
Think Python

How to Think Like a Computer Scientist

Version 2.0.10

May 2013

Chapter 5

Conditionals and recursion

5.1 Modulus operator
The modulus operator works on integers and yields the remainder when the first operand
is divided by the second. In Python, the modulus operator is a percent sign (%). The syntax
is the same as for other operators:
>>> quotient = 7 / 3

>>> print quotient

2

>>> remainder = 7 % 3

>>> print remainder

1

So 7 divided by 3 is 2 with 1 left over.

The modulus operator turns out to be surprisingly useful. For example, you can check
whether one number is divisible by another—if x % y is zero, then x is divisible by y.

Also, you can extract the right-most digit or digits from a number. For example, x % 10

yields the right-most digit of x (in base 10). Similarly x % 100 yields the last two digits.

5.2 Boolean expressions
A boolean expression is an expression that is either true or false. The following examples
use the operator ==, which compares two operands and produces True if they are equal
and False otherwise:
>>> 5 == 5

True

>>> 5 == 6

False

True and False are special values that belong to the type bool; they are not strings:
>>> type(True)

<type 'bool'>

>>> type(False)

<type 'bool'>

42 Chapter 5. Conditionals and recursion

The == operator is one of the relational operators; the others are:
x != y # x is not equal to y

x > y # x is greater than y

x < y # x is less than y

x >= y # x is greater than or equal to y

x <= y # x is less than or equal to y

Although these operations are probably familiar to you, the Python symbols are different
from the mathematical symbols. A common error is to use a single equal sign (=) instead of
a double equal sign (==). Remember that = is an assignment operator and == is a relational
operator. There is no such thing as =< or =>.

5.3 Logical operators
There are three logical operators: and, or, and not. The semantics (meaning) of these
operators is similar to their meaning in English. For example, x > 0 and x < 10 is true
only if x is greater than 0 and less than 10.

n%2 == 0 or n%3 == 0 is true if either of the conditions is true, that is, if the number is
divisible by 2 or 3.

Finally, the not operator negates a boolean expression, so not (x > y) is true if x > y is
false, that is, if x is less than or equal to y.

Strictly speaking, the operands of the logical operators should be boolean expressions, but
Python is not very strict. Any nonzero number is interpreted as “true.”
>>> 17 and True

True

This flexibility can be useful, but there are some subtleties to it that might be confusing.
You might want to avoid it (unless you know what you are doing).

5.4 Conditional execution
In order to write useful programs, we almost always need the ability to check conditions
and change the behavior of the program accordingly. Conditional statements give us this
ability. The simplest form is the if statement:
if x > 0:

print 'x is positive'

The boolean expression after if is called the condition. If it is true, then the indented
statement gets executed. If not, nothing happens.

if statements have the same structure as function definitions: a header followed by an
indented body. Statements like this are called compound statements.

There is no limit on the number of statements that can appear in the body, but there has to
be at least one. Occasionally, it is useful to have a body with no statements (usually as a
place keeper for code you haven’t written yet). In that case, you can use the pass statement,
which does nothing.
if x < 0:

pass # need to handle negative values!

5.5. Alternative execution 43

5.5 Alternative execution

A second form of the if statement is alternative execution, in which there are two possi-
bilities and the condition determines which one gets executed. The syntax looks like this:

if x%2 == 0:

print 'x is even'

else:

print 'x is odd'

If the remainder when x is divided by 2 is 0, then we know that x is even, and the program
displays a message to that effect. If the condition is false, the second set of statements is
executed. Since the condition must be true or false, exactly one of the alternatives will be
executed. The alternatives are called branches, because they are branches in the flow of
execution.

5.6 Chained conditionals

Sometimes there are more than two possibilities and we need more than two branches.
One way to express a computation like that is a chained conditional:

if x < y:

print 'x is less than y'

elif x > y:

print 'x is greater than y'

else:

print 'x and y are equal'

elif is an abbreviation of “else if.” Again, exactly one branch will be executed. There is no
limit on the number of elif statements. If there is an else clause, it has to be at the end,
but there doesn’t have to be one.

if choice == 'a':

draw_a()

elif choice == 'b':

draw_b()

elif choice == 'c':

draw_c()

Each condition is checked in order. If the first is false, the next is checked, and so on. If one
of them is true, the corresponding branch executes, and the statement ends. Even if more
than one condition is true, only the first true branch executes.

5.7 Nested conditionals

One conditional can also be nested within another. We could have written the trichotomy
example like this:

if x == y:

print 'x and y are equal'

else:

if x < y:

44 Chapter 5. Conditionals and recursion

print 'x is less than y'

else:

print 'x is greater than y'

The outer conditional contains two branches. The first branch contains a simple statement.
The second branch contains another if statement, which has two branches of its own.
Those two branches are both simple statements, although they could have been conditional
statements as well.

Although the indentation of the statements makes the structure apparent, nested condi-
tionals become difficult to read very quickly. In general, it is a good idea to avoid them
when you can.

Logical operators often provide a way to simplify nested conditional statements. For ex-
ample, we can rewrite the following code using a single conditional:

if 0 < x:

if x < 10:

print 'x is a positive single-digit number.'

The print statement is executed only if we make it past both conditionals, so we can get
the same effect with the and operator:

if 0 < x and x < 10:

print 'x is a positive single-digit number.'

5.8 Recursion

It is legal for one function to call another; it is also legal for a function to call itself. It may
not be obvious why that is a good thing, but it turns out to be one of the most magical
things a program can do. For example, look at the following function:

def countdown(n):

if n <= 0:

print 'Blastoff!'

else:

print n

countdown(n-1)

If n is 0 or negative, it outputs the word, “Blastoff!” Otherwise, it outputs n and then calls
a function named countdown—itself—passing n-1 as an argument.

What happens if we call this function like this?

>>> countdown(3)

The execution of countdown begins with n=3, and since n is greater than 0, it outputs the
value 3, and then calls itself...

The execution of countdown begins with n=2, and since n is greater than 0, it
outputs the value 2, and then calls itself...

The execution of countdown begins with n=1, and since n is greater
than 0, it outputs the value 1, and then calls itself...

The execution of countdown begins with n=0, and since n is
not greater than 0, it outputs the word, “Blastoff!” and then
returns.

5.9. Stack diagrams for recursive functions 45

The countdown that got n=1 returns.

The countdown that got n=2 returns.

The countdown that got n=3 returns.

And then you’re back in __main__. So, the total output looks like this:

3

2

1

Blastoff!

A function that calls itself is recursive; the process is called recursion.

As another example, we can write a function that prints a string n times.

def print_n(s, n):

if n <= 0:

return

print s

print_n(s, n-1)

If n <= 0 the return statement exits the function. The flow of execution immediately re-
turns to the caller, and the remaining lines of the function are not executed.

The rest of the function is similar to countdown: if n is greater than 0, it displays s and then
calls itself to display s n− 1 additional times. So the number of lines of output is 1 + (n -

1), which adds up to n.

For simple examples like this, it is probably easier to use a for loop. But we will see
examples later that are hard to write with a for loop and easy to write with recursion, so it
is good to start early.

5.9 Stack diagrams for recursive functions

In Section 3.10, we used a stack diagram to represent the state of a program during a func-
tion call. The same kind of diagram can help interpret a recursive function.

Every time a function gets called, Python creates a new function frame, which contains the
function’s local variables and parameters. For a recursive function, there might be more
than one frame on the stack at the same time.

Figure 5.1 shows a stack diagram for countdown called with n = 3.

As usual, the top of the stack is the frame for __main__. It is empty because we did not
create any variables in __main__ or pass any arguments to it.

The four countdown frames have different values for the parameter n. The bottom of the
stack, where n=0, is called the base case. It does not make a recursive call, so there are no
more frames.
Exercise 5.1. Draw a stack diagram for print_n called with s = 'Hello' and n=2.
Exercise 5.2. Write a function called do_n that takes a function object and a number, n, as argu-
ments, and that calls the given function n times.

46 Chapter 5. Conditionals and recursion

<module>

countdown

countdown

countdown

countdown

n 3

n 2

n 1

n 0

Figure 5.1: Stack diagram.

