blueprint for the house to be constructed. As we’ll see $hdhte keywordclass

95

96 CHAPTER 9. OBJECTS

is used in programs to syntactically declare/create neestyp
Formally, the ternobjectrefers to any instantiation of a class. Using our house

construction business analogy, an object is a physicalenthet has been con-
structed according to the specified blueprint. Notice tH#t wne blueprint (class)
you can build many houses (objects). This relationship gated in Figure 9.2.
Objects have lifespans; they come into existence, serveoge, and then are
disposed of once their function is accomplished. Classesalastractions; they are
ideas that are "created” and then live for all time. For exi@nigemocracy” really
isn't a physical entity; it is an idea about how to conduct segonment. The idea
of democracy will be around forever even if there are no curimplementations

of democracies in existence.
[object] [object][object][object]

Figure 9.2: Class (blueprint) and Object (house)

Informally, the termobjectis sometimes used in place of class. That is, object
denotes not only the physical implementation of a classalsutthe abstract design
(ie class) itself. We'll use the term object to refer onlyhe physical implementa-
tion of a class but beware of this other common and casualfube @vord in other
literature or when conversing with programmers.

Finally, the termabstract data typés sometimes used as a synonym for class.
Other computer scientists use abstract data type to reféret@abstract concept
while a classdescribes the detailed implementation of that abstrag@mal ob-
jects are physical instantiations of the class). Think afttdfian style” as an ab-
stract data type of our house construction project; we caa ddferent blueprints
(classes) detailing Victorian houses and how they are t@hstoucted.

In summary, classes describe a new data type while objez{shgsical imple-
mentations of that data type. These features allow the anogrer to create new
data types that are useful to the specific program beingenritThey also extend
the language by allowing programmers to create librariesoafmon classes and
share them with others, thereby reducing redundant pragragefforts. With
the right design philosophy, objects and object-orientedjramming facilitate the
creation of very large programs.

9.1. THE PHILOSOPHY OF OBJECTS 97

In this chapter we examine the basics of creating our owrsetas

9.1 The Philosophy of Objects

Objects provide three key features: encapsulation, datadiiand inheritance.
These three features allow the programmer to extend thdalayaage by creating
new data types.

We use the automobile as an analogy to develop some of theas. iPeople
with a small amount of training and a proper license are apldrive just about
any kind of automobile even though each car may differ gydatits design and
structure.

Encapsulatiorrefers to the logical grouping of a data type along with the op
erations on that data type. In a non-object-oriented progrmg language, say C
for example, the programmer primarily builds a structurédtd some particular
data; then routines are designed to operate on those stsictn Java, the view is
more wholistic. The data item and its operations are vievged @atural whole.

In terms of our automobile, encapsulation refers to ideaytba view the au-
tomobile as a unified concept. For example, you don't go dawthe local Ford
dealership to buy some tires, an engine, a frame, a trarismissome assorted
nuts and bolts, and then take everything home to assembleoyguhome-made
automobile. Instead, you buy the whole car, already fulseasbled and ready to
go.

This idea of encapsulation makes more sense if you condidértwo kinds
of people are usually involved in an object. The class desigs like the car
manufacturer; they must know all the nuts-and-bolts detitheir car. The class
user is like a driver. They don't usually need to know muchuildwow the car
actually works; they only need to know the basics of drivimgl ghey are ready
to use just about any automobile. Though you will be creading using your
own objects for now, try to think of yourself in these two mlebject oriented
programming makes more sense when seen in this light.

Closely related to encapsulation is the idealafa-hiding A class typically
has two perspectives: the class’s public view and its implaation. The pub-
lic view, often called itsabstract data typeis intended for users of the class. It
describes what the class does and how the user can intedfdabe tlass. The
class’s implementation, however, is typically hidden frgiew. Only the class’s
programmer/creator sees the implementation. The impl&tien contains many
details that are not relevant to the use of the class and teusmapart of the public
view; as long as the object works as advertised in its alisti@a type, the user
should not need to know how the object actually accompligtiieiss tasks. Re-

98 CHAPTER 9. OBJECTS

call the previous distinction between the abstract data {ppblic view) and class
(private implementation detailed in a blueprint).

When you drive an automobile, you are using the car’s puhlierface. You
know there is an ignition switch, a gear shifting mechanisnsteering wheel,
a brake pedal and accelerator, possibly a clutch, and aruinsht panel. All
cars have these things and they all work pretty much the saamye Mowever, the
internal workings of a car vary greatly. Your Jeep might haménline 6-cylinder
engine while your Mazda sports car uses a rotary engine.eldresdetails that you
don’t need to know in order to operate the car. Only your aesigner, fabricator,
and mechanic really need to be aware of the car’s internadtings. These internal
workings — the implementation of its public interface — aigden from the user’s
view. This is what makes driving a car a relatively easy taskafl kinds of people,
especially those with limited mechanical experience.

Lastly we discuss the notion afheritance Inheritance is the idea that instead
of creating a separate class for two closely related datstype can often combine
the design and construction of classes by sharing theiuress.

Consider that there are many different kinds of cars: smants, sedans, wag-
ons, sport-utility vehicles, etc. They all share commorpprties (see list above)
but they also have features in common within each categports cars are typi-
cally low to the ground and fast). Instead of creating coneyeseparate classes
for each type of car, we first might create a generic clasgdalar that contains
those things in common (steering wheels, engine, ...). TWeeoan create separate
"extension classes” for each type of car that inherit alldhsic properties of a car.
In this way, we are not duplicating the same common attréoeterywhere. In-
heritance is one feature of object-oriented programmiadyuhll not be addressed
further in this text.

9.2 Class Basicis

In this section we create our first class. We'll look at theajapecific syntax of
how classes are declared while we keep in mind the termigaogl class design
philosophy discussed previously. We use a deck of cardsfdiustrative exam-
ple.

9.2.1 The Abstract Data Type

Before we write any code or discuss class syntax, we first tedgink wholis-
tically about the deck of cards as an object. Take a momenjaribwn a few
ideas on scratch paper. Try to think about how you interatt wideck of cards.

9.2. CLASS BASICIS 99

What important features do decks have? In what ways do yothes&? Are there
some uses that are generic to all decks? Are there otheraréhapecific to one
particular use (say dealing seven cards for Go Fish)? Rbagkto this discussion
when you have spent a few minutes building your own list.

Our list consist of the following:

e A deck has 52 cards.
e There are four suits (clubs, diamonds, hearts, and spades).

e There are thirteen cards in each suit (2, 3, ..., 10, JackeQueing, and
Ace).

¢ We often want to deal cards (extract one card at a time) frendéck.
e We'll need to shuffle the cards in a random order.

e We may need to recollect all the cards and start over by mettiam all in
the deck.

Our list is fairly short. Every time | think about adding saimieg else, | hes-
itate because | want my list to contain only those thingsedhdy all decks and
common uses. Specialty things (like jokers or like the bt add cards back to
the deck) can be accomplished later by extending the classheritance. Good
object designers (ie class designers) tend to be miniraaligty include only those
things which are necessary and inherent in the object.

For now, you can imagine our list above as the beginnings afestract data
type (ADT) for the deck of cards. Think of the ADT as a contradh the class’s
user: these are the things | promise my deck class will actismpAt this point, an
experienced java programmer would probably want to writellst Specified ADT
document; this would help guide them in the creation of tbbject, especially if
multiple people are involved in the effort. Since this is &itst spin with objects,
we’'ll forgo this step and start the class design in java-$jgesyntax.

