
22 LOCKS

Homework

This program, x86.py, allows you to see how different thread inter-
leavings either cause or avoid race conditions. See the README for de-
tails on how the program works and its basic inputs, then answer the
questions below.

Questions

1. First let’s get ready to run x86.py with the flag -p flag.s. This
code “implements” locking with a single memory flag. Can you
understand what the assembly code is trying to do?

2. When you run with the defaults, does flag.s work as expected?
Does it produce the correct result? Use the -M and -R flags to trace
variables and registers (and turn on -c to see their values). Can you
predict what value will end up in flag as the code runs?

3. Change the value of the register %bx with the -a flag (e.g., -a
bx=2,bx=2 if you are running just two threads). What does the
code do? How does it change your answer for the question above?

4. Set bx to a high value for each thread, and then use the -i flag to
generate different interrupt frequencies; what values lead to a bad
outcomes? Which lead to good outcomes?

5. Now let’s look at the program test-and-set.s. First, try to un-
derstand the code, which uses the xchg instruction to build a sim-
ple locking primitive. How is the lock acquire written? How about
lock release?

6. Now run the code, changing the value of the interrupt interval (-i)
again, and making sure to loop for a number of times. Does the
code always work as expected? Does it sometimes lead to an ineffi-
cient use of the CPU? How could you quantify that?

7. Use the -P flag to generate specific tests of the locking code. For
example, run a schedule that grabs the lock in the first thread, but
then tries to acquire it in the second. Does the right thing happen?
What else should you test?

8. Now let’s look at the code in peterson.s, which implements Pe-
terson’s algorithm (mentioned in a sidebar in the text). Study the
code and see if you can make sense of it.

9. Now run the code with different values of -i. What kinds of differ-
ent behavior do you see?

10. Can you control the scheduling (with the -P flag) to “prove” that
the code works? What are the different cases you should show
hold? Think about mutual exclusion and deadlock avoidance.

OPERATING

SYSTEMS

[VERSION 0.81] WWW.OSTEP.ORG



LOCKS 23

11. Now study the code for the ticket lock in ticket.s. Does it match
the code in the chapter?

12. Now run the code, with the following flags: -a bx=1000,bx=1000

(this flag sets each thread to loop through the critical 1000 times).
Watch what happens over time; do the threads spend much time
spinning waiting for the lock?

13. How does the code behave as you add more threads?

14. Now examine yield.s, in which we pretend that a yield instruc-
tion enables one thread to yield control of the CPU to another (re-
alistically, this would be an OS primitive, but for the simplicity of
simulation, we assume there is an instruction that does the task).
Find a scenario where test-and-set.s wastes cycles spinning,
but yield.s does not. How many instructions are saved? In what
scenarios do these savings arise?

15. Finally, examine test-and-test-and-set.s. What does this
lock do? What kind of savings does it introduce as compared to
test-and-set.s?

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES


