€s281: Introduction to Computer Systems

Project Lab 4: The Buflab — Designing a Buffer Overflow Attack

Distributed: Wednesday, Oct. 14, Due: Monday, Oct. 26,9 ..

I ntroduction

This assignment will help you develop a detailed undersiandf 1A-32 calling conventions and stack orga-
nization. It involves applying a series btiffer overflow attacksn an executable fileuf bonb in the lab
directory.

Note: In this assignment, you will gain firsthand experience witte ®f the methods commonly used to
exploit security weaknesses in operating systems and neseovers. Our purpose is to help you learn about
the runtime operation of programs and to understand theaafithis form of security weakness so that you
can avoid it when you write system code. We do not condonegb@iithis or any other form of attack to gain
unauthorized access to any system resources. There aipalratatutes governing such activities.

L ogistics

As usual, this is an individual project.

We generated the lab usimggc’s - nB2 flag, so all code produced by the compiler follows 1A-32 rukegen
if the host is an x86-64 system. This should be enough to noawou that the compiler can use any calling
convention it wants, so long as it's consistent.

Hand Out Instructions
You can obtain your buffer bomb by pointing your Web browder a
http://tashi.mathsci.deni son. edu: 18213/

The server will return & ar file called the tar file to a (protected) directory in which ypkan to do your
work. Then give the command ar xvf bufl ab- handout .t ar”. This will create a directory called
buf | ab- handout containing the following three executable files:

bufbomb: The buffer bomb program you will attack.
makecookie: Generates a “cookie” based on your userid.

hex2raw: A utility to help convert between string formats.

In the following instructions, we will assume that you hawpied the three programs to a protected local
directory, and that you are executing them in that localatiney.

Userids and Cookies

Phases of this lab will require a slightly different solutipom each student. The correct solution will be based
on your userid.

A cookieis a string of eight hexadecimal digits that is (with high lpability) unique to your userid. You can
generate your cookie with theakecooki e program giving your userid as the argument. For example:

uni x> ./ makecooki e studen_al
0x1005b2b7

wherestudenalis replaced by your Olin Linux lab login id. Your cookie is fdifent from any other students’
cookie, and is used to differentiate correct solutions foifferent students.

In four of your five buffer attacks, your objective will be toake your cookie show up in places where it
ordinarily would not.

The BUFBOMB Program

The BUFBOMB program reads a string from standard input. It does so wihfainctionget buf defined
below:

1 /+ Buffer size for getbuf =/

2 #defi ne NORMAL_BUFFER_SI ZE 32

3

4 int getbuf()

5

6 char buf [NORVAL_BUFFER_SI ZE] ;
7 Get s(buf);

8 return 1;

9}

The functionGet s is similar to the standard library functioget s—it reads a string from standard input
(terminated by\ n’ or end-of-file) and stores it (along with a null terminatat)the specified destination. In
this code, you can see that the destination is an drudyhaving sufficient space for 32 characters.

Cet s (andget s) grabs a string off the input stream and stores it into it$idason address (in this cabeif).
However,Get s() has no way of determining whethleuf is large enough to store the whole input. It simply
copies the entire input string, possibly overrunning theruts of the storage allocated at the destination.

If the string typed by the user et buf is no more than 31 characters long, it is clear tpat buf will
return 1, as shown by the following execution example:

uni x> ./ buf bomb -u studen.al
Type string: | love CS-281.
Dud: getbuf returned Ox1

Typically an error occurs if we type a longer string:

2

uni x> ./ bufbonmb -u studen_al
Type string: It is easier to love this class when you are a professor
Quch!: You caused a segmentation fault!

As the error message indicates, overrunning the buffec#lyi causes the program state to be corrupted,
leading to a memory access error. Your task is to be morercleitie the strings you feedUFBOMB so that it
does more interesting things. These are cadbguloit strings.

