€s281: Introduction to Computer Systems
Project Lab: The Cachelab — Simulating a Cache Controler

Distributed: Monday, Nov. 30, Due: Monday, Dec. 7 at midiigh

I ntroduction

This assignment will help you understand the operation oheanemories by simulating the actions that a
Cache Controller must take to process memory addresseartloyar, your simulator must manageigual
cache against a sequence of address references, deteitainerbus misses, and, in a virtual sense, replace
lines already present in the cache with a line being reqdesibe thing that makes your simulator different
than an actual cache controller is that you have no requinetodoad or store the actual data associated with
the memory references. However, to make the assignment realistic, we will use a program that can
determine all of the instruction and data addresses rafedeby a target program and log them to a file. This
log file will be the input to your simulator.

This is an individual project. You must run this lab on a 68x86-64 machine, such as the Ubuntu machines
in Olin 219. Be sure and use Piazza to post questions andmjetsrérom your instructor, your TAs, and from
fellow students. Students sending questions directlydgtiofessor by email will be politely asked to post on
Piazza for an answer.

Your simulator is a C program (about 200-400 lines) that ates the behavior of a cache memory.

1 Downloading the assignment

Start by copyingachel ab- handout . t ar , available on the course web site, to a protected Linux thrgc
in which you plan to do your work. Then give the command

| i nux> tar xvf cachel ab-handout.tar

This will create a directory calledachel ab- handout that contains a number of files. You will be modi-
fying a single file:csi m c. To compile, type:

[i nux> nake cl ean
i nux> make

2 Detailed Description

2.1 Reference TraceFiles

Thet r aces subdirectory of the handout directory contains a collecobreference trace filethat we will
use to evaluate the correctness of the cache simulator yibe. wrhe trace files are generated by a Linux
program calledral gri nd. For example, typing

[inux> valgrind --l1og-fd=1 --tool =l ackey --trace-nenryes |Is

on the command line runs the executable progrhsi’,'captures a trace of each of its memory accesses in the
order they occur, and prints them shdout .

Val gri nd memory traces have the following form:

| 0400d7d4, 8
M 0421c7f 0, 4
L 04f6b868, 8
S 7ff0005c8, 8

Each line denotes one or two memory accesses. The formatiofiaa is
[space] operati on address, si ze

The operationfield denotes the type of memory access: “I” denotes an ictitruload, “L" a data load, “S” a
data store, and “M” a data modify (i.e., a data load followgdlgata store). There is never a space before each
“I". There is always a space before each “M”, “L”, and “S”. Thddresdfield specifies a 64-bit hexadecimal
memory address. Thazefield specifies the number of bytes accessed by the operation.

2.2 Writing a Cache Simulator

You will write a cache simulator imsi m ¢ that takes aval gri nd memory trace as input, simulates the
hit/miss behavior of a cache memory on this trace, and ositpettotal number of hits, misses, and evictions.

We have provided you with the binary executable akference cache simulatocalledcsi m r ef , that
simulates the behavior of a cache with arbitrary size andcéetivity on aval gri nd trace file. It uses the
LRU (least-recently used) replacement policy when chapsihich cache line to evict.

The reference simulator takes the following command-liggients:

Usage: ./csimref [-hv] -s <s> -E <E> -b -t <tracefil e>

e - h: Optional help flag that prints usage info

e - Vv: Optional verbose flag that displays trace info

e -s <s>: Number of set index bitsq = 2¢ is the number of sets)
e - E <E>: Associativity (hnumber of lines per set)

e - b : Number of block bits B = 2” is the block size)

e -t <tracefil e>: Name of theval gri nd trace to replay

The command-line arguments are based on the notatjdn, @ndb) from page 597 of the CS:APP2e textbook.
For example:

l[inux> ./csimref -s 4 -E 1 -b 4 -t traces/yi.trace
hits:4 m sses:5 evictions: 3

The same example in verbose mode:

linux> ./csimref -v -s 4 -E1 -b 4 -t traces/yi.trace
L 10,1 m ss

M 20,1 mss hit

L 22,1 hit

S 18,1 hit

L 110,1 m ss eviction

L 210,1 miss eviction

M 12,1 mss eviction hit

hits:4 msses:5 evictions: 3

Your job is to fill in thecsi m c file so that it takes the same command line arguments and gesdhe
identical output as the reference simulator. Notice thit fike is almost completely empty. You'll need to
write it from scratch.

Programming Rules

Include your name and loginID in the header commentfrm c.
Your csi m c file must compilewithout warningsn order to receive credit.

Your simulator must work correctly for arbitrar, F, andb. This means that you will need to allo-
cate storage for your simulator’s data structures usingrild oc function. Type “man malloc” for
information about this function.

