€s281: Introduction to Computer Systems
The Shell Lab — Exceptional Control Flow

Distributed: Monday, Nov. 6, Due: Monday, Nov. 20

Introduction

The purpose of this assignment is to become more familidn tié concepts of process control and asyn-
chronous software interrupts known as signalling. Youdlttis by writing a simple Unix shell program that
supports job control.

Logistics

You may work in a group of up to two people in solving the protefor this assignment. The only “hand-in”
will be electronic. Any clarifications and revisions to thesgnment will be posted on the course Web page
and/or on Piazza. If you have questions, plegsst them to Piazzso that all students can see the question
and the subsequent answetr.

Hand Out Instructions

All the files you require for this assignment have been gathéogether in a Unix “tar” file. This is a single
archive file containing a set of files. On a Linux lab machin®im 219, you should be able to download
the fileshl ab- handout . t ar from the course web page and place your copy in a parent diyeof your
choice.

Then, from the directory containing the tar file, do the foiliog:

e Type the commandkdi r shl ab; cd shl ab
e Type the commandar xvf ../shl ab-handout.tar to expand the tarfile.
e Type the commandeke cl ean; make to compile and link some test routines.

e Type your team member names in the header comment at the teghofc.

Looking at thet sh. c (tiny shel) file, you will see that it contains a functional skeleton aimple Unix shell.

To help you get started, we have already implemented theidem®sting functions. Your assignment is to
complete the remaining empty functions listed below. Asratga&heck for you, we've listed the approximate
number of lines of code for each of these functions in ouresfee solution (which includes lots of comments).

e eval : Main routine that parses and interprets the command lif@lifies]

e bui | ti n.cnd: Recognizes and interprets the built-in commars: t , f g, bg, andj obs. [25 lines]

do_bgf g: Implements thdg andf g built-in commands. [50 lines]

wai t f g: Waits for a foreground job to complete. [20 lines]

si gchl d_handl er : Catches SIGCHILD signals. [80 lines]

si gi nt _handl er : Catches SIGINTdt r | - ¢) signals. [15 lines]

si gt st p_handl er: Catches SIGTSTR(r | - z) signals. [15 lines]

Each time you modify yout sh. c file, type make to recompile it. To run your shell, typesh to the
command line:

uni x> ./tsh
tsh> [type conmmands to your shell here]

General Overview of Unix Shells

A shellis an interactive command-line interpreter that runs maogr on behalf of the user. A shell repeatedly
prints a prompt, waits for aommand lineon st di n, and then carries out some action, as directed by the
contents of the command line.

The command line is a sequence of ASCII text words delimited/hitespace. The first word in the command
line is either the name of a built-in command or the pathnafren@xecutable file. The remaining words are
command-line arguments. If the first word is a built-in conrmahahe shell immediately executes the command
in the current process. Otherwise, the word is assumed thebpathname of an executable program. In this
case, the shell forks a child process, then loads and rungrdggam in the context of the child. The child
processes created as a result of interpreting a single cachlime are known collectively asjab. In general,

a job can consist of multiple child processes connected by flpes.

If the command line ends with an ampersai&d, then the job runs in théackground which means that the
shell does not wait for the job to terminate before printing prompt and awaiting the next command line.
Otherwise, the job runs in thiereground which means that the shell waits for the job to terminateieef
awaiting the next command line. Thus, at any point in timenast one job can be running in the foreground.
However, an arbitrary number of jobs can run in the backgioun

For example, typing the command line
tsh> j obs

causes the shell to execute the buili-imbs command. Typing the command line
tsh> /bin/ls -1 -d

runs thel s program in the foreground. By convention, the shell ensthhaswhen the program begins exe-
cuting its main routine

int main(int argc, char xargv[])

thear gc andar gv arguments have the following values:

2

runs

Unix
ground and foreground, and to change the process statar(g)rstopped, or terminated) of the processes in
a job. Typingct rl - c causes a SIGINT signal to be delivered to each process irotegrbund job. The
default action for SIGINT is to terminate the process. Samy typingct rl - z causes a SIGTSTP signal to
be delivered to each process in the foreground job. The Hefation for SIGTSTP is to place a process in
the stopped state, where it remains until it is awakened éydbeipt of a SIGCONT signal. Unix shells also
provide various built-in commands that support job contfFalr example:

Your

argc == 3,

argv[0] == “‘/bin/ls ",
argv[1]==**-1"",
argv[2]==""'-d .

