
Chapter 8

Strings

8.1 A string is a sequence

A string is a sequence of characters. You can access the characters one at a time with the
bracket operator:

The second statement selects character number 1 from and assigns it to .

The expression in brackets is called an index. The index indicates which character in the
sequence you want (hence the name).

But you might not get what you expect:

For most people, the first letter of is , not . But for computer scientists, the
index is an offset from the beginning of the string, and the offset of the first letter is zero.

So is the 0th letter (“zero-eth”) of , is the 1th letter (“one-eth”), and is the 2th
(“two-eth”) letter.

You can use any expression, including variables and operators, as an index, but the value
of the index has to be an integer. Otherwise you get:

8.2

is a built-in function that returns the number of characters in a string:



72 Chapter 8. Strings

To get the last letter of a string, you might be tempted to try something like this:

The reason for the is that there is no letter in with the index 6. Since
we started counting at zero, the six letters are numbered 0 to 5. To get the last character,
you have to subtract 1 from :

Alternatively, you can use negative indices, which count backward from the end of the
string. The expression yields the last letter, yields the second to last,
and so on.

8.3 Traversal with a loop

A lot of computations involve processing a string one character at a time. Often they start
at the beginning, select each character in turn, do something to it, and continue until the
end. This pattern of processing is called a traversal. One way to write a traversal is with a

loop:

This loop traverses the string and displays each letter on a line by itself. The loop condition
is , so when is equal to the length of the string, the condition is
false, and the body of the loop is not executed. The last character accessed is the one with
the index , which is the last character in the string.
Exercise 8.1. Write a function that takes a string as an argument and displays the letters backward,
one per line.

Another way to write a traversal is with a loop:

Each time through the loop, the next character in the string is assigned to the variable .
The loop continues until no characters are left.

The following example shows how to use concatenation (string addition) and a loop
to generate an abecedarian series (that is, in alphabetical order). In Robert McCloskey’s
book Make Way for Ducklings, the names of the ducklings are Jack, Kack, Lack, Mack, Nack,
Ouack, Pack, and Quack. This loop outputs these names in order:



8.4. String slices 73

fruit b a n na a ’

0 1 2 3 4 5 6index

’

Figure 8.1: Slice indices.

The output is:

Of course, that’s not quite right because “Ouack” and “Quack” are misspelled.
Exercise 8.2. Modify the program to fix this error.

8.4 String slices
A segment of a string is called a slice. Selecting a slice is similar to selecting a character:

The operator returns the part of the string from the “n-eth” character to the “m-eth”
character, including the first but excluding the last. This behavior is counterintuitive, but
it might help to imagine the indices pointing between the characters, as in Figure 8.1.

If you omit the first index (before the colon), the slice starts at the beginning of the string.
If you omit the second index, the slice goes to the end of the string:

If the first index is greater than or equal to the second the result is an empty string, repre-
sented by two quotation marks:



74 Chapter 8. Strings

An empty string contains no characters and has length 0, but other than that, it is the same
as any other string.
Exercise 8.3. Given that is a string, what does mean?

8.5 Strings are immutable
It is tempting to use the operator on the left side of an assignment, with the intention of
changing a character in a string. For example:

The “object” in this case is the string and the “item” is the character you tried to assign. For
now, an object is the same thing as a value, but we will refine that definition later. An item
is one of the values in a sequence.

The reason for the error is that strings are immutable, which means you can’t change an
existing string. The best you can do is create a new string that is a variation on the original:

This example concatenates a new first letter onto a slice of . It has no effect on the
original string.

8.6 Searching
What does the following function do?

In a sense, is the opposite of the operator. Instead of taking an index and extracting
the corresponding character, it takes a character and finds the index where that character
appears. If the character is not found, the function returns .

This is the first example we have seen of a statement inside a loop. If
, the function breaks out of the loop and returns immediately.

If the character doesn’t appear in the string, the program exits the loop normally and re-
turns .

This pattern of computation—traversing a sequence and returning when we find what we
are looking for—is called a search.
Exercise 8.4. Modify so that it has a third parameter, the index in where it should start
looking.



8.7. Looping and counting 75

8.7 Looping and counting

The following program counts the number of times the letter appears in a string:

This program demonstrates another pattern of computation called a counter. The variable
is initialized to 0 and then incremented each time an is found. When the loop exits,
contains the result—the total number of ’s.

Exercise 8.5. Encapsulate this code in a function named , and generalize it so that it accepts
the string and the letter as arguments.
Exercise 8.6. Rewrite this function so that instead of traversing the string, it uses the three-
parameter version of from the previous section.

8.8 String methods

A method is similar to a function—it takes arguments and returns a value—but the syntax
is different. For example, the method takes a string and returns a new string with all
uppercase letters:

Instead of the function syntax , it uses the method syntax .

This form of dot notation specifies the name of the method, , and the name of the
string to apply the method to, . The empty parentheses indicate that this method
takes no argument.

A method call is called an invocation; in this case, we would say that we are invoking
on the .

As it turns out, there is a string method named that is remarkably similar to the
function we wrote:

In this example, we invoke on and pass the letter we are looking for as a param-
eter.

