
cs281: Introduction to Computer Systems

The Shell Lab – Exceptional Control Flow

Distributed: Monday, Nov. 6, Due: Monday, Nov. 20

Introduction

The purpose of this assignment is to become more familiar with the concepts of process control and asyn-
chronous software interrupts known as signalling. You’ll do this by writing a simple Unix shell program that
supports job control.

Logistics

You may work in a group of up to two people in solving the problems for this assignment. The only “hand-in”
will be electronic. Any clarifications and revisions to the assignment will be posted on the course Web page
and/or on Piazza. If you have questions, please,post them to Piazzaso that all students can see the question
and the subsequent answer.

Hand Out Instructions

All the files you require for this assignment have been gathered together in a Unix “tar” file. This is a single
archive file containing a set of files. On a Linux lab machine inOlin 219, you should be able to download
the fileshlab-handout.tar from the course web page and place your copy in a parent directory of your
choice.

Then, from the directory containing the tar file, do the following:

• Type the commandmkdir shlab; cd shlab

• Type the commandtar xvf ../shlab-handout.tar to expand the tarfile.

• Type the commandmake clean; make to compile and link some test routines.

• Type your team member names in the header comment at the top oftsh.c.

Looking at thetsh.c (tiny shell) file, you will see that it contains a functional skeleton of asimple Unix shell.
To help you get started, we have already implemented the lessinteresting functions. Your assignment is to
complete the remaining empty functions listed below. As a sanity check for you, we’ve listed the approximate
number of lines of code for each of these functions in our reference solution (which includes lots of comments).

• eval: Main routine that parses and interprets the command line. [70 lines]

• builtin cmd: Recognizes and interprets the built-in commands:quit,fg,bg, andjobs. [25 lines]

1

• do bgfg: Implements thebg andfg built-in commands. [50 lines]

• waitfg: Waits for a foreground job to complete. [20 lines]

• sigchld handler: Catches SIGCHILD signals. [80 lines]

• sigint handler: Catches SIGINT (ctrl-c) signals. [15 lines]

• sigtstp handler: Catches SIGTSTP (ctrl-z) signals. [15 lines]

Each time you modify yourtsh.c file, type make to recompile it. To run your shell, typetsh to the
command line:

unix> ./tsh
tsh> [type commands to your shell here]

General Overview of Unix Shells

A shell is an interactive command-line interpreter that runs programs on behalf of the user. A shell repeatedly
prints a prompt, waits for acommand lineon stdin, and then carries out some action, as directed by the
contents of the command line.

The command line is a sequence of ASCII text words delimited by whitespace. The first word in the command
line is either the name of a built-in command or the pathname of an executable file. The remaining words are
command-line arguments. If the first word is a built-in command, the shell immediately executes the command
in the current process. Otherwise, the word is assumed to be the pathname of an executable program. In this
case, the shell forks a child process, then loads and runs theprogram in the context of the child. The child
processes created as a result of interpreting a single command line are known collectively as ajob. In general,
a job can consist of multiple child processes connected by Unix pipes.

If the command line ends with an ampersand ”&”, then the job runs in thebackground, which means that the
shell does not wait for the job to terminate before printing the prompt and awaiting the next command line.
Otherwise, the job runs in theforeground, which means that the shell waits for the job to terminate before
awaiting the next command line. Thus, at any point in time, atmost one job can be running in the foreground.
However, an arbitrary number of jobs can run in the background.

For example, typing the command line

tsh> jobs

causes the shell to execute the built-injobs command. Typing the command line

tsh> /bin/ls -l -d

runs thels program in the foreground. By convention, the shell ensuresthat when the program begins exe-
cuting its main routine

int main(int argc, char *argv[])

theargc andargv arguments have the following values:

2

• argc == 3,

• argv[0] == ‘‘/bin/ls’’,

• argv[1]== ‘‘-l’’,

• argv[2]== ‘‘-d’’.

Alternatively, typing the command line

tsh> /bin/ls -l -d &

runs thels program in the background.

Unix shells support the notion ofjob control, which allows users to move jobs back and forth between back-
ground and foreground, and to change the process state (running, stopped, or terminated) of the processes in
a job. Typingctrl-c causes a SIGINT signal to be delivered to each process in the foreground job. The
default action for SIGINT is to terminate the process. Similarly, typingctrl-z causes a SIGTSTP signal to
be delivered to each process in the foreground job. The default action for SIGTSTP is to place a process in
the stopped state, where it remains until it is awakened by the receipt of a SIGCONT signal. Unix shells also
provide various built-in commands that support job control. For example:

• jobs: List the running and stopped background jobs.