Alternatively, typing the command line

tsh> /bin/ls -1 -d &

thd s program in the background.

shells support the notion ¢bb control which allows users to move jobs back and forth between back-

j obs: List the running and stopped background jobs.
bg <j ob>: Change a stopped background job to a running background job
f g <j ob>: Change a stopped or running background job to a runningeificteground.

ki1l <job>: Terminate a job.

Thet sh Specification

t sh shell should have the following features:

The prompt should be the string$h> ",

The command line typed by the user should consistridisie and zero or more arguments, all separated
by one or more spaces.dfane is a built-in command, thens h should handle it immediately and wait
for the next command line. Otherwidesh should assume thatarne is the path of an executable file,
which it loads and runs in the context of an initial child pees (In this context, the terjuab refers to
this initial child process).

t sh need not support pipes Y or I/O redirection € and>).

Typingctrl-c (ctrl -z) should cause a SIGINT (SIGTSTP) signal to be sent to theenuifore-
ground job, as well as any descendents of that job (e.g., lilt/grocesses that it forked). If there is no
foreground job, then the signal should have no effect.

If the command line ends with an ampersajdhent sh should run the job in the background. Other-
wise, it should run the job in the foreground.

e Each job can be identified by either a process ID (PID) or a [pl§JID), which is a positive integer
assigned by sh. JIDs should be denoted on the command line by the prédixFor example, %5”
denotes JID 5, and5” denotes PID 5. (We have provided you with all of the routiyesi need for
manipulating the job list.)

e t sh should support the following built-in commands:

— Thequi t command terminates the shell.
— Thej obs command lists all background jobs.

— Thebg <j ob> command restartsj ob> by sending it a SIGCONT signal, and then runs it in
the background. The&j ob> argument can be either a PID or a JID.

— Thef g <j ob>command restartsj ob> by sending it a SIGCONT signal, and then runs it in
the foreground. The&j ob> argument can be either a PID or a JID.

e t sh should reap all of its zombie children. If any job termindtesause it receives a signal that it didn’t
catch, thert sh should recognize this event and print a message with the [l and a description of
the offending signal.

Checking Your Work

We have provided some tools to help you check your work.

Reference solution.The Linux executablé shr ef is the reference solution for the shell. Run this program
to resolve any questions you have about how your shell sHmehave.Your shell should emit output that is
identical to the reference solutidiexcept for PIDs, of course, which change from run to run).

Shell driver. Thesdri ver. pl program executes a shell as a child process, sends it corsmaaddsignals
as directed by #&race filg and captures and displays the output from the shell.

Use the -h argument to find out the usagesdf i ver . pl :

uni x> ./sdriver.pl -h
Usage: sdriver.pl [-hv] -t <trace> -s <shellprog> -a <args>

Opt i ons:
-h Print this nessage
-V Be nore verbose
-t <trace> Trace file
-s <shel |l > Shell programto test
-a <args> Shel | argunents
-g Generate output for autograder

We have also provided 16 trace filds @ce{01- 16}. t xt) that you will use in conjunction with the shell
driver to test the correctness of your shell. The lower-nerat trace files do very simple tests, and the higher-
numbered tests do more complicated tests.

You can run the shell driver on your shell using tracetfiteaceQ1. t xt (for instance) by typing:
uni x> ./sdriver.pl -t traceOl.txt -s ./tsh -a "-p"

(the-a "-p" argument tells your shell not to emit a prompt), or

4

uni x> nmake test01

Similarly, to compare your result with the reference shgii can run the trace driver on the reference shell
by typing:

uni x> ./sdriver.pl -t traceOl.txt -s ./tshref -a "-p"
or

uni x> nmake rtest01

For your referencd, shr ef . out gives the output of the reference solution on all races. frtght be more
convenient for you than manually running the shell driverabrrace files.

The neat thing about the trace files is that they generateatine ®utput you would have gotten had you run
your shell interactively (except for an initial commentttidentifies the trace). For example:

bressoud@19a$ make testl15

./sdriver.pl -t tracelb.txt -s ./tsh -a "-p"
#

tracelb5.txt - Putting it all together
#

tsh> . /bogus

./ bogus: Conmand not found.

