Chapter 2 Input, Processing, and Output

Displaying Screen Output
The print statement in Python displays output on the screen. Here is an example:
print 'Hello world'

The purpose of this statement is to display the message Hello world on the screen. Notice that
after the word print, we have written Hello world inside single-quote marks. The quote
marks will not be displayed when the statement executes. They simply mark the beginning and
the end of the text that we wish to display.

Suppose your instructor tells you to write a program that displays your name and address on
the computer screen. Program 2-1 shows an example of such a program, with the output that it
will produce when it runs. (The line numbers that appear in a program listing in this book are
not part of the program. We use the line numbers in our discussion to refer to parts of the
program.)

Program 2-1 (output.py)

= il print 'Kate Austen' This program is the Python
2 print '123 Dharma Lane' I version of Program 2-1 in your
3 print 'Asheville, NC 28899' textbook!

Program Output

Kate Austen

123 Dharma Lane
Asheville, NC 28899

st WheN you are entering program code. All of the programs in this booklet will show line

Remember, these line numbers are NOT part of the program! Don't type the line numbers

numbers for reference purposes only.

It is important to understand that the statements in this program execute in the order that they
appear, from the top of the program to the bottom. When you run this program, the first
statement will execute, followed by the second statement, and followed by the third
statement.

Page 9

Strings and String Literals

In Python code, string literals must be enclosed in quote marks. As mentioned earlier, the quote
marks simply mark where the string data begins and ends.

In Python you can enclose string literals in a set of single-quote marks (') or a set of double-
guote marks ("). The string literals in Program 2-1 are enclosed in single-quote marks, but the
program could also be written as shown here:

print "Kate Austen"
print "123 Dharma Lane"
print "Asheville, NC 28899"

If you want a string literal to contain either a single-quote or an apostrophe as part of the
string, you can enclose the string literal in double-quote marks. For example, Program 2-2 prints
two strings that contain apostrophes.

Program 2-2 (apostrophe.py)
1 print "Don't fear!"
2 print "I'm here!"

Program Output
Don't fear!
I'm here!

Likewise, you can use single-quote marks to enclose a string literal that contains double-quotes
as part of the string. Program 2-3 shows an example.

Program 2-3 (display_quote.py)
1 print 'Your assignment is to read "Hamlet" by tomorrow.'

Program Output
Your assignment is to read "Hamlet" by tomorrow.

Python also allows you to enclose string literals in triple quotes (either """ or ' '). Triple
guoted strings can contain both single quotes and double quotes as part of the string. The
following statement shows an example:

Page 10

print """I'm reading "Hamlet" tonight."""

This statement will print:

I'm reading "Hamlet" tonight.

Triple quotes can also be used to surround multiline strings, which is something that single and
double quotes cannot be used for. Here is an example:

print """One
Two
Three" mw

This statement will print:

One
Two
Three

Variables

Variables are not declared in Python. Instead, you use an assignment statement to create a
variable. Here is an example of an assighnment statement:

age = 25

After this statement executes, a variable named age will be created and it will reference the
value 25. This concept is shown in Figure 2-1. In the figure, think of the value 25 as being stored
somewhere in the computer's memory. The arrow that points from age to the value 25

indicates that the name age references the value.

Figure 2-1 The age variable references the value 25

age > | 25

Page 11

An assignment statement is written in the following general format:

variable = expression

The equal sign (=) is known as the assignment operator. In the general format, variable is the
name of a variable and expression is a value, or any piece of code that results in a value. After
an assignment statement executes, the variable listed on the left side of the = operator will
reference the value given on the right side of the = operator.

The code in Program 2-4 demonstrates a variable. Line 1 creates a variable named room and
assigns it the value 503. The print statementsin lines 2 and 3 display a message. Notice that
line 3 displays the value that is referenced by the room variable.