BurFBoOMB takes several different command line arguments:

- u userid Operate the bomb for the indicated userid. You should alvpagside this argument for several
reasons:

e Itis required to submit your successful attacks to the gigderver.

e BUFBOMB determines the cookie you will be using based on your usesdjoes the program
MAKECOOKIE.

e We have built features intBUFBOMB so that some of the key stack addresses you will need to use
depend on your userid’s cookie.

- h: Print list of possible command line arguments.
- n: Operate in “Nitro” mode, as is used in Level 4 below.

- s: Submit your solution exploit string to the grading server.

At this point, you should think about the x86 stack structatat and figure out what entries of the stack you
will be targeting. You may also want to think abaxactlywhy the last example created a segmentation fault,
although this is less clear.

Your exploit strings will typically contain byte values thdo not correspond to the ASCII values for printing
characters. The prograrEX2RAW can help you generate thesav strings. It takes as inputlaex-formatted
string. In this format, each byte value is represented byhexo digits. For example, the strin@12345”
could be entered in hex format &30 31 32 33 34 35.” (Recall that the ASCII code for decimal digit
is0x3z.)

The hex characters you passx2rRAwW should be separated by whitespace (blanks or newlinesjohmmend
separating different parts of your exploit string with newk while you're working on it. HEX2RAW also
supports C-style block comments, so you can mark off sestdiyour exploit string. For example:

bf 66 7b 32 78 /* nov $0x78327b66, Yedi =/

Be sure to leave space around both the starting and endinmentrstrings (/*, */) so they will be properly
ignored.

If you generate a hex-formatted exploit string in the Bbepl oi t . t xt, you can apply the raw string to
BUFBOMB in several different ways:

1. You can set up a series of pipes to pass the string threggl2rRAw.Pipes are a mechanism in Unix-
based systems that, when operating in a command-line mamrzeiferminal shell, allow a user to
“chain” commands together. The standard output of one camdn®g“piped” as the standard input of
the next command.

uni x> cat exploit.txt | ./hex2raw | ./bufbonb -u studenal

In this example, the cat command outputs exploit.txt to tésmdard output, which is rerouted to the
standard input of hex2raw. The output of hex2raw is rerotadzecome the input to bufbomb.

2. You can store the raw string in a file and use 1/O redirectmisupply it toBUFBOMB, where 1/O
redirection allows standard input and/or standard outpabtne from/go to a file in the filesystem:

uni x> ./ hex2raw < exploit.txt > exploit-rawtxt
uni x> ./ bufbonb -u studen_al < exploit-raw txt

This approach can also be used when runmingsoms from within GDB:

uni x> gdb buf bonb
(gdb) run -u studen_al < exploit-rawtxt

Important points:

e Your exploit string must not contain byte val0g 0A at any intermediate position, since this is the ASCII
code for newline { n’). WhenGet s encounters this byte, it will assume you intended to teriitize
string.

e HEX2RAW expects two-digit hex values separated by a whitespacd.y®a want to create a byte with
a hex value of 0, you need to specify 00. To create the WalEADBEEF you should pass DE AD BE
EF toHEX2RAW.

When you have correctly solved one of the levels, say level O:

../ hex2raw < snoke-bressoud.txt | ../bufbonb -u bressoud
Userid: bressoud

Cooki e: 0x1005b2b7

Type string: Snoke!: You call ed snoke()

VALI D

NI CE JOB!

then can submit your solution to the grading server using theption:

./ hex2raw < snoke-bressoud.txt | ./bufbonb -u bressoud -s
Userid: bressoud

Cooki e: 0x1005b2b7

Type string: Snoke!: You cal |l ed snoke()

VALI D

Sent exploit string to server to be vali dated.

NI CE JOB!

The server will test your exploit string to make sure it npalbrks, and it will update the Buffer Lab scoreboard
page indicating that your userid (listed by your cookie foomymity) has completed this level.

You can view the scoreboard by pointing your Web browser at

http://tashi. mathsci. deni son. edu: 18213/ scor eboard

Unlike the Bomb Lab, there is no penalty for making mistakethis lab. Feel free to fire away aUFBOMB
with any string you like. Of course, you shouldn’t brute fetthis lab either, since it would take longer than
you have to do the assignment.