• bg <job>: Change a stopped background job to a running background job.

• fg <job>: Change a stopped or running background job to a running in the foreground.

• kill <job>: Terminate a job.

The tsh Specification

Your tsh shell should have the following features:

• The prompt should be the string “tsh> ”.

• The command line typed by the user should consist of aname and zero or more arguments, all separated
by one or more spaces. Ifname is a built-in command, thentsh should handle it immediately and wait
for the next command line. Otherwise,tsh should assume thatname is the path of an executable file,
which it loads and runs in the context of an initial child process (In this context, the termjob refers to
this initial child process).

• tsh need not support pipes (|) or I/O redirection (< and>).

• Typing ctrl-c (ctrl-z) should cause a SIGINT (SIGTSTP) signal to be sent to the current fore-
ground job, as well as any descendents of that job (e.g., any child processes that it forked). If there is no
foreground job, then the signal should have no effect.

• If the command line ends with an ampersand&, thentsh should run the job in the background. Other-
wise, it should run the job in the foreground.

3

• Each job can be identified by either a process ID (PID) or a job ID (JID), which is a positive integer
assigned bytsh. JIDs should be denoted on the command line by the prefix ’%’. For example, “%5”
denotes JID 5, and “5” denotes PID 5. (We have provided you with all of the routinesyou need for
manipulating the job list.)

• tsh should support the following built-in commands:

– Thequit command terminates the shell.

– Thejobs command lists all background jobs.

– Thebg <job> command restarts<job> by sending it a SIGCONT signal, and then runs it in
the background. The<job> argument can be either a PID or a JID.

– Thefg <job> command restarts<job> by sending it a SIGCONT signal, and then runs it in
the foreground. The<job> argument can be either a PID or a JID.

• tsh should reap all of its zombie children. If any job terminatesbecause it receives a signal that it didn’t
catch, thentsh should recognize this event and print a message with the job’s PID and a description of
the offending signal.

Checking Your Work

We have provided some tools to help you check your work.

Reference solution.The Linux executabletshref is the reference solution for the shell. Run this program
to resolve any questions you have about how your shell shouldbehave.Your shell should emit output that is
identical to the reference solution(except for PIDs, of course, which change from run to run).

Shell driver. Thesdriver.pl program executes a shell as a child process, sends it commands and signals
as directed by atrace file, and captures and displays the output from the shell.

Use the -h argument to find out the usage ofsdriver.pl:

unix> ./sdriver.pl -h
Usage: sdriver.pl [-hv] -t <trace> -s <shellprog> -a <args>
Options:

-h Print this message
-v Be more verbose
-t <trace> Trace file
-s <shell> Shell program to test
-a <args> Shell arguments
-g Generate output for autograder

We have also provided 16 trace files (trace{01-16}.txt) that you will use in conjunction with the shell
driver to test the correctness of your shell. The lower-numbered trace files do very simple tests, and the higher-
numbered tests do more complicated tests.

You can run the shell driver on your shell using trace filetrace01.txt (for instance) by typing:

unix> ./sdriver.pl -t trace01.txt -s ./tsh -a "-p"

(the-a "-p" argument tells your shell not to emit a prompt), or

4

unix> make test01

Similarly, to compare your result with the reference shell,you can run the trace driver on the reference shell
by typing:

unix> ./sdriver.pl -t trace01.txt -s ./tshref -a "-p"

or

unix> make rtest01

For your reference,tshref.out gives the output of the reference solution on all races. Thismight be more
convenient for you than manually running the shell driver onall trace files.

The neat thing about the trace files is that they generate the same output you would have gotten had you run
your shell interactively (except for an initial comment that identifies the trace). For example:

bressoud@219a$ make test15
./sdriver.pl -t trace15.txt -s ./tsh -a "-p"
#
trace15.txt - Putting it all together
#
tsh> ./bogus
./bogus: Command not found.
tsh> ./myspin 10
Job (9721) terminated by signal 2
tsh> ./myspin 3 &
[1] (9723) ./myspin 3 &
tsh> ./myspin 4 &
[2] (9725) ./myspin 4 &
tsh> jobs
[1] (9723) Running ./myspin 3 &
[2] (9725) Running ./myspin 4 &
tsh> fg %1
Job [1] (9723) stopped by signal 20
tsh> jobs
[1] (9723) Stopped ./myspin 3 &
[2] (9725) Running ./myspin 4 &
tsh> bg %3
%3: No such job
tsh> bg %1
[1] (9723) ./myspin 3 &
tsh> jobs
[1] (9723) Running ./myspin 3 &
[2] (9725) Running ./myspin 4 &
tsh> fg %1
tsh> quit
bressoud@219a$

5

Hints

• Read every word of Chapter 8 (Exceptional Control Flow) in your textbook.