9.2.2 Syntax Rules for Classes

Every java class has a class name. Though any valid javaifidentill do, the
convention is to use a capital for the first letter in each wand to make the class
name a noun. Good examples afietorianHouse andSportsCar . We'll
useCardDeck for our class name.

100 CHAPTER 9. OBJECTS

Every java class must be created in a separate text file. Tine o the file
must be identical to the class name except tfmta is appended to the file-
name. We open a text editor (Dr. Java will do) and create a newiih the name
CardDeck.java for our deck class.

As shown in the code segment below, each java class begingheitkkeyword
class followed by the class name. A pair of braces then enclosedhtents of
the class. Often the keyword modifipublic precedes the class definition as is
shown below.

public class Deck

{

/I instance variables are listed here.
/I methods are listed here.

} /Il end of Deck class

Classes typically contain two things: data structures amthods. The data
structures are used to store the data for the object. Theseoreist of primitive
typed variables, arrays or more user defined types. Theyamnetsmes called
instance variable$or the class. The second major component in each classsis a i
of methods that provide the usable features of the classtypical to list the data
variables first and then the methods, though this is notlstriequired?.

9.2.3 Access Modifiers

Classes make extensive use of two access modifigublic and private
These words precede both instance variable declaratiahmathod declarations.
Use them to restrict access to certain parts of your clasgrdeBor example, we
would want the method callezhuffle() to bepublic so that our class’s user
can call this method. But we might want the data structuré d¢batains the list
of cards to beprivate so that the class’s user cannot subvert our interface and
change the cards around arbitrarily.

Referring back to the automobile analogy, we want our diiwarse the public
interfaces such as the steering wheel and brake pedal. Wetd®cessarily want
them to pop the hood and start mucking with the fuel injectd¥e’ll want these
to be private so that only trained professionals who know ti@wvhole car works

1Scoping rules will prohibit the use of instance variablemigthods that precede the declaration
of these variables. Thus it is usually a good idea to list tmgables before all the methods.

9.2. CLASS BASICIS 101

can make any necessary adjustments. These access modiienspartant for
properly implementing the concepts of encapsulation ata lafding.

Most typically, instance variables and other data itemgaxate while meth-
ods are public. But there may be some data items, especaitants, that we'll
want to make public and there are often a few "housekeepirgthaus that we'll
keep private since only other methods within the class shoaill them. Note that
by default, all things arpublic . Butitis a good idea to use this word explicitly
so that your intentions are made clear.

9.2.4 Design Decisions

There are many ways to implement a deck of cards in java. Tdrerehoices to
make regarding the data structures; these will influence sy or difficult it is
to implement certain methods. Now is the time to make sombeasfd decisions.

We decide to use integers for representing individual candsknow there are
52 cards in the deck so we'll use 0, 1, ... 51 to represent tfierelnt cards. Of
course our deck class’s user won't ever have to know this;dbtail is one of the
things we’ll keep private from the user.

Integers make it easy to compare cards by value. The typidal ¢o cards is
to first rank them by kind and then suit. So all 2's are the lanfeiowed by 3's,
then 4’s and so on up to Kings and then Aces which are the high¢ithin each
kind, the suits are ranked according to clubs, diamondsis)emd spades (low to
high). This means that the 2 of clubs is the very lowest cdrel Qtcard) while the
Ace of spades is the highest card (card number 51).

Some simple modular arithmetic can be used to convert a earer into its
suit and kind. Spend a few moments thinking about how you tdgtthis. Hint:
use the mod and div operators along with 4 and 13 (four shitseén kinds). Read
on once you have solved this problem yourself.

We can obtain the card’s kind by taking its number and digdiy four:

kind = cardNum/4;

Similarly, the card’s suit is obtained by taking its numbied dmod”ing by four:

suit = card Num%4;

Of course, this gives us a "suit number” from 0 to 3. We'll haweconvert this to
an appropriate string usingsavitch statement.

102 CHAPTER 9. OBJECTS

We choose to use an array iot ’s to store the card numbers. The order of
numbers in the array determines the order of the cards indble @y rearranging
(permuting) the numbers in the array we can shuffle the deokdeal cards, we
can extract them from the front of the array. We’ll need areindounter so we
can keep track of which card is currently on the top of the deek which array
location represents the current top index).

Our class is starting to take shape:

1 [/====================s=s=====SS=S=S=SS==S========= ======
2 /I Matt Kretchmar

3 /Il August 1, 2005

4 /| Deck.java

5

6 // Abstract Data Type description should go here.

7 |/[====================s===SSSSS====SS==S=========== . S====S
8

9 public class Deck

10 {

11 /I We use integers 0..51 to represent the cards.

12 /I kind = cardNum / 4;

13 /[suit = cardNum % 13;

14 /I Array spots [index .. 51] are used to stored cards.

15 /I This implies that the index keeps track of the

16 /I current top of the deck. Array locations

17 /I [0..index-1] are unused (cards have already been

18 /I removed from the deck).

19 private int cards]]; /I cards stored by number

20 private int index; /I index = current top deck

21 public static final int NUM_CARDS = 52;

22

23 [[-=------
24 /I shuffle

25 /I Shuffles the cards in a random order.

26 [--------
27 public void shuffle ()

28 {

29 }

30

31 [[-=------

w
N

/I draw

9.3. CONSTRUCTORS 103

33 /I Returns (and removes) the next card in the deck.

34 ----
35 public String draw ()

36 {

37 return null;

38 }

39

40 } /I end of Deck class

Notice we have included extensive comments detailing tkeiips of our im-
plementation. We should probably include a copy of the ADTutnent in the
comment heading at the top of the class. In addition to theatgiinstance vari-
ables, we have also added blank methods for shuffling andinyawe’ll add the
code to them shortly. In future installments, we’ll remove some of the comments
so that the code fits within this book more easily.

We have placed public final int in the instance variable section named
NUMCARDSThis is a constant specific to the class (recall the keyvioed im-
plies a constant). We use the convention for constants apalércase letters using
an underscore to separate multiple words; this makes itfeaspmeone reading
our code to know thaNUMCARDSs a constant variable without having to look
for its declaration. We make it public so that users of ousglean access this
constant.

9.3 Constructors

If you were attentive, you might have noticed a problem with class. In the
instance variable section, wikeclaredan array to hold the deck. But we did not
allocateany memory for the array yet; we have a reference that doegehgiint
to an actual array. In the instance variable section, we oandeclare variables.
We cannot execute regular java statements including ali@ations. So how is it
that we can create an array before the user starts callirfieshnd other routines
that won’t yet work without an array?

The answer is a special method called a construct@omstructoris a method
that is secretly called when a new object of this class typedated. The class
designer uses the constructor to properly initialize tlesglright before it gets
used. This includes allocating memory for arrays and otbgrab types as well as

2Thereturn null; statement inside théraw() method is to allow our temporary class file
to compile. Thedraw() method must return a string, so this statement is necessayoid an
error. We'll remove it later.

104 CHAPTER 9. OBJECTS

initializing variables with certain values. In o@ardDeck class constructor, we
need to (1) allocate the array, (2) place the cards in the,aaral (3) initialize the
index to the top of the deck.

A constructor method has the same exact name as the classIh@aeunique
method in this respect. Here is our deck class constructtnodgwe show only
the method here though a constructor is typically the firghoa in the list after
the instance variable section).

== m e e
/I Default constructor
/I Creates a new deck in sorted order
[-mmm e m e
CardDeck ()
{
cards = new intfNUM_CARDS];
for (inti = 0; 1 < NUM_CARDS; i++)
{

}
index = O;
}

This is called thelefault constructosince it takes no arguments. You can have
other constructors with input arguments if it makes sensgdar particular class.
We could have a constructor with an inpoit that tells us how many cards to start
our deck with (though this seems not in keeping with our commed minimalist
goals for the class). Notice the constructor never has arégpe.