5.10 Infinite recursion

If a recursion never reaches a base case, it goes on making recursive calls forever, and the
program never terminates. This is known as infinite recursion, and it is generally not a
good idea. Here is a minimal program with an infinite recursion:

def recurse():

recurse()

In most programming environments, a program with infinite recursion does not really run
forever. Python reports an error message when the maximum recursion depth is reached:

File "<stdin>", line 2, in recurse

File "<stdin>", line 2, in recurse

File "<stdin>", line 2, in recurse

.

.

.

File "<stdin>", line 2, in recurse

RuntimeError: Maximum recursion depth exceeded

This traceback is a little bigger than the one we saw in the previous chapter. When the error
occurs, there are 1000 recurse frames on the stack!

5.11 Keyboard input

The programs we have written so far are a bit rude in the sense that they accept no input
from the user. They just do the same thing every time.

Python 2 provides a built-in function called raw_input that gets input from the keyboard.
In Python 3, it is called input. When this function is called, the program stops and waits for
the user to type something. When the user presses Return or Enter, the program resumes
and raw_input returns what the user typed as a string.

>>> text = raw_input()

What are you waiting for?

>>> print text

What are you waiting for?

5.12. Debugging 47

Before getting input from the user, it is a good idea to print a prompt telling the user what
to input. raw_input can take a prompt as an argument:

>>> name = raw_input('What...is your name?\n')

What...is your name?

Arthur, King of the Britons!

>>> print name

Arthur, King of the Britons!

The sequence \n at the end of the prompt represents a newline, which is a special character
that causes a line break. That’s why the user’s input appears below the prompt.

If you expect the user to type an integer, you can try to convert the return value to int:

>>> prompt = 'What...is the airspeed velocity of an unladen swallow?\n'

>>> speed = raw_input(prompt)

What...is the airspeed velocity of an unladen swallow?

17

>>> int(speed)

17

But if the user types something other than a string of digits, you get an error:

>>> speed = raw_input(prompt)

What...is the airspeed velocity of an unladen swallow?

What do you mean, an African or a European swallow?

>>> int(speed)

ValueError: invalid literal for int()

We will see how to handle this kind of error later.

5.12 Debugging

The traceback Python displays when an error occurs contains a lot of information, but it
can be overwhelming, especially when there are many frames on the stack. The most useful
parts are usually:

• What kind of error it was, and

• Where it occurred.

Syntax errors are usually easy to find, but there are a few gotchas. Whitespace errors can
be tricky because spaces and tabs are invisible and we are used to ignoring them.

>>> x = 5

>>> y = 6

File "<stdin>", line 1

y = 6

^

SyntaxError: invalid syntax

In this example, the problem is that the second line is indented by one space. But the error
message points to y, which is misleading. In general, error messages indicate where the
problem was discovered, but the actual error might be earlier in the code, sometimes on a
previous line.

48 Chapter 5. Conditionals and recursion

The same is true of runtime errors.

Suppose you are trying to compute a signal-to-noise ratio in decibels. The formula is
SNRdb = 10 log10(Psignal/Pnoise). In Python, you might write something like this:

import math

signal_power = 9

noise_power = 10

ratio = signal_power / noise_power

decibels = 10 * math.log10(ratio)

print decibels

But when you run it in Python 2, you get an error message.

Traceback (most recent call last):

File "snr.py", line 5, in ?

decibels = 10 * math.log10(ratio)

OverflowError: math range error

The error message indicates line 5, but there is nothing wrong with that line. To find the
real error, it might be useful to print the value of ratio, which turns out to be 0. The
problem is in line 4, because dividing two integers does floor division. The solution is to
represent signal power and noise power with floating-point values.

In general, error messages tell you where the problem was discovered, but that is often not
where it was caused.

In Python 3, this example does not cause an error; the division operator performs floating-
point division even with integer operands.

5.13 Glossary
modulus operator: An operator, denoted with a percent sign (%), that works on integers

and yields the remainder when one number is divided by another.

boolean expression: An expression whose value is either True or False.

relational operator: One of the operators that compares its operands: ==, !=, >, <, >=, and
<=.

logical operator: One of the operators that combines boolean expressions: and, or, and
not.

conditional statement: A statement that controls the flow of execution depending on some
condition.

condition: The boolean expression in a conditional statement that determines which
branch is executed.

compound statement: A statement that consists of a header and a body. The header ends
with a colon (:). The body is indented relative to the header.

branch: One of the alternative sequences of statements in a conditional statement.

chained conditional: A conditional statement with a series of alternative branches.

5.14. Exercises 49

nested conditional: A conditional statement that appears in one of the branches of another
conditional statement.

recursion: The process of calling the function that is currently executing.

base case: A conditional branch in a recursive function that does not make a recursive call.

infinite recursion: A recursion that doesn’t have a base case, or never reaches it. Eventu-
ally, an infinite recursion causes a runtime error.

5.14 Exercises

Exercise 5.3. Fermat’s Last Theorem says that there are no integers a, b, and c such that

an + bn = cn

for any values of n greater than 2.

1. Write a function named check_fermat that takes four parameters—a, b, c and n—and that
checks to see if Fermat’s theorem holds. If n is greater than 2 and it turns out to be true that

an + bn = cn

the program should print, “Holy smokes, Fermat was wrong!” Otherwise the program should
print, “No, that doesn’t work.”

2. Write a function that prompts the user to input values for a, b, c and n, converts them to
integers, and uses check_fermat to check whether they violate Fermat’s theorem.

Exercise 5.4. If you are given three sticks, you may or may not be able to arrange them in a triangle.
For example, if one of the sticks is 12 inches long and the other two are one inch long, it is clear that
you will not be able to get the short sticks to meet in the middle. For any three lengths, there is a
simple test to see if it is possible to form a triangle:

If any of the three lengths is greater than the sum of the other two, then you cannot
form a triangle. Otherwise, you can. (If the sum of two lengths equals the third, they
form what is called a “degenerate” triangle.)

1. Write a function named is_triangle that takes three integers as arguments, and that prints
either “Yes” or “No,” depending on whether you can or cannot form a triangle from sticks
with the given lengths.

2. Write a function that prompts the user to input three stick lengths, converts them to integers,
and uses is_triangle to check whether sticks with the given lengths can form a triangle.

The following exercises use TurtleWorld from Chapter 4:
Exercise 5.5. Read the following function and see if you can figure out what it does. Then run it
(see the examples in Chapter 4).

50 Chapter 5. Conditionals and recursion

Figure 5.2: A Koch curve.

def draw(t, length, n):

if n == 0:

return

angle = 50

fd(t, length*n)

lt(t, angle)

draw(t, length, n-1)

rt(t, 2*angle)

draw(t, length, n-1)

lt(t, angle)

bk(t, length*n)

Exercise 5.6. The Koch curve is a fractal that looks something like Figure 5.2. To draw a Koch
curve with length x, all you have to do is

1. Draw a Koch curve with length x/3.

2. Turn left 60 degrees.

3. Draw a Koch curve with length x/3.

4. Turn right 120 degrees.

5. Draw a Koch curve with length x/3.

6. Turn left 60 degrees.

7. Draw a Koch curve with length x/3.

The exception is if x is less than 3: in that case, you can just draw a straight line with length x.

1. Write a function called koch that takes a turtle and a length as parameters, and that uses the
turtle to draw a Koch curve with the given length.

2. Write a function called snowflake that draws three Koch curves to make the outline of a
snowflake.

Solution: http: // thinkpython. com/ code/ koch. py .

3. The Koch curve can be generalized in several ways. See http: // en. wikipedia. org/

wiki/ Koch_ snowflake for examples and implement your favorite.

http://thinkpython.com/code/koch.py
http://en.wikipedia.org/wiki/Koch_snowflake
http://en.wikipedia.org/wiki/Koch_snowflake

Chapter 6

Fruitful functions

6.1 Return values

Some of the built-in functions we have used, such as the math functions, produce results.
Calling the function generates a value, which we usually assign to a variable or use as part
of an expression.

e = math.exp(1.0)

height = radius * math.sin(radians)

All of the functions we have written so far are void; they print something or move turtles
around, but their return value is None.