• Use the trace files to guide the development of your shell. Starting withtrace01.txt, make sure that
your shell produces theidenticaloutput as the reference shell. Then move on to trace filetrace02.txt,
and so on.

• Thewaitpid, kill, fork, execve, setpgid, andsigprocmask functions will come in very
handy. The WUNTRACED and WNOHANG options towaitpidwill also be useful.

• When you implement your signal handlers, be sure to sendSIGINT andSIGTSTP signals to the entire
foreground process group, using ”-pid” instead of ”pid” in the argument to thekill function. The
sdriver.pl program tests for this error.

• One of the tricky parts of the assignment is deciding on the allocation of work between thewaitfg and
sigchld handler functions. We recommend the following approach:

– In waitfg, use a busy loop around thesleep function.

– In sigchld handler, use exactly one call towaitpid.

While other solutions are possible, such as callingwaitpid in bothwaitfgandsigchld handler,
these can be very confusing. It is simpler to do all reaping inthe handler.

• In eval, the parent must usesigprocmask to blockSIGCHLD signals before it forks the child, and
then unblock these signals, again usingsigprocmask after it adds the child to the job list by calling
addjob. Since children inherit theblocked vectors of their parents, the child must be sure to then
unblockSIGCHLD signals before it execs the new program.

The parent needs to block theSIGCHLD signals in this way in order to avoid the race condition where
the child is reaped bysigchld handler (and thus removed from the job list)beforethe parent calls
addjob.

• Programs such asmore, less, vi, andemacs do strange things with the terminal settings. Don’t run
these programs from your shell. Stick with simple text-based programs such as/bin/ls, /bin/ps,
and/bin/echo.

• When you run your shell from the standard Unix shell, your shell is running in the foreground process
group. If your shell then creates a child process, by defaultthat child will also be a member of the
foreground process group. Since typingctrl-c sends a SIGINT to every process in the foreground
group, typingctrl-c will send a SIGINT to your shell, as well as to every process that your shell
created, which obviously isn’t correct.

Here is the workaround: After thefork, but before theexecve, the child process should callsetpgid(0,
0), which puts the child in a new process group whose group ID is identical to the child’s PID. This
ensures that there will be only one process, your shell, in the foreground process group. When you type
ctrl-c, the shell should catch the resulting SIGINT and then forward it to the appropriate foreground
job (or more precisely, the process group that contains the foreground job).

6

Evaluation

Your score will be computed out of a maximum of 90 points basedon the following distribution:

80 Correctness: 16 trace files at 5 points each.

10 Style points. We expect you to have good comments (5 pts) and to check the return value of EVERY
system call (5 pts).

Your solution shell will be tested for correctness on a Linuxmachine, using the same shell driver and trace
files that were included in your lab directory. Your shell should produceidentical output on these traces as the
reference shell, with only two exceptions:

• The PIDs can (and will) be different.

• The output of the/bin/ps commands intrace11.txt,trace12.txt, andtrace13.txtwill
be different from run to run. However, the running states of any mysplit processes in the output of
the/bin/ps command should be identical.

Hand In Instructions

• Make sure you have included your names in the header comment of tsh.c.

• Create a team name of the form:

– “ID” whereID is your Department Linux login name, if you are working alone, or

– “ID1+ID2” where ID1 is the login name of the first team member andID2 is the login name of
the second team member.

We need you to create your team names in this way so that we can autograde your assignments.

• To hand in yourtsh.c file, type:

make handin TEAM=teamname

whereteamname is the team name described above. This will copy your tsh.c file into a team/version
specific copy. You must then email the resultant file to your instructor.

• After the handin, if you discover a mistake and want to submita revised copy, type

make handin TEAM=teamname VERSION=2

Keep incrementing the version number with each submission,and don’t forget to email the result.

Good luck!

7