© 00 ~NOO Ul WN P

(=Y
o

cards[i] = i;

e el
W N P

9.3.1 Finishing shuffle() and draw()

Now that we have our constructor finished, we can fill in theedhod theshuffle()
anddraw() methods.

/I shuffle
/I Shuffles the cards in a random order by using an exchange
/I shuffle algorithm.

public void shuffle ()
{

00 ~NO Ol WN P

for (int i = NUM_CARDS-1; i > index; i--)

/— E—

/— E—

9.3. CONSTRUCTORS 105

9 {

10 int spot = (int)(Math.random() * (i-index+1)) + index;
11 int temp = cards]i];

12 cards[i] = cards[spot];

13 cards[spot] = temp;

14 }

15 }

16 [mmm e e
17 /I draw

18 /I Return the next card at spot index. Move index to the next

19 /[card. It is an error to draw from an empty deck.

20 e e
21 public String draw ()

22 {

23 if (isEmpty())

24 {

25 System.out.printin("Error: deck empty");

26 System.exit(1);

27 }

28 int card = cards[index];

29 index++;

30 return cardToString(card);

31 }

Thedraw() method is the easiest to follow. Recall that thdex instance
variable is used to hold the position in the array of the artep card in the deck.
To draw a card, we need only to access the card at the locagtémified byindex
and then increase the index to the next array spot. Of cowes# need to handle
the error condition that occurs when a draw is made on an edsatly. Figure 9.3
depicts how thelraw() method works.

Notice that indraw() we call two other methods. BotsEmpty() and
cardToString() are methods that we’ll need to define in our class. iSRenpty()
method will bepublic so that the user can access it too whiedToString()
will be private since this is one of those details that we want to hide from the
user. Can you fill in the code for these two methods on your #vn

Theshuffle() method works by making random exchanges between cards
in the deck. Do you think each card has the same probabilibeinfg permuted to
the same destination by this algorithm? This would be an mapb property for a

The code for these methods is shown at the end of the chapter.

106 CHAPTER 9. OBJECTS

index= 2
X 3c Kh 5s 3d Ac Th 10c 00 5d 4h
0 1 2 3 4 5 6 7 8 50 51
index= 3
X X X Kh 5s 3d Ac Th 10c 00 5d 4h
0 1 2 3 4 5 6 7 8 50 51

card returned 3c

Figure 9.3:draw() method

blackjack application otherwise good players might learexploit the statistical
distribution of cards in our not-so-good shuffling algamith

9.4 Objects and Memory

Though we have discussed the memory differences betwemnitipe types and
objects in the arrays chapter, it is worth revisiting thatcdssion here since the
concept is so critical to the proper design and use of objects

Suppose we have the following code in our program:

int num;

num = 1;

CardDeck decki;

deckl = new CardDeck();

The variablenumis of typeint which is a primitive type. The first statement
declares and allocates space for the integer. There is e ¥walthis memory
location yet*. The second statement assigns the value of 1 to the variable.

“Technically speaking, there might already by some latet itethis memory location spum

9.4. OBJECTS AND MEMORY 107

The variabledeckl is of type CardDeck (our newly designed data type).
The third statement only declares a reference to s8areDeck but does not yet
actually allocate any memory for ti@ardDeck . In Figure 9.4, the declaration
statement creates the reference box (upper right) but ddg®hallocate an object
(lower right box). The fourth statement above does the dellgration. It creates
a memory location for the ne@ardDeck object (lower right box in Figure 9.4)
and then assigns the reference to "point” to this memorytiosa

numi 1 o\
deck1

Deck
data

Figure 9.4: memory for objects

Java does automatic memory management. When you allocate $pr a
variable, java will search computer memory and find someesparcyou. If this
space is for an object, it will set the object variable’s refeee to point to this
space. When you are done using the variable, java will auioaily detect that
the memory is no longer used and free up that memory spacétfer wariables to
use.

9.4.1 Copying objects

Consider the following code segment:

int numl = 1;

int num2 = numl;

Deck deckl = new Deck();
Deck deck?2 = deckl;

Can you draw a memory model that illustrates these statexPehRigure 9.5
shows the resulting memory model. Notice that two separataies for the

probably already has a value. In fact, java initializes netegers to 0 but you should not rely on
this. Instead explicitly initialize the variable to 0 witlh assignment statement.

108 CHAPTER 9. OBJECTS

integers are created. The assignment statement in line \z aopies the value
from one variable to the other. You can change the value ofvami@ble (say
num3l) and it won't affect the value of the other variableum?).

However, there is only on€ardDeck object. The assignment statement in
line 4 above merelgopies the referencef one variable to the otheCardDeck
variable. Now both variables refer to the same piece of mgmtryou make
changes taleckl , the same changes will be madedeck2 as well because
both variables share the same object. This is a criticatifice between primitive
types and object types.

num1[1] [~ 1 [~ 1
deckl deck2

Deck

data

Figure 9.5: copying an object ?

If you do indeed want to make a separate copy of the object $ecand vari-
able, then you must design some typeopy() method in theCardDeck class.
This method would create a brand n@ardDeck object and copy all the appro-
priate values into this newly created object.

9.4.2 Comparing objects

Notice that if you do indeed have two separ@ardDeck objects (through two
separate allocation statements), you cannot compare teamg the== operator.
While num1l == num2will successfully compare the values of these two vari-
ables,deckl == deck2 will not compare the decks. This latter statement only
compares the references. If both variables use the samremege(i.e. point to the
same object), then this statement will return true. Howéveoth variables point

to different but identicaCardDeck objects, then the= operator will return false.
This is why you use theequals() operator when comparing two strings. Most
useful classes will implement.aquals() operator so that the class’s user can
compare two objects.

9.5. EXTENDING THE CLASS: COMMON METHODS 109

9.5 Extending the Class: Common Methods

There are certain methods that are implemented in manyeslassey have evolved
standard names within the java language. In this sectiorexaeine three such
methods.

As hinted in our previous section’s discussion, we neampy() method
if we are to be able to make copies of ddardDeck objects. Also important
is anequals() method for comparing t€ardDeck objects. Finally, we will
implement aoString() method so that we can convert our deck to a string for
printing purposes.

Note that "equals” and "toString” are standard names foha#ahese oper-
ations. There are times when java will attempt to call thes¢hods (if they ex-
ist) automatically. For example, suppose your class ugst to compile/execute
System.out.printin(deck); . Secretly, java attempts to conveleck to
a string by calling theCardDeck class’stoString() method. Thus it is a
good idea to implement at least this method. We also implée®gnals() and
copy() for illustration purposes though their use might not be ficat enough
to warrant inclusion in our ADT.

Thecopy() method needs to accomplish two important tasks. First dsiee
create an entirely ne@ardDeck object. Second it needs to copy all the instance
variable data from the curre@ardDeck object to the newly created one. A ref-
erence to the ne®ardDeck is returned. The complete code listing farpy()
is shown in the next section.

Forequals() ,we need to compare first thiedex of both decks. If these
are the same, then we compare card for card in the two arrayssign of a non-
consistency between the two decks and we immediately rédlse . If we find
no such inconsistency, then we rettime indicating the two decks are the same
in every respect.

Finally for toString() we create an empty string and append cards one at
a time from the array to the string.

