cs281: Computer Systems
CPUlab — ALU and Datapath

Assigned: Oct. 30, Due: Nov. 8 at 11:59 pm

The objective of this exercise is twofold — to complete a combinational circuit for an ALU that
we can use with our Y86 CPU implementation, and to familiarize you with the Datapath of
the Y86 CPU and to understand how, by manipulating control wires in the datapath, you can
realize the semantic steps for the execution of each instructions’ stages, from Fetch through
Write-back and PC Update.

ALU Implementation

You are being provided with a Logisim circuit file, alulibrary.circ. This circuit file contains
32 bit versions of the functional units for the operations of add, and, xor, shift left, and shift
right, as well as 32 bit versions of a 2-1 mux and a 4-1 mux. Correct and complete imple-
mentations of Add32, And32, Xor32, 2-1Mux32, and 4-1Mux32 have already been completed for
you. So your only task in alulibrary.circ is to provide implementations of ShiftR32 and
ShiftL32. Both of these circuits have a 32 bit input (named A32) and a single bit input named
Cin. Both have a 32 bit output named F32 and a single bit output named Cout. These shifters
always shift by exactly one bit, and use Cin for the value to shift “in” to the vacated bit. F32
is the result, and the bit that would otherwise be shifted “off” and lost is given as Cout.

’ Function ‘ Semantics ‘
ShiftR32 | F32 = A32 >> 1; F3231 = Cin; Cout = A32
ShiftL.32 | F32 = A32 << 1; F32y = Cin; Cout = A323;

You are also being provided with a Logisim circuit file, ALU.circ. In its main circuit, this
circuit file contains a top level interface that will allow you to drive the ALU32 circuit. The
ALU32 circuit is where you will be doing your work, to implement the ALU as specified below,
and using the alulibrary components completed in the first step.
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The inputs are shown on the left and bottom of the ALU32 circuit and the outputs are on the
right and top of the circuit. The top of the chip is used for a set of single-bit outputs that
comprise the condition code flags of ALU32. Note that aluA and aluB are 32-bit-wide inputs,
aluOp is a 4-bit-wide input, and C'in is a 1-bit-wide input. valF is an 32-bit-wide output, and
CF, ZF, SF, and OF are single bit outputs.

The aluOp determines a particular operation for the combinational logic of the ALU32. So, in
general, we can think of the functionality as follows:

(valE,CF,ZF,SF,OF) = aluOp(aluA, aluB, Cin)

So the set of five outputs are a function, determined by aluOp, of the three inputs, aluA, aluB,
and Cin.

aluOp is a four bit-wide input, so in the table below, we give the bit pattern for aluOp, a
mneumonic for the operation, and then the computation specifying the valE output in terms
of aluA, aluB, and Cin. Since we all know C/C++ bitwise operations now, we will borrow
that notation.

[ aluOp | Mneumonic | Semantics ‘

0000 add valE = aluA + aluB
0001 sub valE = aluA - aluB
0010 and valE = alulA & aluB
0011 Xor valE = aluA "~ aluB
0100 shiftR valE = alulA >> 1; valE3; = Cin
0101 shiftL valE = aluA << 1; valEyg = Cin

The following table gives the meanings for the four single bit condition codes.

’ Flag \ Ops \ Description

7F all Zero Flag: If the result of the current ALU operation, valF, is zero, then
ZF is 1. If the result of the operation is not zero, then ZF is 0.
Sign Flag: Reflects the most significant bit of the result of the current
SF all ALU operation (i.e. valEz;). When interpreted as an 32-bit two’s
complement, the sign bit indicates a negative result.
add Overflow Flag: This bit is asserted if the current operation caused a two’s
complement overflow—either positive or negative, and is deasserted
OF sub )
otherwise.
and
xor The OF flag is 0 for all four of these other operations
shiftR & P '
shiftL
add Carry Flag: This bit is 1 if the addition caused a carry-out from the most
CF sub significant bit position, so an unsigned overflow.
. This is the bit “shifted off” from operand aluA, aka aluAy.
shiftR
shiftl. This is the bit “shifted off” from operand aluA, aka aluAs;.
d .
;)nr Always 0 for these two operations.




Restrictions and Advice

e For digital logic components comprising aggregated 32 bit operations, you should use the
implementations in the alulibrary.

e You should not create a new component for subtract. Find a way to use addition, and
the best solutions will not use unnecessary digital logic.

e You may, however, use the built-in Logisim multibit wide NOT gate.

e Carefully follow the specification for the condition codes. The ALU32 will be tested by a
driver circuit that will check for correctness of all condition codes against all the different
operations.