Program 2-4 (variable_demo.py)

1 room = 503

2 print 'I am staying in room number'
3 print room

Program Output

I am staying in room number
503

Variable Naming Rules

You may choose your own variable names in Python, as long as you do not use any of the
Python key words. The key words make up the core of the language and each has a specific
purpose. Table 2-1 shows a list of the Python key words.

Additionally, you must follow these rules when naming variables in Python:

e Avariable name cannot contain spaces.

e The first character must be one of the letters a through z, A through Z, or an underscore
character (_).

e After the first character you may use the letters a through z or A through Z, the digits 0
through 9, or underscores.

e Uppercase and lowercase characters are distinct. This means the variable name

ItemsOrderedis not the same as itemsordered.

Page 12

Table 2-1 The Python key words

and del from not while
as elif global or with
assert else if pass yield
break except import print

class exec in raise

continue finally is return

def for lambda try

Displaying Multiple Items with the print Statement

If you look back at Program 2-4 you will see that we used the following two print statements
in lines 3 and 4:

print 'I am staying in room number'
print room

We used two print statements because we needed to display two pieces of data. Line 3
displays the string literal 'T am staying in room number', and line 4 displays the
value referenced by the room variable.

This program can be simplified, however, because Python allows us to display multiple items
with one print statement. We simply have to separate the items with commas as shown in
Program 2-5.

Program 2-5 (variable_demo3.py)
1 room = 503
2 print 'I am staying in room number', room

Program Output
I am staying in room number 503

The print statement in line 2 displays two items: a string literal followed by the value
referenced by the room variable. Notice that Python automatically printed a space between
these two items. When multiple items are printed this way in Python, they will automatically be
separated by a space.

Page 13

Numeric Data Types and Literals

Python uses the int data type to store integers, and the f1oat data type to store real
numbers. Let's look at how Python determines the data type of a number. Many of the
programs that you will see will have numeric data written into their code. For example, the
following statement, which appears in Program 2-4, has the number 503 written into it.

room = 503

This statement causes the value 503 to be stored in memory, and it makes the room variable
reference it. The following statement shows another example. This statement has the number
2.75 written into it.

dollars = 2.75
This statement causes the value 2.75 to be stored in memory, and it makes the dollars
variable reference it. A number that is written into a program's code is called a numeric literal.

When the Python interpreter reads a numeric literal in a program's code, it determines its data
type according to the following rules:

e A numeric literal that is written as a whole number with no decimal point is considered
an int. Examples are 7, 124, and -9.

e A numeric literal that is written with a decimal point is considered a f1oat. Examples
are 1.5, 3.14159, and 5.0.

So, the following statement causes the number 503 to be stored in memory as an int:

room = 503

And the following statement causes the number 2.75 to be stored in memory asa float:
dollars = 2.75

Storing Strings with the str Data Type

In addition to the int and f1loat data types, Python also has a data type named str, which is

used for storing strings in memory. The code in Program 2-6 shows how strings can be assigned
to variables.

Page 14

Program 2-6 (string_variable.py)

1 first name = 'Kathryn'

2 last name = 'Marino'

3 print first name, last name

Program Output
Kathryn Marino

Reading Input from the Keyboard

In this booklet we will use two of Python's built-in functions to read input from the keyboard. A
function is a piece of prewritten code that performs an operation and then returns a value back
to the program. We will use the input function to read numeric data from the keyboard, and
the raw_input function to read strings as input.

Reading Numbers With The input Function

Python's input function is useful for reading numeric input from the keyboard. You normally
use the input function in an assignment statement that follows this general format:

variable = input (prompt)

In the general format, prompt is a string that is displayed on the screen. The string's purpose is
to instruct the user to enter a value. variable is the name of a variable that will reference the
data that was entered on the keyboard. Here is an example of a statement that uses the
input function to read data from the keyboard:

hours = input ('How many hours did you work? ')
When this statement executes, the following things happen:

e Thestring 'How many hours did you work? ' isdisplayed on the screen.

e The program pauses and waits for the user to type something on the keyboard, and
then press the Enter key.

e When the Enter key is pressed, the data that was typed is assigned to the hours
variable.