9.6 The completeCar dDeck class

Here we list the complete@ardDeck class. We have added some other pub-
lic routines (namely for starting over with a sorted deckj added some internal
private methods to accomplish some useful tasks. We haveueimany of the
comments to prevent the class from growing too large to pmirthis book. But
you should comment your class bountifully including addihg whole ADT de-
scription to the top of the class.

110

routine since the constructor needs to accomplish all teasee tasks. Why have

CHAPTER 9. OBJECTS

Notice how we have reduced instances of repeated code bggcatiethods
within the class. For example, the constructor now callsitiitéalize()

a duplicate section of the same code within the construct@nwou can call a
method and save typing/space?

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

public class CardDeck

{

private int cardsl];
private int index;

public static final int NUM_CARDS = 52;

/I Default constructor

/I Creates a new deck in sorted order

If--------
CardDeck ()
{
cards = new intfNUM_CARDS];
initialize();
}
[f--------
/[initialize

/Il Places the cards in sorted order first by suit, then by kind

/I in ascending order (aces high).

/I 2¢c, 3c, ... Kc, Ac, 2d, 3d, ..., As
[f----—--
public void initialize ()
{

for (inti = 0; i < NUM_CARDS; i++)

{

cards[i] = i;

}

index = O;
}
I--------
/I shuffle

/I Shuffles the cards in a random order by using

an exchange

9.6. THE COMPLETECARDDECK CLASS 111

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

/I shuffle algorithm.

o ——

public void shuffle ()
{
for (int i = NUM_CARDS-1; i > index; i--)
{
int spot = (int)(Math.random() * (i-index+1)) + index;
int temp = cards]i];
cards[i] = cards[spot];
cards[spot] = temp;

}

e —

/I toString
/[Converts the deck to a string using 2,3,4...10,J,Q,K,A fo
/l and c,d,h,s for suits.

Jlmmm e e
public String toString ()
{

String deckString = new String();

for (int i = index; i < NUM_CARDS; i++)

{

deckString = deckString + cardToString(cards[i]) + " "

}

return deckString;
}
Jlmmm e

/[cardToString
/[Converst a card number to a string for that card.

e —

private String cardToString (int cardNumber)

{
String cardString = null;

if (cardNumber >= 0)
{

int suit = cardNumber % 4;
int type = cardNumber / 4;

r kinds

112

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

}

I

cardString = new String();

CHAPTER 9. OBJECTS

+ T
+Qn
+ 'K’;

+ 1A1;

cardString + (type+2);

switch(type)
{
case 9 : cardString = cardString
break;
case 10: cardString = cardString
break;
case 11: cardString = cardString
break;
case 12: cardString = cardString
break;
default: cardString =
break;
}
switch(suit)
{
case 0 : cardString = cardString
break;
case 1 : cardString = cardString
break;
case 2 : cardString = cardString
break;
case 3 : cardString = cardString
break;
}
}
return cardString;
drawCard

/I Return the next card at spot index.
card. It is an error to draw from an empty deck.

I

p
{

ublic String drawCard ()

if (isEmpty())

+ 'c’; [/l clubs

+ 'd; /I diamonds
+ ’h’; /I hearts

+ ’s’; [l spades

Move index to the next

9.6. THE COMPLETECARDDECK CLASS

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

}

]

{

}

System.out.printin("Error: deck empty");
System.exit(1);

int card = cards[index];
index++;
return cardToString(card);

/I getNumberCards

/I Returns the current number of cards left in the deck.

public int getNumberCards ()
{
return NUM_CARDS - index;
}

Il isEmpty
/I Returns true if deck is empty, false otherwise.
/----
public boolean isEmpty ()
{
return getNumberCards() == 0;
}

/I equals
/Il Returns true if decks match completely, false otherwise.
/----
public boolean equals (CardDeck other)
{
if (other.index != index)
return false;
for (int i = index; i < NUM_CARDS; i++)
{

if (cards[i] != other.cards[i])
return false;

113

114 CHAPTER 9. OBJECTS

155 }
156
157 return true;
158 }
159
160 /[-------- -——-
161 /I copy
162 /I Returns a copy of the Deck object.
163 /[-------- -——-
164 public CardDeck copy ()
165 {
166 CardDeck newDeck = new CardDeck();
167 newDeck.index = index;
168 for (int i = index; i < NUM_CARDS; i++)
169 newDeck.cards[i] = cards]i];
170
171 return newDeck;
172 }
173
174 } /I end of CardDeck class
9.7 Summary

This chapter is a brief introduction to classes and objeEke topic is extremely
extensive and diverse both technically and philosophicdihdeed, professional
computer scientists who have programmed with objects farsyare still debat-
ing many of the key philosophical issues. Newly trained paogmers can only
develop a feel for these debates after some extensive ggatgsigning and using
their own objects.

From this chapter, you should be familiar with the key termshsasobject
andclass You should know the syntax for declaring and creating asciagava
(though you will probably need to look back at existing céss$or syntax help
until you develop several of your own). Most critical is thederstanding of how
memory is treated differently between objects and primitigpes. We also intro-
duced constructors and several other common methods faingy;i copying and
comparing objects.

As you design your own objects, be sure to start to think abiylg. There are
design decisions to make; poor decisions result in comph®ssy, and inflexible
objects that are error prone. Good design decisions profteaibility and expand-

9.8. EXERCISES 115

ability. They almost always seem to have fewer errors to fiwels Most critical
to the design process is to spend extensive time thinkingtajmur class before
you ever start to write code. Think about programmeiggantly You should
view your class designs with the same satisfaction thattist aright receive from
a good painting.

9.8 Exercises

Exercise 9.1 List three ways in which user-defined objects differ frommytive
types.

Exercise 9.2 Explain why there is both a declaration step and an alloaatitep
when using object variables. What does each step accorfiplish

Exercise 9.3 Define the following terms:
e class

e object

abstract data type

instance variable

constructor

Exercise 9.4 Define the following terms:
e encapsulation
e data hiding

e inheritance

Exercise 9.5What are the absolute rules for choosing names for java ek&s
What are the conventions for choosing class names and whiheyemportant?

Exercise 9.6 What does the keywomk i vat e do to an instance variable? To a
method?

Exercise 9.7 What does the keyworglubl i ¢ do to an instance variable? To a
method?

116 CHAPTER 9. OBJECTS

Exercise 9.8 In this exercise we’ll trace through the execution of $teuf f | e()
method to see how it works. To make our life easier, supposawea deck where
NUM.CARDS = 10 instead of 52. Suppose you start with the array given below
(again cards are stored as integers 0..9). Supposeitimatex = 0 so that we
haven't drawn any cards yet. Run teéuf f | e() method and show what hap-
pens to the array each pass through the outer for loop. Youncake up random
numbers for the calls téat h. r andon{() but be sure to list them along side the
array to help illustrate the results.

(0]1[2]3[4]5[6]7[8]9]

Exercise 9.9 What is the purpose of including a method namedt ri ng() in
your class design?

Exercise 9.10What is the purpose of including a method namegial s() in
your class design?

Exercise 9.11Why can’t the comparison operater be used to see if two objects
are the same?

Exercise 9.12 Consider the following block of code:

Car dDeck deckl new Car dDeck() ;
Car dDeck deck?2 new Car dDeck() ;
bool ean sane = deckl. equal s(deck2);

What will be in the boolean variableane after execution? Will it always be the
same result everytime you run the code?