In this chapter, we are (finally) going to write fruitful functions. The first example is area,
which returns the area of a circle with the given radius:

def area(radius):

temp = math.pi * radius**2

return temp

We have seen the return statement before, but in a fruitful function the return statement
includes an expression. This statement means: “Return immediately from this function
and use the following expression as a return value.” The expression can be arbitrarily
complicated, so we could have written this function more concisely:

def area(radius):

return math.pi * radius**2

On the other hand, temporary variables like temp often make debugging easier.

Sometimes it is useful to have multiple return statements, one in each branch of a condi-
tional:

def absolute_value(x):

if x < 0:

return -x

else:

return x

52 Chapter 6. Fruitful functions

Since these return statements are in an alternative conditional, only one will be executed.

As soon as a return statement executes, the function terminates without executing any
subsequent statements. Code that appears after a return statement, or any other place the
flow of execution can never reach, is called dead code.

In a fruitful function, it is a good idea to ensure that every possible path through the pro-
gram hits a return statement. For example:

def absolute_value(x):

if x < 0:

return -x

if x > 0:

return x

This function is incorrect because if x happens to be 0, neither condition is true, and the
function ends without hitting a return statement. If the flow of execution gets to the end
of a function, the return value is None, which is not the absolute value of 0.

>>> print absolute_value(0)

None

By the way, Python provides a built-in function called abs that computes absolute values.
Exercise 6.1. Write a compare function that returns 1 if x > y, 0 if x == y, and -1 if x < y.

6.2 Incremental development

As you write larger functions, you might find yourself spending more time debugging.

To deal with increasingly complex programs, you might want to try a process called in-
cremental development. The goal of incremental development is to avoid long debugging
sessions by adding and testing only a small amount of code at a time.

As an example, suppose you want to find the distance between two points, given by the
coordinates (x1, y1) and (x2, y2). By the Pythagorean theorem, the distance is:

distance =
√
(x2 − x1)2 + (y2 − y1)2

The first step is to consider what a distance function should look like in Python. In other
words, what are the inputs (parameters) and what is the output (return value)?

In this case, the inputs are two points, which you can represent using four numbers. The
return value is the distance, which is a floating-point value.

Already you can write an outline of the function:

def distance(x1, y1, x2, y2):

return 0.0

Obviously, this version doesn’t compute distances; it always returns zero. But it is syn-
tactically correct, and it runs, which means that you can test it before you make it more
complicated.

To test the new function, call it with sample arguments:

6.2. Incremental development 53

>>> distance(1, 2, 4, 6)

0.0

I chose these values so that the horizontal distance is 3 and the vertical distance is 4; that
way, the result is 5 (the hypotenuse of a 3-4-5 triangle). When testing a function, it is useful
to know the right answer.

At this point we have confirmed that the function is syntactically correct, and we can start
adding code to the body. A reasonable next step is to find the differences x2 − x1 and
y2 − y1. The next version stores those values in temporary variables and prints them.

def distance(x1, y1, x2, y2):

dx = x2 - x1

dy = y2 - y1

print 'dx is', dx

print 'dy is', dy

return 0.0

If the function is working, it should display 'dx is 3' and 'dy is 4'. If so, we know that
the function is getting the right arguments and performing the first computation correctly.
If not, there are only a few lines to check.

Next we compute the sum of squares of dx and dy:

def distance(x1, y1, x2, y2):

dx = x2 - x1

dy = y2 - y1

dsquared = dx**2 + dy**2

print 'dsquared is: ', dsquared

return 0.0

Again, you would run the program at this stage and check the output (which should be
25). Finally, you can use math.sqrt to compute and return the result:

def distance(x1, y1, x2, y2):

dx = x2 - x1

dy = y2 - y1

dsquared = dx**2 + dy**2

result = math.sqrt(dsquared)

return result

If that works correctly, you are done. Otherwise, you might want to print the value of
result before the return statement.

The final version of the function doesn’t display anything when it runs; it only returns
a value. The print statements we wrote are useful for debugging, but once you get the
function working, you should remove them. Code like that is called scaffolding because it
is helpful for building the program but is not part of the final product.

When you start out, you should add only a line or two of code at a time. As you gain more
experience, you might find yourself writing and debugging bigger chunks. Either way,
incremental development can save you a lot of debugging time.

The key aspects of the process are:

1. Start with a working program and make small incremental changes. At any point, if
there is an error, you should have a good idea where it is.

54 Chapter 6. Fruitful functions

2. Use temporary variables to hold intermediate values so you can display and check
them.

3. Once the program is working, you might want to remove some of the scaffolding or
consolidate multiple statements into compound expressions, but only if it does not
make the program difficult to read.

Exercise 6.2. Use incremental development to write a function called hypotenuse that returns the
length of the hypotenuse of a right triangle given the lengths of the two legs as arguments. Record
each stage of the development process as you go.

6.3 Composition

As you should expect by now, you can call one function from within another. This ability
is called composition.

As an example, we’ll write a function that takes two points, the center of the circle and a
point on the perimeter, and computes the area of the circle.

Assume that the center point is stored in the variables xc and yc, and the perimeter point is
in xp and yp. The first step is to find the radius of the circle, which is the distance between
the two points. We just wrote a function, distance, that does that:

radius = distance(xc, yc, xp, yp)

The next step is to find the area of a circle with that radius; we just wrote that, too:

result = area(radius)

Encapsulating these steps in a function, we get:

def circle_area(xc, yc, xp, yp):

radius = distance(xc, yc, xp, yp)

result = area(radius)

return result

The temporary variables radius and result are useful for development and debugging,
but once the program is working, we can make it more concise by composing the function
calls:

def circle_area(xc, yc, xp, yp):

return area(distance(xc, yc, xp, yp))

6.4 Boolean functions

Functions can return booleans, which is often convenient for hiding complicated tests in-
side functions. For example:

def is_divisible(x, y):

if x % y == 0:

return True

else:

return False

6.5. More recursion 55

It is common to give boolean functions names that sound like yes/no questions;
is_divisible returns either True or False to indicate whether x is divisible by y.

Here is an example:
>>> is_divisible(6, 4)

False

>>> is_divisible(6, 3)

True

The result of the == operator is a boolean, so we can write the function more concisely by
returning it directly:
def is_divisible(x, y):

return x % y == 0

Boolean functions are often used in conditional statements:
if is_divisible(x, y):

print 'x is divisible by y'

It might be tempting to write something like:
if is_divisible(x, y) == True:

print 'x is divisible by y'

But the extra comparison is unnecessary.
Exercise 6.3. Write a function is_between(x, y, z) that returns True if x ≤ y ≤ z or False
otherwise.

6.5 More recursion

We have only covered a small subset of Python, but you might be interested to know that
this subset is a complete programming language, which means that anything that can be
computed can be expressed in this language. Any program ever written could be rewritten
using only the language features you have learned so far (actually, you would need a few
commands to control devices like the keyboard, mouse, disks, etc., but that’s all).

Proving that claim is a nontrivial exercise first accomplished by Alan Turing, one of the
first computer scientists (some would argue that he was a mathematician, but a lot of early
computer scientists started as mathematicians). Accordingly, it is known as the Turing
Thesis. For a more complete (and accurate) discussion of the Turing Thesis, I recommend
Michael Sipser’s book Introduction to the Theory of Computation.

To give you an idea of what you can do with the tools you have learned so far, we’ll eval-
uate a few recursively defined mathematical functions. A recursive definition is similar to
a circular definition, in the sense that the definition contains a reference to the thing being
defined. A truly circular definition is not very useful:

vorpal: An adjective used to describe something that is vorpal.

If you saw that definition in the dictionary, you might be annoyed. On the other hand,
if you looked up the definition of the factorial function, denoted with the symbol !, you
might get something like this:

0! = 1
n! = n(n− 1)!

56 Chapter 6. Fruitful functions

This definition says that the factorial of 0 is 1, and the factorial of any other value, n, is n
multiplied by the factorial of n− 1.

So 3! is 3 times 2!, which is 2 times 1!, which is 1 times 0!. Putting it all together, 3! equals 3
times 2 times 1 times 1, which is 6.