Page 15

Program 2-7 shows a sample program that uses the input function.

Program 2-7 (input.py)
1 age = input('What is your age? ')
2 print 'Here is the wvalue that you entered:'
This is the Python version
Program Output (with Input Shown in Bold)
What is your age? 28 [Enter]
Here is the value that you entered:
28

of Program 2-2 in your
textbook!

The statement in line 1 uses the input function to read data that is typed on the keyboard. In
the sample run, the user typed 28 and then pressed Enter. As a result, the integer value 28 was
assigned to the age variable.

Take a closer look at the string we used as a prompt, in line 2:
'How old are you? '

Notice that the last character in the string, inside the quote marks, is a space. We put a space
there because the input function does not automatically display a space after the prompt.
When the user begins typing characters, they will appear on the screen immediately after the
prompt. Making the last character in the prompt a space visually separates the prompt from
the user's input on the screen.

When the user enters a number in response to the input function, Python determines the
number's data type in the same way that it determines a numeric literal's data type: If the
number contains no decimal point it is stored in memory as an int. If it contains a decimal
point it is stored in memory asa float.

Reading Strings With The raw_input Function
Although the input function works well for reading numbers, it is not convenient for reading
strings. In order for the input function to read data as a string, the user has to enclose the

data in quote-marks when he or she types it on the keyboard. Most users are not accustomed
to doing this, so it's best to use another function: raw_input.

Page 16

The raw_input function works like the input function, with one exception: the
raw_input function retrieves all keyboard input as a string. There is no need for the user to
type quote marks around the data that is entered. Program 2-8 shows a sample program that
uses the raw input function to read strings.

Program 2-8 (string_input.py)

1 first name = raw_input ('Enter your first name: ')
2 last name = raw input ('Enter your last name: ')

3 print 'Hello', first name, last name

Program Output (with Input Shown in Bold)
Enter your first name: Vinny [Enter]

Enter your last name: Brown [Enter]
Hello Vinny Brown

Performing Calculations

Table 2-2 lists the math operators that are provided by the Python language.

Table 2-2 Python math operators

Symbol Operation Description
+ Addition Adds two numbers
- Subtraction Subtracts one number from another

Multiplication | Multiplies one number by another

/ Division Divides one number by another and gives the quotient
% Remainder Divides one number by another and gives the remainder
o Exponent Raises a number to a power

Here are some examples of statements that use an arithmetic operator to calculate a value, and
assign that value to a variable:

total = price + tax

sale = price - discount
population = population * 2
half = number / 2

leftOver = 17 % 3

result = 4**2

Page 17

Program 2-9 shows an example program that performs mathematical calculations (This
program is the Python version of pseudocode Program 2-8 in your textbook.)

Program 2-9 (sale_price.py)

1 original price = input ("Enter the item's original price: ")
2 discount = original price * 0.2 o]
, .. , , This is the Python version
3 sale price = original price - discount i
. .) of Program 2-8 in your
4 print 'The sale price 1is', sale price

textbook!

Program Output (With Input Shown in Bold)</TTL>
Enter the item's original price: 100.00 [Enter]
The sale price is 80.0

In Python, the order of operations and the use of parentheses as grouping symbols works just
as described in the textbook.

Integer Division

In Python, when an integer is divided by an integer the result will also be an integer. This
behavior is known as integer division. For example, look at the following statement:

number = 3 / 2
Because the numbers 3 and 2 are both treated as integers, Python will throw away (truncate)
the fractional part of the result. So, the statement will assign the value 1 to the number

variable, not 1.5.