Datapath Familiarization

Functional elements in the Datapath include:

PC : Program Counter — stateful device containing a 32 bit register holding the current pro-
gram counter. Input is the upcoming PC value, output is the current PC value. A new
program counter is stored on the rising clock edge.

IMem : Instruction Memory — stateful device containing the Y86 program, starting at address
0. Input is the 32 bit Program Counter, and output are the 6 consecutive bytes from
memory starting at the PC address. Internally, memory is loaded into four separate banks,
each of which is 2 bytes wide, and loading must occur prior to instruction execution. From
that point on, the memory may be thought of as combinational, where, based on the PC
as input, a six byte output is produced.

ISplit : Instruction Split — combinational circuit whose inputs are the 6 (potential) bytes of
the instruction and whose outputs are the union of the fields that make up all the Y86
instructions, including icode, ifun, rA, rB, Dest, and V/D.

Registers : Register File — stateful device containing the eight Y86 registers, numbered from
0 to 7. The register file is capable of routing to output the current values of two of its
registers, as well as updating one or two registers. Inputs are srcA and srcB, to determine
values sent to the valA and valB outputs, as well as dstE/valE and dstM/valM, which
determine register (and its associated value) to write on the next rising clock. If dstE
and/or dstM have value OxF, then no register is updated. Outputs valA and valB always
reflect the current value of registers srcA and srcB.

ALU : Arithmetic Logic Unit — combinational circuit capable of performing addl, subl, andl,
and xorl. Inputs are ALUfun, ALU_A, and ALU_B. Outputs are ZF, SF, OF, and valE.
This currently loads ALU32 from ALU.circ.

CC : Condition Codes — stateful device implemented as a register holding the 3 1-bit values
corresponding to ZF, SF, and OF. In addition to these inputs, the register has an enable



bit and an asynchronous reset bit as inputs. The output is the current values of the three
bits. Updates occur on a rising clock if the enable is also asserted.

DAddr : Data Memory Address — combinational circuit that, given a 32 bit aligned byte
address yields a 20 bit word address suitable for input to the data memory. The device
also has a single bit indicating whether or not an illegal address was given as its input.

DMem : Data Memory — stateful device used for the read/write data memory involved in a
Y86 program. Input is the 20 bit word address A to be read or written along with the
32 bit data value, D, to be modified as a result of a write. Inputs also include a “Store”
bit which, when 1, will cause the D value to be stored on the next rising clock edge, as
well as an asynchronous reset for the memory. Output is the 32-bit valM corresponding
to the value in memory at the word address given by A.

In addition to these functional elements, the datapath consists of a set of multiplexers, one
adder unit, and the set of wires connecting all of the elements. The datapath can be made
to “execute” instructions by manipulating the control bits, which in this initial datapath are
simply input pins. By setting all of these control inputs to particular values based on the
current instruction and on other outputs of the functional elements (like the condition codes),
we can manipulate the datapath into performing the semantics of our given instructions.

The Table below gives the meanings for each of the control signals on the Y86 datapath.

] Control ‘ Width ‘ Description

PClIncSrc 2 Determines value to add to PC to get to next instruction.
00-1,01-2,10-5, 11 - 6.
valCsrc 1 Determine value for valC. 0 means valC <-Dest (M4[PC+1]), 1 means
valC «V/D (M4[PC+2]).
valAsrc 1 Determine read register file output for valA. 0 means valA <R[rA],
1 means valA <R[%esp].
valBsrc 1 Determine read register file output for valB. 0 means valB <-R[rB],
1 means valB +R[%esp].
aluAsrc 1 Determine value to send to ALU_A. 0 means ALU_A «valB, 1 means
ALU_A «0.
aluBsrc 2 Determine value to send to ALU_B. 00 means ALU_B <+valA, 01
means ALU_B <valC, 10 means ALU_B <4, 11 means ALU_B «-4.
setCC 1 Determine whether or not to update the CC register on the next
clock. 0 indicates do not update, 1 indicates update.
aluOp 1 Determine operation to route to ALUfun. 0 means 0000 (add), 1
means use ifun.
dmemAddr 2 Determine address routed to data memory address line. 00 means
dAddr <valE. 01 means dAddr <valA. 10 and 11 mean to send
address 0.
dmemData 1 Determine value routed to data memory D input. 0 means D <valA,
1 means D ¢<valP




dmemWrite 1 Determine whether or not to store D at M4[dAddr] on the next clock.