If you can write a recursive definition of something, you can usually write a Python pro-
gram to evaluate it. The first step is to decide what the parameters should be. In this case
it should be clear that factorial takes an integer:

def factorial(n):

If the argument happens to be 0, all we have to do is return 1:

def factorial(n):

if n == 0:

return 1

Otherwise, and this is the interesting part, we have to make a recursive call to find the
factorial of n− 1 and then multiply it by n:

def factorial(n):

if n == 0:

return 1

else:

recurse = factorial(n-1)

result = n * recurse

return result

The flow of execution for this program is similar to the flow of countdown in Section 5.8. If
we call factorial with the value 3:

Since 3 is not 0, we take the second branch and calculate the factorial of n-1...

Since 2 is not 0, we take the second branch and calculate the factorial of n-1...

Since 1 is not 0, we take the second branch and calculate the factorial
of n-1...

Since 0 is 0, we take the first branch and return 1 without
making any more recursive calls.

The return value (1) is multiplied by n, which is 1, and the result is
returned.

The return value (1) is multiplied by n, which is 2, and the result is returned.

The return value (2) is multiplied by n, which is 3, and the result, 6, becomes the return
value of the function call that started the whole process.

Figure 6.1 shows what the stack diagram looks like for this sequence of function calls.

The return values are shown being passed back up the stack. In each frame, the return
value is the value of result, which is the product of n and recurse.

In the last frame, the local variables recurse and result do not exist, because the branch
that creates them does not execute.

6.6. Leap of faith 57

n 3 recurse 2

recurse 1

recurse 1

<module>

factorial

n 2

n 1

n 0

factorial

factorial

factorial

1

1

2

6

1result

2

6result

result

Figure 6.1: Stack diagram.

6.6 Leap of faith

Following the flow of execution is one way to read programs, but it can quickly become
labyrinthine. An alternative is what I call the “leap of faith.” When you come to a function
call, instead of following the flow of execution, you assume that the function works correctly
and returns the right result.

In fact, you are already practicing this leap of faith when you use built-in functions. When
you call math.cos or math.exp, you don’t examine the bodies of those functions. You just
assume that they work because the people who wrote the built-in functions were good
programmers.

The same is true when you call one of your own functions. For example, in Section 6.4, we
wrote a function called is_divisible that determines whether one number is divisible by
another. Once we have convinced ourselves that this function is correct—by examining the
code and testing—we can use the function without looking at the body again.

The same is true of recursive programs. When you get to the recursive call, instead of
following the flow of execution, you should assume that the recursive call works (yields
the correct result) and then ask yourself, “Assuming that I can find the factorial of n− 1,
can I compute the factorial of n?” In this case, it is clear that you can, by multiplying by n.

Of course, it’s a bit strange to assume that the function works correctly when you haven’t
finished writing it, but that’s why it’s called a leap of faith!

6.7 One more example

After factorial, the most common example of a recursively defined mathematical func-
tion is fibonacci, which has the following definition (see http://en.wikipedia.org/

wiki/Fibonacci_number):

fibonacci(0) = 0
fibonacci(1) = 1
fibonacci(n) = fibonacci(n− 1) + fibonacci(n− 2)

Translated into Python, it looks like this:

http://en.wikipedia.org/wiki/Fibonacci_number
http://en.wikipedia.org/wiki/Fibonacci_number

58 Chapter 6. Fruitful functions

def fibonacci (n):

if n == 0:

return 0

elif n == 1:

return 1

else:

return fibonacci(n-1) + fibonacci(n-2)

If you try to follow the flow of execution here, even for fairly small values of n, your head
explodes. But according to the leap of faith, if you assume that the two recursive calls work
correctly, then it is clear that you get the right result by adding them together.

6.8 Checking types

What happens if we call factorial and give it 1.5 as an argument?
>>> factorial(1.5)

RuntimeError: Maximum recursion depth exceeded

It looks like an infinite recursion. But how can that be? There is a base case—when n == 0.
But if n is not an integer, we can miss the base case and recurse forever.

In the first recursive call, the value of n is 0.5. In the next, it is -0.5. From there, it gets
smaller (more negative), but it will never be 0.

We have two choices. We can try to generalize the factorial function to work with
floating-point numbers, or we can make factorial check the type of its argument. The
first option is called the gamma function and it’s a little beyond the scope of this book. So
we’ll go for the second.

We can use the built-in function isinstance to verify the type of the argument. While
we’re at it, we can also make sure the argument is positive:
def factorial (n):

if not isinstance(n, int):

print 'Factorial is only defined for integers.'

return None

elif n < 0:

print 'Factorial is not defined for negative integers.'

return None

elif n == 0:

return 1

else:

return n * factorial(n-1)

The first base case handles nonintegers; the second catches negative integers. In both cases,
the program prints an error message and returns None to indicate that something went
wrong:
>>> factorial('fred')

Factorial is only defined for integers.

None

>>> factorial(-2)

Factorial is not defined for negative integers.

None

6.9. Debugging 59

If we get past both checks, then we know that n is positive or zero, so we can prove that
the recursion terminates.

This program demonstrates a pattern sometimes called a guardian. The first two condi-
tionals act as guardians, protecting the code that follows from values that might cause an
error. The guardians make it possible to prove the correctness of the code.

In Section 11.3 we will see a more flexible alternative to printing an error message: raising
an exception.

6.9 Debugging

Breaking a large program into smaller functions creates natural checkpoints for debugging.
If a function is not working, there are three possibilities to consider:

• There is something wrong with the arguments the function is getting; a precondition
is violated.

• There is something wrong with the function; a postcondition is violated.

• There is something wrong with the return value or the way it is being used.

To rule out the first possibility, you can add a print statement at the beginning of the
function and display the values of the parameters (and maybe their types). Or you can
write code that checks the preconditions explicitly.

If the parameters look good, add a print statement before each return statement that dis-
plays the return value. If possible, check the result by hand. Consider calling the function
with values that make it easy to check the result (as in Section 6.2).

If the function seems to be working, look at the function call to make sure the return value
is being used correctly (or used at all!).

Adding print statements at the beginning and end of a function can help make the flow of
execution more visible. For example, here is a version of factorial with print statements:

def factorial(n):

space = ' ' * (4 * n)

print space, 'factorial', n

if n == 0:

print space, 'returning 1'

return 1

else:

recurse = factorial(n-1)

result = n * recurse

print space, 'returning', result

return result

space is a string of space characters that controls the indentation of the output. Here is the
result of factorial(5) :

60 Chapter 6. Fruitful functions

factorial 5

factorial 4

factorial 3

factorial 2

factorial 1

factorial 0

returning 1

returning 1

returning 2

returning 6

returning 24

returning 120

If you are confused about the flow of execution, this kind of output can be helpful. It takes
some time to develop effective scaffolding, but a little bit of scaffolding can save a lot of
debugging.

6.10 Glossary
temporary variable: A variable used to store an intermediate value in a complex calcula-

tion.

dead code: Part of a program that can never be executed, often because it appears after a
return statement.

None: A special value returned by functions that have no return statement or a return state-
ment without an argument.

incremental development: A program development plan intended to avoid debugging by
adding and testing only a small amount of code at a time.

scaffolding: Code that is used during program development but is not part of the final
version.

guardian: A programming pattern that uses a conditional statement to check for and han-
dle circumstances that might cause an error.

6.11 Exercises

Exercise 6.4. Draw a stack diagram for the following program. What does the program print?
Solution: http: // thinkpython. com/ code/ stack_ diagram. py .

def b(z):

prod = a(z, z)

print z, prod

return prod

def a(x, y):

x = x + 1

return x * y

http://thinkpython.com/code/stack_diagram.py

6.11. Exercises 61

def c(x, y, z):

total = x + y + z

square = b(total)**2

return square

x = 1

y = x + 1

print c(x, y+3, x+y)

Exercise 6.5. The Ackermann function, A(m, n), is defined:

A(m, n) =

n + 1 if m = 0
A(m− 1, 1) if m > 0 and n = 0
A(m− 1, A(m, n− 1)) if m > 0 and n > 0.

See http: // en. wikipedia. org/ wiki/ Ackermann_ function . Write a function named ack

that evaluates Ackermann’s function. Use your function to evaluate ack(3, 4), which should be
125. What happens for larger values of m and n? Solution: http: // thinkpython. com/ code/
ackermann. py .
Exercise 6.6. A palindrome is a word that is spelled the same backward and forward, like “noon”
and “redivider”. Recursively, a word is a palindrome if the first and last letters are the same and the
middle is a palindrome.