If you want to make sure that a division operation yields a real number, at least one of the
operands must be a number with a decimal point or a variable that references a f1oat value.
For example, we could rewrite the statement as follows:

number = 3.0 / 2.0
Documenting a Program with Comments

To write a line comment in Python you simply place the # symbol where you want the
comment to begin. The Python interpreter ignores everything from that point to the end of the
line. Here is an example:

Page 18

This program calculates an employee's gross pay.

Page 19

Chapter 3 Modularizing Programs with Functions

Chapter 3 in your textbook discusses modules as named groups of statements that perform
specific tasks in a program. You use modules to break a program down into small, manageable
units. In Python, we use functions for this purpose. (In Python, the term "module" has a slightly
different meaning. A Python module is a file that contains a set of related program elements,
such as functions.)

In this chapter we will discuss how to define and call Python functions, use local variables in a
function, and pass arguments to a function. We also discuss global variables, and the use of
global constants.

Defining and Calling a Function

To create a function you write its definition. Here is the general format of a function definition
in Python:

def function name() :
Statement
Statement
etc.

The first line is known as the function header. It marks the beginning of the function definition.
The function header begins with the key word de f, followed by the name of the function,
followed by a set of parentheses, followed by a colon.

Beginning at the next line is a set of statements known as a block. A block is simply a set of
statements that belong together as a group. These statements are performed any time the
function is executed. Notice in the general format that all of the statements in the block are
indented. This indentation is required because the Python interpreter uses it to tell where the
block begins and ends.

Let’s look at an example of a function. Keep in mind that this is not a complete program. We
will show the entire program in a moment.

def message() :
print 'I am Arthur,'
print 'King of the Britons.'

Page 20

This code defines a function named message. The message function contains a block with
two print statements. Executing the function will cause these print statements to execute.

Calling a Function

A function definition specifies what a function does, but it does not cause the function to
execute. To execute a function, you must call it. This is how we would call the message
function:

message ()

When a function is called, the interpreter jumps to that function and executes the statements
in its block. Then, when the end of the block is reached, the interpreter jumps back to the part
of the program that called the function, and the program resumes execution at that point.
When this happens, we say that the function returns. To fully demonstrate how function calling
works, look at Program 3-1.

Program 3-1 (function_demo.py)
This program demonstrates a function.
First, we define a function named message.
def message() :
print 'I am Arthur,'

1
2
3
4
5 print 'King of the Britons.'
6
7 # Call the message function.

8 message ()

Program Output

I am Arthur,

King of the Britons.

When the Python interpreter reads the de f statement in line 3, a function named message is
created in memory, containing the block of statements in lines 4 and 5. (A function definition
creates a function, but it does not cause the function to execute.) Next, the interpreter
encounters the comment in line 7, which is ignored. Then it executes the statementin line 8,
which is a function call. This causes the message function to execute, which prints the two
lines of output.

Page 21

Program 3-1 has only one function, but it is possible to define many functions in a program. In
fact, it is common for a program to have a ma in function that is called when the program
starts. The ma in function then calls other functions in the program as they are needed. It is
often said that the main function contains a program's mainline logic, which is the overall logic
of the program. Program 3-2 shows an example of a program with two functions: main and
show message. This is the Python version of Program 3-1 in your textbook, with some extra
comments added.

Program 3-2 (function_demo2.py)

1 # Define the main function. ~ This is the Python version
2 def main () : of Program 3-1 in your

3 print "I have a message for you." textbook!

4 show message ()

5 print "That's all folks!"

6

7 # Define the show message function.

8 def show message() :

9 print "Hello world"
10

11 # Call the main function.
12 main()

Program Output

I have a message for you.
Hello world

That's all folks!

The main function is defined in lines 2 through 5, and the show message function is defined
in lines 8 through 9. When the program runs, the statement in line 12 calls the main function,
which then calls the show message function in line 4.

Indentation in Python

In Python, each line in a block must be indented. As shown in Figure 3-1, the last indented line
after a function header is the last line in the function's block.

Figure 3-1 All of the statements in a block are indented

Page 22

The last indented line is

the last line in the block. C
def greetingl):

‘ print 'Good morning!'
p print '"Today we will learn about functicons.