For this lab, we are interested only in data cache performasg your simulator should ignore all
instruction cache accesses (lines starting with “I”). Retat val gri nd always puts “I” in the first
column (with no preceding space), and “M”, “L", and “S” in teecond column (with a preceding space).
This may help you parse the trace.

To receive credit, you must call the functigm i nt Summrar y, with the total number of hits, misses,
and evictions, at the end of yoami n function:

print Summary(hit_count, miss_count, eviction_count);
For this this lab, you should assume that memory accessealigned properly, such that a single

memory accessever crosses block boundaries. By making this assumption, you cagmore the request
sizes in theval gri nd traces

3 Evaluation

This section describes how your work will be evaluated. TiHlestore for this lab is 50 points:

e Correctness: 36 Points

e Style, Performance, Absence of Memory Leaks: 14 Points

3.1 Evaluation for Correctness

We will run your cache simulator using different cache paetars and traces. There are eighbwntest cases,
each worth 3 points, except for the last case, which is wophists:

l[inux> ./csim-s 1 -E1-b1-t traces/yiZ2.trace
linux> ./csim-s 4 -E 2 -b 4 -t traces/yi.trace
linux> ./csim-s 2 -E 1 -b 4 -t traces/dave.trace
linux> ./csim-s 2 -E 1 -b 3 -t traces/trans.trace
l[inux> ./csim-s 2 -E 2 -b 3 -t traces/trans.trace
linux> ./csim-s 2 -E 4 -b 3 -t traces/trans.trace
linux> ./csim-s 5 -E1-b 5 -t traces/trans.trace
l[inux> ./csim-s 5 -E1-b5 -t traces/long.trace

You can use the reference simulatsi m r ef to obtain the correct answer for each of these test cases.
During debugging, use thev option for a detailed record of each hit and miss.

For each test case, outputting the correct number of cattienhisses and evictions will give you full credit
for that test case. Each of your reported number of hits,esiasd evictions is worth 1/3 of the credit for that
test case. That is, if a particular test case is worth 3 poamd your simulator outputs the correct number of
hits and misses, but reports the wrong number of evictidre you will earn 2 points.

In addition to the known test cases, worth 27 total pointsiryastructors will use 2 additional tests, one worth
3 points, and another more complicated case, worth 6 padiihis.brings the correctness total to 36 points.

3.2 Evaluation for Style
There are 14 points for coding style. These will be assignadually by your instructor. Your program will

be assessed for good functional decomposition, good Vargdu function naming, and overall clarity. It will
also be inspected for efficiency and for the potential of mgnteaks.

4 WorkingonthelLab

We have provided you with an autograding program, calledt - csi m that tests the correctness of your
cache simulator on the reference traces. Be sure to contpilesymulator before running the test:

i nux> nmake
linux> ./test-csim
Your simnul at or Ref erence simul at or
Points (s, E b) Hts Msses Evicts Hts Msses Evicts
3(1,1,1) 9 8 6 9 8 6 traces/yi2.trace
3 (4,2,4) 4 5 2 4 5 2 traces/yi.trace

3(2,1,4) 2 3 1 2 3 1 traces/dave.trace
3(2,1,3) 167 71 67 167 71 67 traces/trans.trace
3(2,2,3) 201 37 29 201 37 29 traces/trans.trace
3(2,4,3) 212 26 10 212 26 10 traces/trans.trace
3 (5,1,5) 231 7 0 231 7 0 traces/trans.trace
6 (5,1,5 265189 21775 21743 265189 21775 21743 traces/long.trace
27

For each test, it shows the number of points you earned, ttleecparameters, the input trace file, and a
comparison of the results from your simulator and the refegesimulator.

Here are some hints and suggestions:

e Do your initial debugging on the small traces, such races/ dave. trace.

e The reference simulator takes an optionalargument that enables verbose output, displaying the hits,
misses, and evictions that occur as a result of each memoegscYou are not required to implement
this feature in youcsi m ¢ code, but we strongly recommend that you do so. It will help gebug
by allowing you to directly compare the behavior of your siatar with the reference simulator on the
reference trace files.

e We recommend that you use thet opt function to parse your command line arguments. You'll need
the following header files:

#i ncl ude <getopt. h>
#i ncl ude <stdlib. h>
#i ncl ude <uni std. h>

See ‘'man 3 get opt " for details.

e Each data load (L) or store (S) operation can cause at mostamie miss. The data modify operation
(M) is treated as a load followed by a store to the same addfésss, an M operation can result in two
cache hits, or a miss and a hit plus a possible eviction.

5 Handing in Your Work

Each time you typarake in the cachel ab- handout directory, the Makefile creates a tarball, called
useri d- handi n. t ar, that contains your currewtsi m c file.

Email youruseri d- handi n. t ar to your instructor by the due date and time.