The following are functions that take a string argument and return the first, last, and middle letters:
def first(word):

return word[0]

def last(word):

return word[-1]

def middle(word):

return word[1:-1]

We’ll see how they work in Chapter 8.

1. Type these functions into a file named palindrome.py and test them out. What happens if
you call middle with a string with two letters? One letter? What about the empty string,
which is written '' and contains no letters?

2. Write a function called is_palindrome that takes a string argument and returns True if it
is a palindrome and False otherwise. Remember that you can use the built-in function len

to check the length of a string.

Solution: http: // thinkpython. com/ code/ palindrome_ soln. py .
Exercise 6.7. A number, a, is a power of b if it is divisible by b and a/b is a power of b. Write a
function called is_power that takes parameters a and b and returns True if a is a power of b. Note:
you will have to think about the base case.
Exercise 6.8. The greatest common divisor (GCD) of a and b is the largest number that divides
both of them with no remainder.

One way to find the GCD of two numbers is Euclid’s algorithm, which is based on the observation
that if r is the remainder when a is divided by b, then gcd(a, b) = gcd(b, r). As a base case, we can
use gcd(a, 0) = a.

http://en.wikipedia.org/wiki/Ackermann_function
http://thinkpython.com/code/ackermann.py
http://thinkpython.com/code/ackermann.py
http://thinkpython.com/code/palindrome_soln.py

62 Chapter 6. Fruitful functions

Write a function called gcd that takes parameters a and b and returns their greatest common divisor.
If you need help, see http: // en. wikipedia. org/ wiki/ Euclidean_ algorithm .

Credit: This exercise is based on an example from Abelson and Sussman’s Structure and Interpre-
tation of Computer Programs.

http://en.wikipedia.org/wiki/Euclidean_algorithm

Chapter 7

Iteration

7.1 Multiple assignment

As you may have discovered, it is legal to make more than one assignment to the same
variable. A new assignment makes an existing variable refer to a new value (and stop
referring to the old value).

bruce = 5

print bruce,

bruce = 7

print bruce

The output of this program is 5 7, because the first time bruce is printed, its value is 5,
and the second time, its value is 7. The comma at the end of the first print statement
suppresses the newline, which is why both outputs appear on the same line.

Figure 7.1 shows what multiple assignment looks like in a state diagram.

With multiple assignment it is especially important to distinguish between an assignment
operation and a statement of equality. Because Python uses the equal sign (=) for assign-
ment, it is tempting to interpret a statement like a = b as a statement of equality. It is not!

First, equality is a symmetric relation and assignment is not. For example, in mathematics,
if a = 7 then 7 = a. But in Python, the statement a = 7 is legal and 7 = a is not.

Furthermore, in mathematics, a statement of equality is either true or false, for all time. If
a = b now, then a will always equal b. In Python, an assignment statement can make two
variables equal, but they don’t have to stay that way:

a = 5

b = a # a and b are now equal

a = 3 # a and b are no longer equal

The third line changes the value of a but does not change the value of b, so they are no
longer equal.

Although multiple assignment is frequently helpful, you should use it with caution. If the
values of variables change frequently, it can make the code difficult to read and debug.

64 Chapter 7. Iteration

7

5
bruce

Figure 7.1: State diagram.

7.2 Updating variables

One of the most common forms of multiple assignment is an update, where the new value
of the variable depends on the old.

x = x+1

This means “get the current value of x, add one, and then update x with the new value.”

If you try to update a variable that doesn’t exist, you get an error, because Python evaluates
the right side before it assigns a value to x:

>>> x = x+1

NameError: name 'x' is not defined

Before you can update a variable, you have to initialize it, usually with a simple assign-
ment:

>>> x = 0

>>> x = x+1

Updating a variable by adding 1 is called an increment; subtracting 1 is called a decrement.

7.3 The while statement

Computers are often used to automate repetitive tasks. Repeating identical or similar tasks
without making errors is something that computers do well and people do poorly.

We have seen two programs, countdown and print_n, that use recursion to perform rep-
etition, which is also called iteration. Because iteration is so common, Python provides
several language features to make it easier. One is the for statement we saw in Section 4.2.
We’ll get back to that later.

Another is the while statement. Here is a version of countdown that uses a while statement:

def countdown(n):

while n > 0:

print n

n = n-1

print 'Blastoff!'

You can almost read the while statement as if it were English. It means, “While n is greater
than 0, display the value of n and then reduce the value of n by 1. When you get to 0,
display the word Blastoff!”

More formally, here is the flow of execution for a while statement:

1. Evaluate the condition, yielding True or False.

7.4. break 65

2. If the condition is false, exit the while statement and continue execution at the next
statement.

3. If the condition is true, execute the body and then go back to step 1.

This type of flow is called a loop because the third step loops back around to the top.

The body of the loop should change the value of one or more variables so that eventu-
ally the condition becomes false and the loop terminates. Otherwise the loop will repeat
forever, which is called an infinite loop. An endless source of amusement for computer
scientists is the observation that the directions on shampoo, “Lather, rinse, repeat,” are an
infinite loop.

In the case of countdown, we can prove that the loop terminates because we know that the
value of n is finite, and we can see that the value of n gets smaller each time through the
loop, so eventually we have to get to 0. In other cases, it is not so easy to tell:

def sequence(n):

while n != 1:

print n,

if n%2 == 0: # n is even

n = n/2

else: # n is odd

n = n*3+1

The condition for this loop is n != 1, so the loop will continue until n is 1, which makes
the condition false.

Each time through the loop, the program outputs the value of n and then checks whether
it is even or odd. If it is even, n is divided by 2. If it is odd, the value of n is replaced with
n*3+1. For example, if the argument passed to sequence is 3, the resulting sequence is 3,
10, 5, 16, 8, 4, 2, 1.

Since n sometimes increases and sometimes decreases, there is no obvious proof that n will
ever reach 1, or that the program terminates. For some particular values of n, we can prove
termination. For example, if the starting value is a power of two, then the value of n will be
even each time through the loop until it reaches 1. The previous example ends with such a
sequence, starting with 16.

The hard question is whether we can prove that this program terminates for all posi-
tive values of n. So far, no one has been able to prove it or disprove it! (See http:

//en.wikipedia.org/wiki/Collatz_conjecture.)
Exercise 7.1. Rewrite the function print_n from Section 5.8 using iteration instead of recursion.

7.4 break

Sometimes you don’t know it’s time to end a loop until you get half way through the body.
In that case you can use the break statement to jump out of the loop.

For example, suppose you want to take input from the user until they type done. You could
write:

http://en.wikipedia.org/wiki/Collatz_conjecture
http://en.wikipedia.org/wiki/Collatz_conjecture

66 Chapter 7. Iteration

while True:

line = raw_input('> ')

if line == 'done':

break

print line

print 'Done!'

The loop condition is True, which is always true, so the loop runs until it hits the break
statement.

Each time through, it prompts the user with an angle bracket. If the user types done, the
break statement exits the loop. Otherwise the program echoes whatever the user types and
goes back to the top of the loop. Here’s a sample run:

> not done

not done

> done

Done!

This way of writing while loops is common because you can check the condition anywhere
in the loop (not just at the top) and you can express the stop condition affirmatively (“stop
when this happens”) rather than negatively (“keep going until that happens.”).

7.5 Square roots

Loops are often used in programs that compute numerical results by starting with an ap-
proximate answer and iteratively improving it.

For example, one way of computing square roots is Newton’s method. Suppose that you
want to know the square root of a. If you start with almost any estimate, x, you can com-
pute a better estimate with the following formula:

y =
x + a/x

2
For example, if a is 4 and x is 3:

>>> a = 4.0

>>> x = 3.0

>>> y = (x + a/x) / 2

>>> print y

2.16666666667

Which is closer to the correct answer (
√

4 = 2). If we repeat the process with the new
estimate, it gets even closer:

>>> x = y

>>> y = (x + a/x) / 2

>>> print y

2.00641025641

After a few more updates, the estimate is almost exact:

7.6. Algorithms 67

>>> x = y

>>> y = (x + a/x) / 2

>>> print y

2.00001024003

>>> x = y

>>> y = (x + a/x) / 2

>>> print y

2.00000000003

In general we don’t know ahead of time how many steps it takes to get to the right answer,
but we know when we get there because the estimate stops changing:

>>> x = y

>>> y = (x + a/x) / 2

>>> print y

2.0

>>> x = y

>>> y = (x + a/x) / 2

>>> print y

2.0

When y == x, we can stop. Here is a loop that starts with an initial estimate, x, and im-
proves it until it stops changing:

while True:

print x

y = (x + a/x) / 2

if y == x:

break

x = y

For most values of a this works fine, but in general it is dangerous to test float equality.
Floating-point values are only approximately right: most rational numbers, like 1/3, and
irrational numbers, like

√
2, can’t be represented exactly with a float.