These statements print 'I will call the greeting function.'
are not in the block. greeting (]

When you indent the lines in a block, make sure each line begins with the same number of

spaces. Otherwise an error will occur. For example, the following function definition will cause
an error because the lines are all indented with different numbers of spaces.

def my function():
print 'And now for'
print 'something completely’
print 'different.'

In an editor there are two ways to indent a line: (1) by pressing the Tab key at the beginning of
the line, or (2) by using the spacebar to insert spaces at the beginning of the line. You can use
either tabs or spaces when indenting the lines in a block, but don't use both. Doing so may
confuse the Python interpreter and cause an error.

IDLE, as well as most other Python editors, automatically indents the lines in a block. When you
type the colon at the end of a function header, all of the lines typed afterward will
automatically be indented. After you have typed the last line of the block you press the
Backspace key to get out of the automatic indentation.

Tip: Python programmers customarily use four spaces to indent the lines in a block. You can
use any number of spaces you wish, as long as all the lines in the block are indented by
the same amount.

Note: Blank lines that appear in a block are ignored.

Page 23

Local Variables

Anytime you assign a value to a variable inside a function, you create a local variable. A local
variable belongs to the function in which it is created, and only statements inside that function
can access the variable. (The term local is meant to indicate that the variable can be used only
locally, within the function in which it is created.) In Chapter 3 of your textbook you learned
that a variable's scope is the part of the program in which the variable may be accessed. A local
variable's scope is the function in which the variable is created.

Because a function’s local variables are hidden from other functions, the other functions may
have their own local variables with the same name. For example, look at the Program 3-3. In
addition to the main function, this program has two other functions: texas and
california. These two functions each have a local variable named birds.

Program 3-3 (birds.py)

1: # This program demonstrates two functions that
2: # have local variables with the same name.
3:
4: def main():
5: # Call the texas function.
6: texas ()
7 # Call the california function.
8: california ()
9:
10: # Definition of the texas function. It creates
11: # a local variable named birds.
12: def texas():
13: birds = 5000
14: print 'texas has', birds, 'birds.'
15:
16: # Definition of the california function. It also
17: # creates a local variable named birds.
18: def california():
19: birds = 8000
20: print 'california has', birds, 'birds.'
21:

22: # Call the main function.
23: main ()

Page 24

Program Output
texas has 5000 birds.
california has 8000 birds.

Although there are two separate variables named birds in this program, only one of them is
visible at a time because they are in different functions.

Passing Arguments to Functions

If you want a function to receive arguments when it is called, you must equip the function with
one or more parameter variables. A parameter variable, often simply called a parameter, is a
special variable that is assigned the value of an argument when a function is called. Here is an
example of a function that has a parameter variable:

def double number (value) :
result = wvalue * 2
print result

This function’s name is double number. Its purpose is to accept a number as an argument
and display the value of that number doubled. Look at the function header and notice the word
value that appear inside the parentheses. This is the name of a parameter variable. This
variable will be assigned the value of an argument when the function is called. Program 3-4
demonstrates the function in a complete program.

Program 3-4 (pass_arg.py)
1 # Define the main function.
def main () :
number = input ('Enter a number and I will display that number doubled: ')
double number (number)

2
3
4
° , ' T— This is the Python version of
6 # Define the double number function.

7

8

def double number (value) : Program 3-5 in your textbook!

result = value * 2
9 print result

11 # Call the main function.
12 main ()

Program Output
Enter a number and I will display that number doubled: 20 [Enter]
40

Page 25

When this program runs, the main function is called in line 12. Inside the ma in function, line 3
gets a number from the user and assigns it to the number variable. Line 4 calls the

double number function passing the number variable as an argument.

The double number function is defined in lines 26 through 36. The function has a parameter
variable named value. Inline 8 a local variable named result is assigned the value of the
math expression value * 2.Inline 35 the value of the result variable is displayed.