Exercise 9.13In the game of Go Fish, each player is dealt seven initial sdrdm
a shuffled deck. Programmer Bob attempts to implement orfeesé tdeals with
the following block of code. Does this code correctly deaksecards for one of
the Go Fish players? Explain.

for (int i =0; 1 <7; i++)
{
Car dDeck deck = new CardDeck();
deck. shuffle();

System out. printl n(deck.draw));

}

9.8. EXERCISES 117

Exercise 9.141n Vegas, casinos use a seven deck stack for playing Blackjac
make it harder for the patrons to count cards). Make a newsotadledVegasDeck
that works exactly the same as dar dDeck class except it contains seven full
decks (that'sy x 52 = 364 cards with seven copies of each card).

Exercise 9.15Design an abstract data type (no code) for a class that a bamk c
use to handle a generic car loan.

Exercise 9.16Building from your ADT in the previous exercise, design aslmr
the car loan. Some of the design decisions are made for yaui her

e List the loan by social security number only. To make lifdexagou don't
need to include anything else about the client such as nadakess, phone,
etc.

e Make the interest rate a constant in your program of 8%.
e Allow the term to be selected from among 24, 36, 48, and 60mperiods.
e Keep track of the current balance.

e Have a default constructor that assumes each person is worgp$20,000
(initial principle).

e Have a second constructor that specifies the starting gulaci

e Have a method that allows the banker to enter/change thelseeturity
number.

e Have a method that can be called at the end of each month toteipda
balance according to the interest rate (remember to dividestnnual interest
rate by 12 for use as a monthly interest rate).

e Have a method that allows the balance to be lowered when #esupplies
a payment.

¢ Have a method that returns the current balance.

Exercise 9.17 People shuffle decks quite differently than our exchangerigthgn.

People split the deck into two pieces (a top half and a bottaif).h Then they
interleave some cards from each half. That is, they take acteds from the top
half, then a few from the bottom, then a few more from the togm & few more
from the bottom, and so on until the cards are gone. The kadairders of cards of

118 CHAPTER 9. OBJECTS

cards in each half does not change on any one shuffle operaii@ich someone
shuffle or shuffle yourself and think hard about how the ojp@natorks.

Implement this type of shuffle algorithm in dbar dDeck class with the fol-
lowing steps:

1. Split the deck into two equal halves: a top half and a bottath

2. Pick arandom number from 0 to 4, select this many cardsrfard from the
top of the top half and place them on the new pile (on the bottbiine new
pile).

3. Pick arandom number from 0 to 4, select this many cardsrfard from the

top of the bottom half and place them on the bottom (undemedthe new
pile.

4. Continue alternating steps 2 and 3 until all the cards dacpd in the new
pile.

Note, you will need to call this routine at least 7 times in arw make sure the
deck is fairly well shuffled.

Chapter 10

Files

We have seen a variety of ways to input data to Java programsw@y to do this

is to use theCS171In methods which allow one to enter several different kinds
of data, such as integers, doubles, and strings by typing tiethe keyboard.
Another way is to use dialog boxes, again using the keybaamhter the data.
These are useful ways to enter data, particularly when thmuatrto be entered is
small. However, if we have a program that requires a large skt or if we have

a program that might be used for a lot of different data setspuld be useful to
have a way of telling Java that the input will be found in a file.

10.1 Reading from a File

Suppose for example that each student in a class has a teptttlileir quiz scores
and would like to get the average grade for those quiz sc&iese the scores are
already stored, it would eliminate a time consuming stepaieehthe computer get
the scores directly from the file, rather than have the stuldek them up and then
enter them at the keyboard.

Here we see the contents of a file named “scores.dat” with 0 spores in
it. As in our previous examples, the lines are numbered toenitadasy to refer to
them.

78
82
94
69
88
79

OO WNE

119

120 CHAPTER 10. FILES

90
85
87
84

[@ (o ocRN|

The scores are written in the file one score per line, whichadw us to read
them one line at a time.

Java uses two class types for processing data from a file —ymeedalled
FileReader and a second calld8ufferedReader . A FileReader object
can establish an association with a text file. This is callgaehing” the file. The
BufferedReader is constructed using fikeReader as a building block. Each
line of the file is interpreted as tyf@ring , and so, just as we do with Dialog Box
input, if we want to use the entries as numbers, the progrdihmesad to convert
them to integers or real numbers as their use requires.

In the next example, we see a program that reads scores ffilglcalled
“scores.dat” and finds the average value of the scores théfrbe “.dat” extension
is used to suggest “data.” It is also permissable to use # ektension after the
file name to suggest text.

1 // The "FileAvg" class.

2 Il Input a sequence of scores entered one to a line

3 /I from a file whose name is to be read in from the keyboard
4 /| and find their average.

5

6 import java.io. *;

7 import java.util.Scanner,

8

9 public class FileAvg

10 {

11 public static void main (String [] args) throws IOException
12 {

13 String fileName; /I Name of file to be processed

14 String line = " "; /I A single line from the file

15 int score = 0; /| Data value from a line of the file
16 int sum = 0; /I Accumulated sum of scores

17 int count = O; /I Count of numbers (scores) in the file
19 Scanner consoleln = new Scanner(System.in);

21 System.out.printin ("Name of the file of integers? ");

22 fileName = consoleln.nextLine(); //Read the name of the fil e

10.1. READING FROM A FILE

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

/I Create a FileReader object based on the given filename, an
/I create a BufferedReader for the input stream from that.

FileReader inputFile = new FileReader(fileName);
BufferedReader inputReader = new BufferedReader(inputFi

line = inputReader.readLine (); //Read single line from the
while (line != null) { // readLine returns NULL at EOF

score = Integer.parselnt (line); // Convert line to an integ

count=count+1; /I Increment the counter
/I Update the cumulative sum

sum = sum + SCOre;
line = inputReader.readLine (); // Read next line.

} /lend the loop
inputReader.close(); //close the file

System.out.printin ("The average of your " + count +
" scores is " + (double)sum/count);

} /I main method
} /I FileAvg class

121

carry out file manipulations, while the second line allowsasse theScanner
class. Something new appears on the line wherediea method beginghrows

IOEXxception

d then

file.

er.

The first line of the program imports the types and methoddertby Java to

. This is what we write in Java to indicate that there are some

exceptional conditions that might arise when input or ougre attempted. For
example, it might happen that the user wants to read from ,ablilemakes a ty-
pographical error when entering the name of the file. The needs a message
alerting him/her to the fact that the file requested does rist.eWhen the user

sees the error message, he/she can retype the name of therfiéeting the typo.
Inside the main method we declaré&aing

variable calledileName to

receive the name of the data file to be entered by the user kt¢yheard. Thént
score will be used to hold each score as it is read from the file. Thialke sum
will act as an accumulator adding each score to the existing & the score is
read.count keeps track of how many scores have been read so far. Whdwall t
scores have been read, the average can be computer usirgdubefcount .

We use our usual keyboard input method to get the name of #hecfibe

used. It will be necessary for the user to type the full dwgctpath name for
the file. For example, if the user has a file named scores.datirectory on the

122 CHAPTER 10. FILES

C drive named History, when prompted for the file name, the skeuld input
C:/History/scores.dat

The declaration ofnput to be a FileReader both identifiagputFile to
be the given class type and opens the file that the user hasiegheThe Buffere-
dReader declaration afputReader also both identifies the class type and asso-
ciates the new instance with tigputFile . When these two declarations have
been executed, the program is ready to read from the desifitt. The data from
the file is read one line at a time using tteadLine method, which is provided
by the BufferedReader class.