Rather than checking whether x and y are exactly equal, it is safer to use the built-in func-
tion abs to compute the absolute value, or magnitude, of the difference between them:

if abs(y-x) < epsilon:

break

Where epsilon has a value like 0.0000001 that determines how close is close enough.
Exercise 7.2. Encapsulate this loop in a function called square_root that takes a as a parameter,
chooses a reasonable value of x, and returns an estimate of the square root of a.

7.6 Algorithms

Newton’s method is an example of an algorithm: it is a mechanical process for solving a
category of problems (in this case, computing square roots).

It is not easy to define an algorithm. It might help to start with something that is not an
algorithm. When you learned to multiply single-digit numbers, you probably memorized
the multiplication table. In effect, you memorized 100 specific solutions. That kind of
knowledge is not algorithmic.

68 Chapter 7. Iteration

But if you were “lazy,” you probably cheated by learning a few tricks. For example, to
find the product of n and 9, you can write n− 1 as the first digit and 10− n as the second
digit. This trick is a general solution for multiplying any single-digit number by 9. That’s
an algorithm!

Similarly, the techniques you learned for addition with carrying, subtraction with borrow-
ing, and long division are all algorithms. One of the characteristics of algorithms is that
they do not require any intelligence to carry out. They are mechanical processes in which
each step follows from the last according to a simple set of rules.

In my opinion, it is embarrassing that humans spend so much time in school learning to
execute algorithms that, quite literally, require no intelligence.

On the other hand, the process of designing algorithms is interesting, intellectually chal-
lenging, and a central part of what we call programming.

Some of the things that people do naturally, without difficulty or conscious thought, are
the hardest to express algorithmically. Understanding natural language is a good example.
We all do it, but so far no one has been able to explain how we do it, at least not in the form
of an algorithm.

7.7 Debugging

As you start writing bigger programs, you might find yourself spending more time debug-
ging. More code means more chances to make an error and more place for bugs to hide.

One way to cut your debugging time is “debugging by bisection.” For example, if there
are 100 lines in your program and you check them one at a time, it would take 100 steps.

Instead, try to break the problem in half. Look at the middle of the program, or near it, for
an intermediate value you can check. Add a print statement (or something else that has a
verifiable effect) and run the program.

If the mid-point check is incorrect, there must be a problem in the first half of the program.
If it is correct, the problem is in the second half.

Every time you perform a check like this, you halve the number of lines you have to search.
After six steps (which is fewer than 100), you would be down to one or two lines of code,
at least in theory.

In practice it is not always clear what the “middle of the program” is and not always pos-
sible to check it. It doesn’t make sense to count lines and find the exact midpoint. Instead,
think about places in the program where there might be errors and places where it is easy
to put a check. Then choose a spot where you think the chances are about the same that
the bug is before or after the check.

7.8 Glossary
multiple assignment: Making more than one assignment to the same variable during the

execution of a program.

7.9. Exercises 69

update: An assignment where the new value of the variable depends on the old.

initialization: An assignment that gives an initial value to a variable that will be updated.

increment: An update that increases the value of a variable (often by one).

decrement: An update that decreases the value of a variable.

iteration: Repeated execution of a set of statements using either a recursive function call
or a loop.

infinite loop: A loop in which the terminating condition is never satisfied.

7.9 Exercises

Exercise 7.3. To test the square root algorithm in this chapter, you could compare it with
math.sqrt. Write a function named test_square_root that prints a table like this:
1.0 1.0 1.0 0.0

2.0 1.41421356237 1.41421356237 2.22044604925e-16

3.0 1.73205080757 1.73205080757 0.0

4.0 2.0 2.0 0.0

5.0 2.2360679775 2.2360679775 0.0

6.0 2.44948974278 2.44948974278 0.0

7.0 2.64575131106 2.64575131106 0.0

8.0 2.82842712475 2.82842712475 4.4408920985e-16

9.0 3.0 3.0 0.0

The first column is a number, a; the second column is the square root of a computed with the function
from Section 7.5; the third column is the square root computed by math.sqrt; the fourth column is
the absolute value of the difference between the two estimates.
Exercise 7.4. The built-in function eval takes a string and evaluates it using the Python inter-
preter. For example:
>>> eval('1 + 2 * 3')

7

>>> import math

>>> eval('math.sqrt(5)')

2.2360679774997898

>>> eval('type(math.pi)')

<type 'float'>

Write a function called eval_loop that iteratively prompts the user, takes the resulting input and
evaluates it using eval, and prints the result.

It should continue until the user enters 'done', and then return the value of the last expression it
evaluated.
Exercise 7.5. The mathematician Srinivasa Ramanujan found an infinite series that can be used to
generate a numerical approximation of π:

1
π

=
2
√

2
9801

∞

∑
k=0

(4k)!(1103 + 26390k)
(k!)43964k

70 Chapter 7. Iteration

Write a function called estimate_pi that uses this formula to compute and return an estimate of
π. It should use a while loop to compute terms of the summation until the last term is smaller than
1e-15 (which is Python notation for 10−15). You can check the result by comparing it to math.pi.

Solution: http: // thinkpython. com/ code/ pi. py .

http://thinkpython.com/code/pi.py

Chapter 8

Strings

8.1 A string is a sequence

A string is a sequence of characters. You can access the characters one at a time with the
bracket operator:

>>> fruit = 'banana'

>>> letter = fruit[1]

The second statement selects character number 1 from fruit and assigns it to letter.

The expression in brackets is called an index. The index indicates which character in the
sequence you want (hence the name).

But you might not get what you expect:

>>> print letter

a

For most people, the first letter of 'banana' is b, not a. But for computer scientists, the
index is an offset from the beginning of the string, and the offset of the first letter is zero.

>>> letter = fruit[0]

>>> print letter

b

So b is the 0th letter (“zero-eth”) of 'banana', a is the 1th letter (“one-eth”), and n is the 2th
(“two-eth”) letter.

You can use any expression, including variables and operators, as an index, but the value
of the index has to be an integer. Otherwise you get:

>>> letter = fruit[1.5]

TypeError: string indices must be integers

8.2 len

len is a built-in function that returns the number of characters in a string:

72 Chapter 8. Strings

>>> fruit = 'banana'

>>> len(fruit)

6

To get the last letter of a string, you might be tempted to try something like this:

>>> length = len(fruit)

>>> last = fruit[length]

IndexError: string index out of range

The reason for the IndexError is that there is no letter in 'banana' with the index 6. Since
we started counting at zero, the six letters are numbered 0 to 5. To get the last character,
you have to subtract 1 from length:

>>> last = fruit[length-1]

>>> print last

a

Alternatively, you can use negative indices, which count backward from the end of the
string. The expression fruit[-1] yields the last letter, fruit[-2] yields the second to last,
and so on.

8.3 Traversal with a for loop

A lot of computations involve processing a string one character at a time. Often they start
at the beginning, select each character in turn, do something to it, and continue until the
end. This pattern of processing is called a traversal. One way to write a traversal is with a
while loop:

index = 0

while index < len(fruit):

letter = fruit[index]

print letter

index = index + 1

This loop traverses the string and displays each letter on a line by itself. The loop condition
is index < len(fruit), so when index is equal to the length of the string, the condition is
false, and the body of the loop is not executed. The last character accessed is the one with
the index len(fruit)-1, which is the last character in the string.
Exercise 8.1. Write a function that takes a string as an argument and displays the letters backward,
one per line.

Another way to write a traversal is with a for loop:

for char in fruit:

print char

Each time through the loop, the next character in the string is assigned to the variable char.
The loop continues until no characters are left.