tsh> ./myspin 10

Job (9721) term nated by signal 2

tsh> ./myspin 3 &

[1] (9723) ./nyspin 3 &

tsh> ./myspin 4 &

[2] (9725) ./nyspin 4 &

tsh> j obs

[1] (9723) Running ./ nmyspin 3 &
[2] (9725) Running .Inmyspin 4 &
tsh> fg %

Job [1] (9723) stopped by signal 20
tsh> j obs

[1] (9723) Stopped ./ nmyspin 3 &
[2] (9725) Running .Inmyspin 4 &
tsh> bg %3

%3: No such job

tsh> bg %

[1] (9723) ./nyspin 3 &

tsh> j obs

[1] (9723) Running .Imyspin 3 &
[2] (9725) Running .Inmyspin 4 &
tsh> fg %

tsh> quit

bressoud@19a$%

Hints

e Read every word of Chapter 8 (Exceptional Control Flow) inryextbook.

e Use the trace files to guide the development of your shelttiBgawitht r ace01. t xt , make sure that
your shell produces thdenticaloutput as the reference shell. Then move onto tracefilce02. t xt ,
and so on.

e Thewai tpid,kill,fork, execve, setpgi d, andsi gpr ocnmask functions will come in very
handy. The WUNTRACED and WNOHANG options¥ai t pi d will also be useful.

e When you implement your signal handlers, be sure to &r@ NT andSI GTSTP signals to the entire
foreground process group, usingpi d” instead of 'pi d” in the argument to thé&i | | function. The
sdri ver. pl program tests for this error.

e One of the tricky parts of the assignment is deciding on tleeation of work between theai t f g and
si gchl d_handl er functions. We recommend the following approach:

— Inwai t f g, use a busy loop around tké eep function.
— Insi gchl d_handl er, use exactly one call teai t pi d.

While other solutions are possible, such as caliagit pi d in bothwai t f gandsi gchl d_handl er,
these can be very confusing. It is simpler to do all reapingpéhandler.

e Ineval , the parent must usal gpr ocnask to block SI GCHLD signals before it forks the child, and
then unblock these signals, again usinggpr ocmask after it adds the child to the job list by calling
addj ob. Since children inherit thbel ocked vectors of their parents, the child must be sure to then
unblockSI GCHLD signals before it execs the new program.

The parent needs to block tis¢ GCHLD signals in this way in order to avoid the race condition where
the child is reaped bgi gchl d_handl er (and thus removed from the job lidigforethe parent calls
addj ob.

e Programs such awr e, | ess, vi , andenacs do strange things with the terminal settings. Don'’t run
these programs from your shell. Stick with simple text-blagegrams such dsbi n/ 1 s,/ bi n/ ps,
and/ bi n/ echo.

e When you run your shell from the standard Unix shell, youllseeunning in the foreground process
group. If your shell then creates a child process, by dethalt child will also be a member of the
foreground process group. Since typiogr | - ¢ sends a SIGINT to every process in the foreground
group, typingct r| - ¢ will send a SIGINT to your shell, as well as to every procest tfour shell
created, which obviously isn't correct.

Here is the workaround: After tHeor k, but before thexecve, the child process should calét pgi d(0,
0) , which puts the child in a new process group whose group IEéstical to the child’s PID. This
ensures that there will be only one process, your shell,@rfdreground process group. When you type
ctrl - c, the shell should catch the resulting SIGINT and then fodwi&to the appropriate foreground
job (or more precisely, the process group that containsategyfound job).

Evaluation

Your score will be computed out of a maximum of 90 points basethe following distribution:

80 Correctness: 16 trace files at 5 points each.

10 Style points. We expect you to have good comments (5 pts) amtidéck the return value of EVERY
system call (5 pts).

Your solution shell will be tested for correctness on a Limiachine, using the same shell driver and trace
files that were included in your lab directory. Your shell slioproducedentical output on these traces as the
reference shell, with only two exceptions:

e The PIDs can (and will) be different.

e The output of thé bi n/ ps commandsinracell. t xt,tracel2.txt,andtracel3. t xt will
be different from run to run. However, the running statesrof myspl i t processes in the output of
the/ bi n/ ps command should be identical.

Hand In Instructions

e Make sure you have included your names in the header comrhésto c.
e Create a team name of the form:

— “ID" where ID is your Department Linux login name, if you are working alpoe

— “ID1+1ID>" where ID1 is the login name of the first team member aig, is the login name of
the second team member.

We need you to create your team names in this way so that weutagrade your assignments.

e To hand in yout sh. c file, type:

make handi n TEAM=t eammane

wheret eamane is the team name described above. This will copy your tshedrftb a team/version
specific copy. You must then email the resultant file to yostrirctor.

e After the handin, if you discover a mistake and want to sutanmévised copy, type

make handi n TEAM=t eammane VERSI ON=2

Keep incrementing the version number with each submissiot,don’'t forget to email the result.

Good luck!