Once a line has been read, tiwhile loop begins to process the file. The
check for stopping the loop is the boolean expressiiom != null , Which is
equivalent to checking to see whether the line is empty. herivords, if the line
read in has anything but the null string in it, the loop comgis, but once the end of
the file is reached, the loop will stop. Hence, we do not neddhimv how many
entries are in the data file in order to process it, but we dd m®eount the number
of entries so we can compute the average when the sum hasdueeh f

The steps of the loop that are to be repeated include congétie string that
was read into an integer. Theteger.parselint(line) accomplishes this
at line 31. The count is incremented to indicate that anothkre has been read.
The sum adds on the newly read valuesobre , possible because the input string
has been converted to an integer. The last step of the lodmisetading in of
another line from the file.

When the boolean expression that controls the loop becoaiss f.e. the file
has been completely read, the loop stops and the file is clé$eally, the average
is computed and printed.

10.2 Writing to a File

One way to prepare a data file that can be processed from ardsyam is to use
any editor and put data elements one per line in the editimgloww. Then save the
file with a .dat or .txt extension. However, it is also possiti prepare a file by
using a Java program. One advantage of writing the file frorava program is
that helpful messages can be printed for the user allowiegisier to make entries
directly into the Java program which can store them in a fileedby the user.

To accomplish this task, we need writing counterparts toRieReader
and BufferedReader classes that we used for reading from files. From the
samejava.io. * classes we can get just what we need. To create and open
a file for writing there is a class calldgileWriter which is the writing ana-
log to FileReader. Instances of class tylpéeWriter can establish a con-

10.2. WRITING TO AFILE 123

nection to a file for writing. The writing counterpart BufferedReader is
PrintWriter which allows a user to write to a file using the methods named
print andprintin and which act the same as thgnt andprintin ~ we
have used previously iBystem.out output.

In our next example we allow the user to designate a file namective the
data that is input from the keyboard. When the program ehdsjata will still exist
in the file. As we know, data that is entered from the keyboautinot written to a
file, disappears when the program ends, because that daptierly temporarily
in main memory. Data written to a file is kept on the hard driv@ch retains its
data even when the computer is turned off.

1 //This program prompts a user for a file name to store some sco res.
2

3 import java.io. *;

4 import java.util.Scanner;

5

6 class outFile

7 A

8 public static void main(String[] args) throws IOException

9 {

10 String fileName; /ithe name of the file

11 int numScores = 0; //the number of scores

12 String score; //a variable to hold each score as it is entered

13 Scanner consoleln = new Scanner(System.in);

15 System.out.printin("How many scores do you have? ");

16 numScores = consoleln.nextint(); //get the number of score s
17 consoleln.nextLine();

18 System.out.printin("What do you want to call your file of sc ores? "),
19 fileName = consoleln.nextLine(); //get the name of the file

21 /lopen the file

22 FileWriter fwriter = new FileWriter(fileName);

23 PrintWriter outFile = new PrintWriter(fwriter);

25 /lget the data and write it to the file

26 for (int i = 1; i <= numScores; i++)

27 {

28 System.out.printin("Enter a score: "),

29 score = consoleln.nextLine();

31 outFile.printin(score); //read the score as a string

32 }

34 outFile.close();

124 CHAPTER 10. FILES

35 System.out.printin("Data written to file.");
36 }
37 }

As before we begin by importinava.io. *. In the main method we de-
clare aString to hold the name of the file we want to produce. The delcaration
String score sets up a variable to hold each score as it is entered. The pro-
gram prompts the user for the number of scores to be placdteifile and then
asks what the user wants to call the file.

Once the name of the file has been reaéjlaWriter varible is declared
and initialized. APrintWriter is declared using thEileWriter variable as
parameter and the effect of these two declaratons is to offina the required
name for writing. Thdor loop reads the scores, 8fings , one at a time from
the keyboard and then writes them as strings, one per lingetdéile. When the
loop has read and stored all of the scores, the file is closedegsage informs the
user that the data has been written to the file.

10.3 exercises

Exercise 10.1Write a program to allow a user to enter as many car prices &s th
user wants and then stores those prices to a file called “cad”

Exercise 10.2Write a program that reads from the “carPrices” file and findset
average price of a car, the maximum cost, and the minimum cost

Chapter 11

Searching and Sorting

Two of the most common and most important actions that coemputo for us are
searching stored materials to find what we need and puttingtoved materials
into whatever order we want them. Of course, to be reallyfhklthese activities
need to be fast. For example, when we want to find books cayeriparticular
subject from our media center, we want to be able to tell tlecbéng program
what the topic is and then to get a list of available mateqaigskly. Often, seach-
ing facilities will allow the user to tell what order the useants results displayed.
In the media center example, the usual default is to displayfihdings in reverse
chronological order, but users can choose to have themaglisglin other ways.
For example, when doing a web search, we usually want thesiterbe displayed
in their order of popularity, meaning that those items whielve been used by
others most often will be shown first.

11.1 Searching

11.1.1 Searching Randomly Stored Data

Suppose we have a file of healthful foods and we are just abaitdose an apple
as a snack. We want to confirm that apple is on the list, so we toegearch the file
to see if apple is there. Assuming that the food names aredstarthey were tested
by the FDA for healthfulness, they do not appear in any palgrcorder. So our
search will need to start at the beginning and move througlfotbd names to see if
we can find apple. We call such a search "linear” because, dameeptualize the
data as being laid out in a line, the linear search moves gifirdine data by going
along the line.

The following example shows a linear search that searchasran of integers

125

126 CHAPTER 11. SEARCHING AND SORTING

that have been entered randomly. The method returns thg ofdée first posi-

tion where the desired value (given on the paramter listpimd. If the value is
not found, then the method returns -1. The calling programthan generate an
appropriate message.

1 static int linearSearch(int[] v, int w)

2

3 int NOTFOUND = -1; // value to return if not found

4 int index; /I index of current element of search array
5

6 /I Loop through all valid index values of the array

7 for (index = 0O; index < v.length; index++) {

8

9 /I Check for a match

10

11 if (v[index] == w) {

12 return index; // If a match is found, return index within arra
13 }

14 }

15

16 return NOTFOUND:;

17 }

When the data is stored in a random fashion, we have no choit¢e bxamine
every entry of the designated items in the order in which #reykept. To shorten
the search, we could stop upon finding the value we are segrébi. You will
do this as an exercise. Another interesting problem is todlhthe positions that
hold the given data. Still another is to count how many suditjpms there are.
For example, if you wanted to check a random number genei@sae how good
it is, you could generate a large file of random numbers arma ¢bent how many
of each there are. We would expect a fairly uniform distiitmutof the numbers.
Unusually large or small numbers of a particular value migjkie us reason to
believe that the random generator in not doing a proper job.

11.1.2 Searching Ordered Data

Let’'s now consider how we might speed up a search in the casesvthe data is
stored in a particular order. A good example of this idea isxane book. In a
phone book the names are written in alphabetical order, s@ iére looking for
some name, such as Miller, we would probably not start at dggniming of the

11.1. SEARCHING 127

book, but rather, open to approximately the middle. At thddig we would check
to see which names are there and if the one we want isn’'t onrtlulatle page, we
would decide whether to go back toward the front of the bodloward the end of
the book, depending on whether the name we want comes befafeenthe ones
on the middle page.

We can apply this idea to computer data that is stored in naroealphabetic
order. Give a sequence of data stored in order, if we needtoftor a particular
value, we can look first at the middle element and then, if tiolfa element is the
one we want, stop. If the one we want is not the middle one, welen apply the
same approach to half the entries, since we can tell whetbereed to look in the
first half of the data or the second half.