The following example shows how to use concatenation (string addition) and a for loop
to generate an abecedarian series (that is, in alphabetical order). In Robert McCloskey’s
book Make Way for Ducklings, the names of the ducklings are Jack, Kack, Lack, Mack, Nack,
Ouack, Pack, and Quack. This loop outputs these names in order:

8.4. String slices 73

fruit b a n na a ’

0 1 2 3 4 5 6index

’

Figure 8.1: Slice indices.

prefixes = 'JKLMNOPQ'

suffix = 'ack'

for letter in prefixes:

print letter + suffix

The output is:
Jack

Kack

Lack

Mack

Nack

Oack

Pack

Qack

Of course, that’s not quite right because “Ouack” and “Quack” are misspelled.
Exercise 8.2. Modify the program to fix this error.

8.4 String slices
A segment of a string is called a slice. Selecting a slice is similar to selecting a character:
>>> s = 'Monty Python'

>>> print s[0:5]

Monty

>>> print s[6:12]

Python

The operator [n:m] returns the part of the string from the “n-eth” character to the “m-eth”
character, including the first but excluding the last. This behavior is counterintuitive, but
it might help to imagine the indices pointing between the characters, as in Figure 8.1.

If you omit the first index (before the colon), the slice starts at the beginning of the string.
If you omit the second index, the slice goes to the end of the string:
>>> fruit = 'banana'

>>> fruit[:3]

'ban'

>>> fruit[3:]

'ana'

If the first index is greater than or equal to the second the result is an empty string, repre-
sented by two quotation marks:
>>> fruit = 'banana'

>>> fruit[3:3]

''

74 Chapter 8. Strings

An empty string contains no characters and has length 0, but other than that, it is the same
as any other string.
Exercise 8.3. Given that fruit is a string, what does fruit[:] mean?

8.5 Strings are immutable

It is tempting to use the [] operator on the left side of an assignment, with the intention of
changing a character in a string. For example:
>>> greeting = 'Hello, world!'

>>> greeting[0] = 'J'

TypeError: object does not support item assignment

The “object” in this case is the string and the “item” is the character you tried to assign. For
now, an object is the same thing as a value, but we will refine that definition later. An item
is one of the values in a sequence.

The reason for the error is that strings are immutable, which means you can’t change an
existing string. The best you can do is create a new string that is a variation on the original:
>>> greeting = 'Hello, world!'

>>> new_greeting = 'J' + greeting[1:]

>>> print new_greeting

Jello, world!

This example concatenates a new first letter onto a slice of greeting. It has no effect on the
original string.

8.6 Searching

What does the following function do?
def find(word, letter):

index = 0

while index < len(word):

if word[index] == letter:

return index

index = index + 1

return -1

In a sense, find is the opposite of the [] operator. Instead of taking an index and extracting
the corresponding character, it takes a character and finds the index where that character
appears. If the character is not found, the function returns -1.

This is the first example we have seen of a return statement inside a loop. If word[index]
== letter, the function breaks out of the loop and returns immediately.

If the character doesn’t appear in the string, the program exits the loop normally and re-
turns -1.

This pattern of computation—traversing a sequence and returning when we find what we
are looking for—is called a search.
Exercise 8.4. Modify find so that it has a third parameter, the index in word where it should start
looking.

8.7. Looping and counting 75

8.7 Looping and counting

The following program counts the number of times the letter a appears in a string:

word = 'banana'

count = 0

for letter in word:

if letter == 'a':

count = count + 1

print count

This program demonstrates another pattern of computation called a counter. The variable
count is initialized to 0 and then incremented each time an a is found. When the loop exits,
count contains the result—the total number of a’s.
Exercise 8.5. Encapsulate this code in a function named count, and generalize it so that it accepts
the string and the letter as arguments.
Exercise 8.6. Rewrite this function so that instead of traversing the string, it uses the three-
parameter version of find from the previous section.

8.8 String methods

A method is similar to a function—it takes arguments and returns a value—but the syntax
is different. For example, the method upper takes a string and returns a new string with all
uppercase letters:

Instead of the function syntax upper(word), it uses the method syntax word.upper().

>>> word = 'banana'

>>> new_word = word.upper()

>>> print new_word

BANANA

This form of dot notation specifies the name of the method, upper, and the name of the
string to apply the method to, word. The empty parentheses indicate that this method
takes no argument.

A method call is called an invocation; in this case, we would say that we are invoking
upper on the word.

As it turns out, there is a string method named find that is remarkably similar to the
function we wrote:

>>> word = 'banana'

>>> index = word.find('a')

>>> print index

1

In this example, we invoke find on word and pass the letter we are looking for as a param-
eter.

Actually, the find method is more general than our function; it can find substrings, not just
characters:

>>> word.find('na')

2

76 Chapter 8. Strings

It can take as a second argument the index where it should start:

>>> word.find('na', 3)

4

And as a third argument the index where it should stop:

>>> name = 'bob'

>>> name.find('b', 1, 2)

-1

This search fails because b does not appear in the index range from 1 to 2 (not including 2).
Exercise 8.7. There is a string method called count that is similar to the function in the previous
exercise. Read the documentation of this method and write an invocation that counts the number of
as in 'banana'.
Exercise 8.8. Read the documentation of the string methods at http: // docs. python. org/ 2/
library/ stdtypes. html# string-methods . You might want to experiment with some of them
to make sure you understand how they work. strip and replace are particularly useful.

The documentation uses a syntax that might be confusing. For example, in
find(sub[, start[, end]]), the brackets indicate optional arguments. So sub is required, but
start is optional, and if you include start, then end is optional.

8.9 The in operator

The word in is a boolean operator that takes two strings and returns True if the first ap-
pears as a substring in the second:

>>> 'a' in 'banana'

True

>>> 'seed' in 'banana'

False

For example, the following function prints all the letters from word1 that also appear in
word2:

def in_both(word1, word2):

for letter in word1:

if letter in word2:

print letter

With well-chosen variable names, Python sometimes reads like English. You could read
this loop, “for (each) letter in (the first) word, if (the) letter (appears) in (the second) word,
print (the) letter.”

Here’s what you get if you compare apples and oranges:

>>> in_both('apples', 'oranges')

a

e

s

8.10 String comparison

The relational operators work on strings. To see if two strings are equal:

http://docs.python.org/2/library/stdtypes.html#string-methods
http://docs.python.org/2/library/stdtypes.html#string-methods

8.11. Debugging 77

if word == 'banana':

print 'All right, bananas.'

Other relational operations are useful for putting words in alphabetical order:

if word < 'banana':

print 'Your word,' + word + ', comes before banana.'

elif word > 'banana':

print 'Your word,' + word + ', comes after banana.'

else:

print 'All right, bananas.'

Python does not handle uppercase and lowercase letters the same way that people do. All
the uppercase letters come before all the lowercase letters, so:

Your word, Pineapple, comes before banana.

A common way to address this problem is to convert strings to a standard format, such as
all lowercase, before performing the comparison. Keep that in mind in case you have to
defend yourself against a man armed with a Pineapple.

8.11 Debugging

When you use indices to traverse the values in a sequence, it is tricky to get the beginning
and end of the traversal right. Here is a function that is supposed to compare two words
and return True if one of the words is the reverse of the other, but it contains two errors:

def is_reverse(word1, word2):

if len(word1) != len(word2):

return False

i = 0

j = len(word2)

while j > 0:

if word1[i] != word2[j]:

return False

i = i+1

j = j-1

return True

The first if statement checks whether the words are the same length. If not, we can return
False immediately and then, for the rest of the function, we can assume that the words are
the same length. This is an example of the guardian pattern in Section 6.8.

i and j are indices: i traverses word1 forward while j traverses word2 backward. If we
find two letters that don’t match, we can return False immediately. If we get through the
whole loop and all the letters match, we return True.

If we test this function with the words “pots” and “stop”, we expect the return value True,
but we get an IndexError:

>>> is_reverse('pots', 'stop')

...

78 Chapter 8. Strings

i 0 j 3

word1 ’pots’ word2 ’stop’

Figure 8.2: State diagram.

File "reverse.py", line 15, in is_reverse

if word1[i] != word2[j]:

IndexError: string index out of range

For debugging this kind of error, my first move is to print the values of the indices imme-
diately before the line where the error appears.

while j > 0:

print i, j # print here

if word1[i] != word2[j]:

return False

i = i+1

j = j-1

Now when I run the program again, I get more information:

>>> is_reverse('pots', 'stop')

0 4

...