0 indicates do not write memory, 1 indicates write memory.

dstEsrc 2 Determine destination register for write of valE. 00 means R[rB]
+valE, 01 means R[%esp] <—valE, 10 and 11 mean send 0xf to dstE,
indicating no write.

dstMsrc 1 Determine destination register for write of valM. 0 means R[rA]

+valM, 1 means send 0xf to dstM, indicating no write.

newPC 2 Determine source of next Program Counter to be routed to input of
PC register. 00 means newPC <«valP, 01 means newPC «+valC, 10
means newPC <«valM, and 11 is undefined.

Datapath Assignment

Your task in this part of the assignment is twofold:

1. Learn the datapath by manually executing instructions in the datapath. A few initial in-

structions are given in the files example.ys and example.yo and their associated Logisim in-
struction memory image exbank(O.mem, exbankl.mem, exbank2.mem, and exbank3.mem.
Your professor will lead you through the first couple and general instructions are given
below.

. Your second task is to complete the table at the end of this handout completely defining
the control functionality for all the given instructions. Based on the semantics of the
instructions, you should determine the correct control signals for that instruction. The
instruction semantics are given through the phases of the datapath in the textbook figures
4.18 through 4.21, and in the class handout. You should use both pencil and paper as
well as Logisim experimental techniques to determine these values.

Steps to execute one or more instructions:

1. Begin at the Datapath circuit on the canvas with the pointer tool selected. Open Y86.circ

and double-click the Datapath circuit in the explorer pane to make it the active circuit if
this is not the case.

. Right-click on the IMem device and select the ‘View Memory’ option. The four memory
banks that you see there are ROMs and are preloaded with the instruction memory
corresponding to the file(s) example.ys/textttexample.yo. If you wish to load instruction
memory with a different program, do the following:

e For each of the memory banks, from top to bottom, you should right-click on the
memory device and select the ‘Load Image...” option.

e Navigate in the file system and select the memory image appropriate to the particular
bank (0, 1, 2, or 3).




10.

Double-click on the Datapath circuit again to make it the active circuit.

. Select the ‘hand’ tool so that we can manipulate values on the Datapath.

Take the clock to an asserted level.

Assert and then deassert the Reset pin. At this point, the PC, CC, and registers are
initialized to zero and you should be able to see the values derivative of the first instruction
at the probe displays (like icode, ifun, rA, and rB).

Instruction execution occurs in a single clock cycle. Once the instruction is available
from IMem following the rising edge of the clock, we need to, based on the particular
instruction, set the pins associated with the control signals in the datapath. Eventually,
this manual operation will be replaced by a combinational circuit that performs the same
task. For now, with the clock still high, set the control signals PClIncSrc, valCsrc, valAsrc,
valBsre, aluAsrc, aluBsrc, setCC, aluOp, dmemAddr, dmemData, dmemWrite, dstEsrc,
dstMsrc, and newPC to the correct values based on the instruction being executed. The
professor will take you through the example of irmovl.

For irmovl, the values to be set include PCIncSrc=11, valCsrc=1, aluAsrc=1, aluB-
src=01, setCC=0, aluOp=0, dmemAddr=10, dmemWrite=0, dstEsrc=00, dstMsrc=1and
newPC=00.

Once the control signals have been set, check the values from left to right through the
datapath. Based on the register transfer semantics of the various instructions given in
Tables 4.18 through 4.21 in your book, do the values of valP, valC, valA, valB, etc.
correspond to the specific instruction being executed? If they do not, then verify your
control signals again.

When the values/control signals are correct, change the clock to come down to the de-
asserted state. Note that when the clock goes low, the negation in the lower left of the
datapath will cause the clock input to the register file, the CC register, the data memory,
and the PChold register to go high. So by bringing the clock low, these devices will take
any write-values on their input and store them into their device. This, in effect, “seals
the deal” for the execution of this instruction and we are ready to go on to the next
instruction.

Change the clock back to the high/asserted state. The value of newPC is now stored in
PC and we go back to step 7 and set the control signals appropriately.

When filling out the table below, if the value for a given entry is dependent on some other state
in the datapath, use a footnote and explain the conditions under which the entry would have
one value or another. Also, for full credit, you should employ ”"Don’t Care” values of X where
appropriate.
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halt
nop

rrmovl rA rB

irmovl V,rB

rmmovl rA,D(rB)

mrmovl D(rB),rA

OPl rArB

jXX Dest

cmovXX rA, rB

call Dest

ret

pushl rA

popl rA