Here we will see two versions of binary search methods. Thei§ian iterative
version. In this version, the methatbinsearch receives four paramaters.
The firstisint[] v, which is an array of integers to be searched. The second
parameter int w , the value to search for. The thindf first is the index of
where to begin the search, and the fouith, last is where to stop the search.
When the method is callefiyst will probably be0, the first index into the array,
andlast will be the one less than the size of the array.

The major part of the method isvehile loop that is controlled by whether
the value offirst is less tharast . Of course, unless the array has only one
entry, that will be the case when the method is first called, smthe loop body
will execute. The value of the middle index of the array is pomed,mid . If the
entry in the array at that index i8, then the method returnsid, the index of
w. Otherwise, the values difst andlast are updated so that the search will
continue only in half of the remaining unexamined entriefie Bame process is
iterated until all appropriate parts of the array have bemméined. If the required
vale is found, the index of it is returned. Otherwise, a vadfiel is returned
indicating that the value was not found anywhere in the array

1 static int binarySearchlterative (int[] v, int w, int first , int last)
2 |

3 int mid = 0; // index of the midpoint of the search space

4

5 while (first <= last) // iterate while the search space is non -empty
6 {

7

8 mid = (first + last) / 2; // compute middle index

9 if (w == v[mid]) /I look for a hit at mid index

0 return mid;

1

128 CHAPTER 11. SEARCHING AND SORTING

12 /I Determine which half should be considered for continuing search
13

14 else if (w < v[mid]) // if desired value is less than the middle

15 last = mid - 1, /I change the right end of the search space
16 else /I otherwise,

17 first = mid + 1; /I change the left end of the search space
18

19 } /I end while

20

21 /I This point is reached only if the value was not found and the

22 /I search space became empty.

23

24 return -1; // so return our "not found" sentinal of -1

25 1}

26

11.1.3 Recursive Methods

There is another common way to write a binary search methaayrogrammers
think that this new way, called recursive, is a natural waytite the binary search.
A recursive method is one that calls itself. When doing aflyirsgarch, once we
have checked the middle element and figured out whether korlext only in the
lower half or only in the upper half, we want to carry out ekathe same steps
we did with the whole sequence, but apply those steps onlglfmhthe elements.
The only changes we want to make are the valudssif orlast

So, informally, what we want to do is to call the method withsfirst and
one fewer than the number of elementdast |, find the middle value, and then
change eithefirst (in the case where we need to look only in the upper half) or
last (when we need to search the lower half). The rest of the waxkapply the
same algorithm to whichever half we have identified. We d¢ liyamaking the
call to the method with the updated valuesfiost andlast on the parameter
list.

The big question that remains is "How can we get this proagstop?” This is
always an important challenge in every recursive procediine way we address
it is to put a check right at the beginning of the method thatc&s to see if the
value offirst is greater than the value ta#fst . When that happens, the method
just stops and returns whatever value it currently hamdex . Notice that we
used the clause "When that happens,” rather than "If thgpérag” That's because
eventually, since at each call to the method, either theevalfirst increases or
the value oflast decreases. Hence, at some péirst will overtakelast

Here is the code for doing a binary search in the recursive:sty

value,

11.2. SORTING 129

static int binarySearchRecursive (int[] v, int w, int first , int last)

{
int NOTFOUND = -1;

int mid = -1; /I index of midpoint of search space
int index; /I index of found value

/| Base case of an empty search space, indicated when first > | ast

if (first > last)
return NOTFOUND;

1

2

3

4

5

6

7

8

9

10

11

12

13 /I Base case of search value found at middle index
14

15 mid = (first + last)/2; /| compute middle index
16

17

18

19

20

if (v[mid] == w) /l on match, return middle index
return mid;

/I Recursive cases of search value above or below middle valu e
21
22 if (w < v[mid]) // Search value less than middle value
23 { /I ... search left half by adjusting last
24
25 index = binarySearchRecursive(v, w, first, mid-1); // recu rsive call
26
27 else // (w > v[mid]) Search value must be greater than middle v alue
28 { I ... S0 search right half by adjusting first
29
30 index = binarySearchRecursive(v, w, mid + 1, last); // recur sive call
31 }
32 return index; // index as computed by one of recursive branch es
33 }

11.2 Sorting

In order to be able to use either the iterative or the recarbimary search, both
of which shorten the search significantly, it is necessaay ttine data be stored in
some designated order, such as small to large, large to,satpdihbetical, or some
other user specified order. This leaves us with the probletmowof the data can
be arranged in order. Of course, one way to get the data im @gde enter it in

ordered form, but this means that someone has to get it i befere data entry

130 CHAPTER 11. SEARCHING AND SORTING

takes place. Since putting things in order is a task for witishkeasy to write an
algorithm, it would be a foolish waste of time for a human tatlde ordering.

As computing has developed over the years, several algwsifor sorting data
have been found, each with different performance chaiaities. Some algo-
rithms are designed to work best on random data, while ogers time when the
data is partially ordered or in some particular form. Here, will examine two
ways for sorting data, both intended for use when the data baen entered with
no special pattern.

11.2.1 Bubble Sort

The first algorithm we will consider is one called "bubble tsoin this case we
assume we have a sequence of data elements. The strategynakéoseveral
passes through the sequence of data, so that each pass ie$ié next highest
entry “bubbling” to the appropriate position. This mearst thifter one pass through
the data, the largest element will be at the end of the seguehiter the second
pass, the second largest entry will be next to the end, etco@te, one can change
“largest” to “smallest” for reverse order or rephrase imterof alphabetizing if the
data consists of text material, rather than numbers.

Having seen the overall strategy, we now look at the detalestription of a
single pass through the data. During a pass, we begin at gtedisition in the
sequence and compare it to the second element. If those éneents are not in
order already, then we excange them, getting those two elsrirethe right order.
Next, we compare the element now in the second position torleen the third
position and, again, exchange them if they are not alreadlyenight order. We
continue comparing pairs of entries until we have reacheciid of the sequence.
Since each comparison in this pass causes the larger of theléments to move
into the correct position for the two entries being compalgdthe time the pass
is completed, the largest of the elements being comparectieicorrect position
relative to the entire sequence.

To see how this works, let's look at a sequence of eight imgegesee what
happens during the first pass thorugh them as shown in Figute The top line
of the table has the indices of the entries. The next line shibe original data.

Note that the first comparison results in no change to therosttece4 is al-
ready less thaid. However, when the next comparison is made betweand?2,
those two values need to be exchanged to get them into thectanrder. Sub-
sequent comparisons and exchanges in this first pass thuraghata result irY
landing at the end of the sequence, just where it belongs. fijure illustrates two
important results: The first pass makes sure that the laedgstent is in the righr
place, and one pass is not enough to get all the elementmtight positions.

11.2. SORTING 131

FNS NN I N S IS [N N Y TS
(SIENTE IR NI NTE N N ENIEN
w| w| w| w|w|~|N| N w
o o| ol g N w| w|w|
INNINENENIEGIFG RGNS
S RIESESENENENE-))
W NP R R PRk~
~| w| w| w|w|w|w|w| o

Figure 11.1: First Pass in a Bubble Sort

Be sure to carry out a second pass on the given data to confainaftier the
second pass, the ends up where it belongs. Continue making passes untilall th
elements are in place.

Now we need to plan how to implement our algorithm. A natural/wo store
a sequence is in an array, so we will set up an array to hold mmies. Rather
than limiting ourselves to eight entries, as we have seeviqusly, we can allow
the number of entries to be filled in by the user, hence makimgpogram flexible
enough to handle any size sequence.