IndexError: string index out of range

The first time through the loop, the value of j is 4, which is out of range for the
string 'pots'. The index of the last character is 3, so the initial value for j should be
len(word2)-1.

If I fix that error and run the program again, I get:

>>> is_reverse('pots', 'stop')

0 3

1 2

2 1

True

This time we get the right answer, but it looks like the loop only ran three times, which is
suspicious. To get a better idea of what is happening, it is useful to draw a state diagram.
During the first iteration, the frame for is_reverse is shows in Figure 8.2.

I took a little license by arranging the variables in the frame and adding dotted lines to
show that the values of i and j indicate characters in word1 and word2.
Exercise 8.9. Starting with this diagram, execute the program on paper, changing the values of i
and j during each iteration. Find and fix the second error in this function.

8.12 Glossary
object: Something a variable can refer to. For now, you can use “object” and “value”

interchangeably.

8.13. Exercises 79

sequence: An ordered set; that is, a set of values where each value is identified by an
integer index.

item: One of the values in a sequence.

index: An integer value used to select an item in a sequence, such as a character in a string.

slice: A part of a string specified by a range of indices.

empty string: A string with no characters and length 0, represented by two quotation
marks.

immutable: The property of a sequence whose items cannot be assigned.

traverse: To iterate through the items in a sequence, performing a similar operation on
each.

search: A pattern of traversal that stops when it finds what it is looking for.

counter: A variable used to count something, usually initialized to zero and then incre-
mented.

method: A function that is associated with an object and called using dot notation.

invocation: A statement that calls a method.

8.13 Exercises

Exercise 8.10. A string slice can take a third index that specifies the “step size;” that is, the number
of spaces between successive characters. A step size of 2 means every other character; 3 means every
third, etc.

>>> fruit = 'banana'

>>> fruit[0:5:2]

'bnn'

A step size of -1 goes through the word backwards, so the slice [::-1] generates a reversed string.

Use this idiom to write a one-line version of is_palindrome from Exercise 6.6.
Exercise 8.11. The following functions are all intended to check whether a string contains any
lowercase letters, but at least some of them are wrong. For each function, describe what the function
actually does (assuming that the parameter is a string).

def any_lowercase1(s):

for c in s:

if c.islower():

return True

else:

return False

def any_lowercase2(s):

for c in s:

if 'c'.islower():

return 'True'

80 Chapter 8. Strings

else:

return 'False'

def any_lowercase3(s):

for c in s:

flag = c.islower()

return flag

def any_lowercase4(s):

flag = False

for c in s:

flag = flag or c.islower()

return flag

def any_lowercase5(s):

for c in s:

if not c.islower():

return False

return True

Exercise 8.12. ROT13 is a weak form of encryption that involves “rotating” each letter in a word
by 13 places. To rotate a letter means to shift it through the alphabet, wrapping around to the
beginning if necessary, so ’A’ shifted by 3 is ’D’ and ’Z’ shifted by 1 is ’A’.

Write a function called rotate_word that takes a string and an integer as parameters, and that
returns a new string that contains the letters from the original string “rotated” by the given amount.

For example, “cheer” rotated by 7 is “jolly” and “melon” rotated by -10 is “cubed”.

You might want to use the built-in functions ord, which converts a character to a numeric code,
and chr, which converts numeric codes to characters.

Potentially offensive jokes on the Internet are sometimes encoded in ROT13. If you are not easily
offended, find and decode some of them. Solution: http: // thinkpython. com/ code/ rotate.
py .

http://thinkpython.com/code/rotate.py
http://thinkpython.com/code/rotate.py

	Preface
	The way of the program
	The Python programming language
	What is a program?
	What is debugging?
	Formal and natural languages
	The first program
	Debugging
	Glossary
	Exercises

	Variables, expressions and statements
	Values and types
	Variables
	Variable names and keywords
	Operators and operands
	Expressions and statements
	Interactive mode and script mode
	Order of operations
	String operations
	Comments
	Debugging
	Glossary
	Exercises

	Functions
	Function calls
	Type conversion functions
	Math functions
	Composition
	Adding new functions
	Definitions and uses
	Flow of execution
	Parameters and arguments
	Variables and parameters are local
	Stack diagrams
	Fruitful functions and void functions
	Why functions?
	Importing with from
	Debugging
	Glossary
	Exercises

	Case study: interface design
	TurtleWorld
	Simple repetition
	Exercises
	Encapsulation
	Generalization
	Interface design
	Refactoring
	A development plan
	docstring
	Debugging
	Glossary
	Exercises

	Conditionals and recursion
	Modulus operator
	Boolean expressions
	Logical operators
	Conditional execution
	Alternative execution
	Chained conditionals
	Nested conditionals
	Recursion
	Stack diagrams for recursive functions
	Infinite recursion
	Keyboard input
	Debugging
	Glossary
	Exercises

	Fruitful functions
	Return values
	Incremental development
	Composition
	Boolean functions
	More recursion
	Leap of faith
	One more example
	Checking types
	Debugging
	Glossary
	Exercises

	Iteration
	Multiple assignment
	Updating variables
	The while statement
	break
	Square roots
	Algorithms
	Debugging
	Glossary
	Exercises

	Strings
	A string is a sequence
	len
	Traversal with a for loop
	String slices
	Strings are immutable
	Searching
	Looping and counting
	String methods
	The in operator
	String comparison
	Debugging
	Glossary
	Exercises

	Case study: word play
	Reading word lists
	Exercises
	Search
	Looping with indices
	Debugging
	Glossary
	Exercises

	Lists
	A list is a sequence
	Lists are mutable
	Traversing a list
	List operations
	List slices
	List methods
	Map, filter and reduce
	Deleting elements
	Lists and strings
	Objects and values
	Aliasing
	List arguments
	Debugging
	Glossary
	Exercises

	Dictionaries
	Dictionary as a set of counters
	Looping and dictionaries
	Reverse lookup
	Dictionaries and lists
	Memos
	Global variables
	Long integers
	Debugging
	Glossary
	Exercises

	Tuples
	Tuples are immutable
	Tuple assignment
	Tuples as return values
	Variable-length argument tuples
	Lists and tuples
	Dictionaries and tuples
	Comparing tuples
	Sequences of sequences
	Debugging
	Glossary
	Exercises

	Case study: data structure selection
	Word frequency analysis
	Random numbers
	Word histogram
	Most common words
	Optional parameters
	Dictionary subtraction
	Random words
	Markov analysis
	Data structures
	Debugging
	Glossary
	Exercises

	Files
	Persistence
	Reading and writing
	Format operator
	Filenames and paths
	Catching exceptions
	Databases
	Pickling
	Pipes
	Writing modules
	Debugging
	Glossary
	Exercises

	Classes and objects
	User-defined types
	Attributes
	Rectangles
	Instances as return values
	Objects are mutable
	Copying
	Debugging
	Glossary
	Exercises

	Classes and functions
	Time
	Pure functions
	Modifiers
	Prototyping versus planning
	Debugging
	Glossary
	Exercises

	Classes and methods
	Object-oriented features
	Printing objects
	Another example
	A more complicated example
	The init method
	The __str__ method
	Operator overloading
	Type-based dispatch
	Polymorphism
	Debugging
	Interface and implementation
	Glossary
	Exercises

	Inheritance
	Card objects
	Class attributes
	Comparing cards
	Decks
	Printing the deck
	Add, remove, shuffle and sort
	Inheritance
	Class diagrams
	Debugging
	Data encapsulation
	Glossary
	Exercises

	Case study: Tkinter
	GUI
	Buttons and callbacks
	Canvas widgets
	Coordinate sequences
	More widgets
	Packing widgets
	Menus and Callables
	Binding
	Debugging
	Glossary
	Exercises

	Debugging
	Syntax errors
	Runtime errors
	Semantic errors

	Analysis of Algorithms
	Order of growth
	Analysis of basic Python operations
	Analysis of search algorithms
	Hashtables

	Lumpy
	State diagram
	Stack diagram
	Object diagrams
	Function and class objects
	Class Diagrams