Passing Multiple Arguments

Often it is useful to pass more than one argument to a function. When you define a function,
you must have a parameter variable for each argument that you want passed into the function.
Program 3-5 shows an example. This is the Python version of pseudocode Program 3-6 in your
textbook.

Program 3-5 (multiple_args.py)
1 # This program demonstrates a function that accepts

2 # two arguments.

3 This is the Python version of

4 def main () : Program 3-6 in your textbook!

5 print 'The sum of 12 and 45 is' —_—
o show sum (12, 45)

7

8 # The show sum function accepts two arguments

9 # and displays their sum.
10 def show sum(numl, num2):

11 result = numl + num?2
12 print result
13

14 # Call the main function.
15 main()

Program Output
The sum of 12 and 45 is
57

Notice that two parameter variable names, numl and num2, appear inside the parentheses in
the show sum function header. This is often referred to as a parameter list. Also notice that a
comma separates the variable names.

Page 26

The statement in line 6 calls the show sum function and passes two arguments: 12 and 45.
These arguments are passed by position to the corresponding parameter variables in the
function. In other words, the first argument is passed to the first parameter variable, and the
second argument is passed to the second parameter variable. So, this statement causes 12 to
be assigned to the numl parameter and 45 to be assigned to the num2 parameter.

Making Changes to Parameters

When an argument is passed to a function in Python, the function parameter variable will
reference the argument's value. However, any changes that are made to the parameter
variable will not affect the argument. To demonstrate this look at Program 3-6.

Program 3-6 (change_me.py)
1 # This program demonstrates what happens when you
change the value of a parameter.

2

3

4 def main () :

5 value = 99
6 print 'The wvalue is', value

7 change me (value)

8 print 'Back in main the value is', wvalue

9
10 def change me (arg) :
11 print 'I am changing the wvalue.'
12 arg = 0
13 print 'Now the wvalue is', arg
14

15 # Call the main function.
16 main()

Program Output

The value is 99

I am changing the value.

Now the value is 0

Back in main the value is 99

Themain function creates a local variable named value inline 5, assigned the value 99. The
print statementin line 6 displays The value is 99. The value variable is then passed as an

Page 27

argument to the change me function in line 7. This means that in the change me function
the arg parameter will also reference the value 99.

Global Variables

When a variable is created by an assignment statement that is written outside all the functions
in a program file, the variable is global A global variable can be accessed by any statement in
the program file, including the statements in any function. For example, look at Program 3-7.

Program 3-7 (globall.py)
1 # Create a global variable.
my value = 10

The show value function prints
the value of the global variable.
def show value():

print my value

Call the show value function.
show value ()

O W O J oy U b W N

[

Program Output
10

The assignment statement in line 2 creates a variable named my value. Because this
statement is outside any function, it is global. When the show _value function executes, the
statement in line 7 prints the value referenced by my value.

An additional step is required if you want a statement in a function to assign a value to a global
variable. In the function you must declare the global variable, as shown in Program 3-14.

Program 3-14 (global2.py)

1 # Create a global variable.

number = 0 This is the Python version of

Program 3-11 in your textbook!
]

def main() :
global number
number = input('Enter a number: ')

~ o O b W DN

show number ()

Page 28

8

9 def show number():
10 print 'The number you entered is', number
11

12 # Call the main function.

13 main ()

Program Output
Enter a number: 22 [Enter]
The number you entered is 22

The assignment statement in line 2 creates a global variable named number. Notice that inside
the main function, line 5 uses the global key word to declare the number variable. This
statement tells the interpreter that the main function intends to assign a value to the global
number variable. That's just what happens in line 6. The value entered by the user is assigned

to number.

Global Constants

The Python language does not allow you to create true global constants, but you can simulate
them with global variables. If you do not declare a global variable with the global key word
inside a function, then you cannot change the variable's assignment.

Page 29