Using a loop we can write code to compare array entries to et in pairs,
exchanging when necessary. But we have already seen thagla kiop through
the array will succeed in getting the largest element ingylhat does not guarantee
that the rest of the entries are in order, so we need to repiedbop mulitple times,
i.e., we need a nested loop.

To promote efficiency, we observe that, once the last elemeéntplace, there
is no need to look at it ever again. Similarly, once the sedona the largest is in
its place, there is no need to look at it again. This meansethett pass through the
data can be shorter than the previous pass.

Here is some code to implement this idea:

1 static void bubbleSort(double [] v, int n)

2 /I bubbleSort method receives an array of doubles and an inte ger telling
3 /I howmany elements and sorts those doubles into numberic or der from
4 /I smallest to largest.

S

6 inti, j=0; /I counters

7 double temp = 0; //to hold a value temporarily

132 CHAPTER 11. SEARCHING AND SORTING

8

10
11
12
13
14

16
17
18
19

21
22
23

25
26
27
28

for (i = n-1; i >= 0O; i--)//start at the end of the array and work
{
System.out.printin("The value of i is " + i);
for (j = 0; j < i; j++)l/start at the beginning of the array and w
{
System.out.printin("the value of j is " + j);
if (v[j] > v[j+1])//check each pair to see if any exchange sho
{
/lswap values if necessary
swapEntries(v, j, j+1);

}
}
}
}
static void swapEntries(double [] A, int i, int j)
{
double temp = A[i]; // temporarily save the ith element
Alil = A[jl; /I give the ith element the value of the jth
A[j] = temp; /I update the jth with the save ith
}

In the example, there are two methods. One is the method dleattie bubble

sort, and the other is one which the bubble sort calls to dewapping of values,in
this case, doubles, that need to be exchanged.SiWapEntries method takes
an array and two indices and exchanges the values at theigiiees.

The bubbleSort method uses the outer loop to start at the last entry, and
after the inner loop puts the largest element into that lasttipn, moves down-

ward so that the inner loop puts the next largest entry irtbcsttcond from the last

position, etc. The outer loop works its way from the end ofdihmy down to the
beginning, each iteration putting one more element inta@treect position. When
the outer loop stops, all the entries are in the correct iposit

The bubble sort is not known for speed and efficiency. For @anin the ex-

treme case where all the elements are already in the requided, the method in

our example continues to go through the array, checkingadf s@y values need to
be swapped. Multiple passes are made, each resulting inamgehthereby wast-

ing time. So one way to improve the bubbble sort is to stop thegss of checking
for elements out of order if a pass through the data result® iaxchanges, indi-

cating that all of the elements are now in order. Of cours#hénworst case, when

the elements are in reverse order, all of the passes must e tmget the correct
ordering. If there ar@ elements, there may need to be as many asl passes

for each, resulting in approximately> comparison operations to get the sorting

downward

ork upward

uld take place

11.2. SORTING 133

completed.

11.2.2 Selection Sort

In the bubble sort we compared pairs of data elements andiegeld those that
were out of order, hence bubbling the largest value to theddriie sequence.
Ignoring the element(s) already in the right place, we card that process, bub-
bling up the largest among the remaining elements untihalldata were in order.
We turn now to another strategy for sorting. Given a sequehdata to be put in
order, we start at the beginning of the sequence and hunbdosrhallest element
among the data. We then exchange it with the first entry in éggiesnce. At this
point we know that the first entry is in the right place, so we igaore it and look
at the remaining data. Starting with the second entry we aaihe sequence
and find the smallest element among those entries and exelitamigh the second
element. We continue this process until we have placed tbensgefrom the last
entry. The last entry, by default, is in the right position.

Here is an implementation of this strategy, called the SieleSort, written in
Java.:

CoOoO~NOOUORAWNE

static void swapEntries(int [] A, int i, int j)
double temp = A[i]; // temporarily save the ith element
Alll = A[]; /I give the ith element the value of the jth
Afj] = temp; /I update the jth with the save ith
}
static int getMinIindex (int [] v, int first, int last)
/ffind the index of the smallest element starting at first an d
10 /lending at last
11 {
12 int minind = first;//start the min index at first
13 int i = first;//start i at first
14 while (i <= last)//repeat the loop from i to last
16 if (v [i] < v [minIind]) //check to see if any array values
17 /lare less than the value at the minind
18 minind = i; //if so, replace minind with the newly found index
19 i =i+ 1, /lincrement i
20 }
21 return minind; //return the found smallest index
22 }

24 static void selectionSort (int [] v, int n)

134 CHAPTER 11. SEARCHING AND SORTING

25 /lput the n values of v in order using the selection approach

26 {

27 inti = 0; /lto use as a counter

28 int minl = 0; //to hold the index of the smallest element

30 for i = 0 ;i < n ; i++) /lrepeat for each element in the array

31 {

32 minl = getMinindex (v, i, n); /luse the method getMinindex to find out where
33 /lthe smallest element is, starting at the ith entry

34 swapEntries(v, i, minl); //put the smallest entry into the r ight position
35 }

36 }

The swapEntries method is almost the same as the method by the same
name in the bubble sort example. The only difference hereaisthe entries are
integers, rather than doubles. We note that we have brokeselkction sort strat-
egy into two methods. The first methogetMinindex finds the index of the
smallest element in the array, starting with the element in the positidinst
and looking at all the entries im up to positionlast , the end of the array. Of
course, when theelectSort method callggetMinindex for the first time,
first will be given the valud, since no members of have been checked for
order yet.

The selectSort method initializes the variablminl to be 0, because we
start by assuming that the smallest element afeeds to go at the Oth position.
Thefor loop checks through and finds the index of the smallest integewviand
returns that index teelectSort asminl . Then the values at positian and
minl are exchanged, putting the next smallest value in the ithipos

In this strategy for each position n every element in positions higher than
the one currently being checked must be examined to find thexinf the next
smallest value. This means that if the array hadements, then in worst case we
need to look at — 1 elements to find the index of the next smallest, so we say that
we need approximately? comparisons to put the array in order.

It is useful to note that there are many other sorting stresegome more effi-
cient that the bubble strategy or the selection strategl/ftzare are more advanced
courses in which such strategies are discussed. Here olisgoaee a couple of
sorting strategies and to challenge you to think of othesibdgies.

11.3. EXERCISES 135

11.3 exercises

Exercise 11.1Write a program to search a file of 1000 random integers betwee
1 and 100 for the user’s choice.

Exercise 11.2Write a program that searches a file of 1000 random integers be
tween 1 and 100 for the user’s choice, and stop when the fidexinvith the re-
quired value is found.

Exercise 11.3Write a program to find all the indices where a particular igée is
found.

Exercise 11.4Write a program that checks to see if a given random file of 1000
integers between 1 and 100 seems to reasonably random. M¥Tvould expect
to see approximately the same number of each integer.

Exercise 11.5Write a program that searches a file of names for the user’sceho
of a name.

Exercise 11.6 Write 2 programs to sort a file of 1000 random integers between
1 and 100. One program should use the bubble strategy andlmmddsuse the
selection strategy.

Exercise 11.7Write 2 programs to sort a file of names. One should use thelbubb
strategy and one should use the selection strategy.

Exercise 11.8Given a class that stores student records: name, major, gad ¢
write a program that sorts the records by name. Write anothregram to sort
them by major. Write another program to sort by gpa.

136 CHAPTER 11. SEARCHING AND SORTING

Bibliography

[1] "JAavA PLT GROUR R. U. Dr. java — a lightweight ide. http://www.drjava.org.

[2] KOLLING, M., AND BARNES, D. Bluej — the interactive java environment.
http://www.bluej.org.

137