Actually, the method is more general than our function; it can find substrings, not just
characters:



76 Chapter 8. Strings

It can take as a second argument the index where it should start:

And as a third argument the index where it should stop:

This search fails because does not appear in the index range from to (not including ).
Exercise 8.7. There is a string method called that is similar to the function in the previous
exercise. Read the documentation of this method and write an invocation that counts the number of

s in .
Exercise 8.8. Read the documentation of the string methods at

. You might want to experiment with some of them to make sure you
understand how they work. and are particularly useful.

The documentation uses a syntax that might be confusing. For example, in
, the brackets indicate optional arguments. So is required, but

is optional, and if you include , then is optional.

8.9 The operator
The word is a boolean operator that takes two strings and returns if the first ap-
pears as a substring in the second:

For example, the following function prints all the letters from that also appear in
:

With well-chosen variable names, Python sometimes reads like English. You could read
this loop, “for (each) letter in (the first) word, if (the) letter (appears) in (the second) word,
print (the) letter.”

Here’s what you get if you compare apples and oranges:

8.10 String comparison
The relational operators work on strings. To see if two strings are equal:



8.11. Debugging 77

Other relational operations are useful for putting words in alphabetical order:

Python does not handle uppercase and lowercase letters the same way that people do. All
the uppercase letters come before all the lowercase letters, so:

A common way to address this problem is to convert strings to a standard format, such as
all lowercase, before performing the comparison. Keep that in mind in case you have to
defend yourself against a man armed with a Pineapple.

8.11 Debugging

When you use indices to traverse the values in a sequence, it is tricky to get the beginning
and end of the traversal right. Here is a function that is supposed to compare two words
and return if one of the words is the reverse of the other, but it contains two errors:

The first statement checks whether the words are the same length. If not, we can return
immediately and then, for the rest of the function, we can assume that the words are

the same length. This is an example of the guardian pattern in Section 6.8.

and are indices: traverses forward while traverses backward. If we
find two letters that don’t match, we can return immediately. If we get through the
whole loop and all the letters match, we return .

If we test this function with the words “pots” and “stop”, we expect the return value ,
but we get an IndexError:



78 Chapter 8. Strings

i 0 j 3

word1 ’pots’ word2 ’stop’

Figure 8.2: State diagram.

For debugging this kind of error, my first move is to print the values of the indices imme-
diately before the line where the error appears.

Now when I run the program again, I get more information:

The first time through the loop, the value of is 4, which is out of range for the
string . The index of the last character is 3, so the initial value for should be

.

If I fix that error and run the program again, I get:

This time we get the right answer, but it looks like the loop only ran three times, which is
suspicious. To get a better idea of what is happening, it is useful to draw a state diagram.
During the first iteration, the frame for is shows in Figure 8.2.

I took a little license by arranging the variables in the frame and adding dotted lines to
show that the values of and indicate characters in and .
Exercise 8.9. Starting with this diagram, execute the program on paper, changing the values of
and during each iteration. Find and fix the second error in this function.

8.12 Glossary
object: Something a variable can refer to. For now, you can use “object” and “value”

interchangeably.



8.13. Exercises 79

sequence: An ordered set; that is, a set of values where each value is identified by an
integer index.

item: One of the values in a sequence.

index: An integer value used to select an item in a sequence, such as a character in a string.

slice: A part of a string specified by a range of indices.

empty string: A string with no characters and length 0, represented by two quotation
marks.

immutable: The property of a sequence whose items cannot be assigned.

traverse: To iterate through the items in a sequence, performing a similar operation on
each.

search: A pattern of traversal that stops when it finds what it is looking for.

counter: A variable used to count something, usually initialized to zero and then incre-
mented.

method: A function that is associated with an object and called using dot notation.

invocation: A statement that calls a method.

8.13 Exercises
Exercise 8.10. A string slice can take a third index that specifies the “step size;” that is, the number
of spaces between successive characters. A step size of 2 means every other character; 3 means every
third, etc.

A step size of -1 goes through the word backwards, so the slice generates a reversed string.

Use this idiom to write a one-line version of from Exercise 6.6.
Exercise 8.11. The following functions are all intended to check whether a string contains any
lowercase letters, but at least some of them are wrong. For each function, describe what the function
actually does (assuming that the parameter is a string).



80 Chapter 8. Strings

Exercise 8.12. ROT13 is a weak form of encryption that involves “rotating” each letter in a word
by 13 places. To rotate a letter means to shift it through the alphabet, wrapping around to the
beginning if necessary, so ’A’ shifted by 3 is ’D’ and ’Z’ shifted by 1 is ’A’.

Write a function called that takes a string and an integer as parameters, and that
returns a new string that contains the letters from the original string “rotated” by the given amount.

For example, “cheer” rotated by 7 is “jolly” and “melon” rotated by -10 is “cubed”.

You might want to use the built-in functions , which converts a character to a numeric code,
and , which converts numeric codes to characters.

Potentially offensive jokes on the Internet are sometimes encoded in ROT13. If you are not easily
offended, find and decode some of them. Solution:

.