IMPORTANT NOTE: You can work on your buffer bomb on any Linwaohine, but in order to submit your
solution, you will need to be running on one of the machingféOlin 219 Linux Lab.

Level O0: Candle (10 pts)

The functionget buf is called withinsuFBOMB by a functiont est having the following C code:

1 void test()

2 {

3 int val;

4 /+* Put canary on stack to detect possible corruption */

5 volatile int |ocal = uniqueval ();

6

7 val = getbuf();

8

9 [+ Check for corrupted stack =/

10 if (local !'= uniqueval ()) {

11 printf("Sabotaged!: the stack has been corrupted\n");
12 }

13 else if (val == cookie) {

14 printf("Boom : getbuf returned Ox¥%\n", val);
15 val i dat e(3);

16 } else {

17 printf("Dud: getbuf returned Ox%\n", val);

18 }

19 }

Whenget buf executes its return statement (line 5gat buf), the program ordinarily resumes execution
within functiont est (at line 7 of this function). We want to change this behavitiithin the filebuf bonb,
there is a functiors rok e having the following C code:

voi d snoke()

{
printf("Snmoke!: You called snoke()\n");
val i dat e(0);
exit(0);

}

Your task is to geBUFBOMB to execute the code fanoke whenget buf executes its return statement,
rather than returning tbest . Note that your exploit string may also corrupt parts of tteeclk not directly
related to this stage, but this will not cause a problem,esimok e causes the program to exit directly.

Some Advice:

¢ All the information you need to devise your exploit string fois level can be determined by examining
a disassembled version BbFBOMB. Useobj dunp - d to get this dissembled version.

e Be careful about byte ordering.

e You might want to usesDB to step the program through the last few instructiong@f buf to make
sure it is doing the right thing.

e The placement abuf within the stack frame foget buf depends on which version afcc was used
to compilebuf bonb, so you will have to read some assembly to figure out its traation.

Level 1. Sparkler (10 pts)
Within the filebuf borb there is also a functiohi zz having the following C code:

void fizz(int val)

{

if (val == cookie) {
printf("Fizz!: You called fizz(0x%)\n", val);
val idate(1);

} else

printf("Msfire: You called fizz(0x%)\n", val);
exit(0);

Similar to Level 0, your task is to gstUFBOMB to execute the code fdéri zz rather than returning tbest .
In this case, however, you must make it appeafitaz as if you have passed your cookie as its argument.
How can you do this?

Some Advice:

e Note that the program won't really cdili zz—it will simply execute its code. This has important
implications for where on the stack you want to place youlkémo

Level 2. Firecracker (15 pts)

A much more sophisticated form of buffer attack involvespving a string that encodes actual machine
instructions. The exploit string then overwrites the retpointer with the starting address of these instructions
on the stack. When the calling function (in this cgss buf) executes its et instruction, the program will
start executing the instructions on the stack rather thamnieg. With this form of attack, you can get the
program to do almost anything. The code you place on the sdarzdled theexploitcode. This style of attack

is tricky, though, because you must get machine code ontet#ol and set the return pointer to the start of
this code.

Within the filebuf borb there is a functiodbang having the following C code:

i nt global_value = 0;

voi d bang(int val)

i f (global_value == cookie) {
printf("Bang!: You set global value to Ox%\n", global _val ue);
val i date(2);
} else
printf("Msfire: global _value = Ox%\n", gl obal val ue);
exit(0);

Similar to Levels 0 and 1, your task is to ggfFBOMB to execute the code fdrang rather than returning
tot est . Before this, however, you must set global variapleobal _val ue to your userid’'s cookie. Your
exploit code should sajl obal _val ue, push the address tfang on the stack, and then execute at
instruction to cause a jump to the code fang.

Some Advice:

e You can usesDB to get the information you need to construct your exploihgtr Set a breakpoint within
get buf and run to this breakpoint. Determine parameters such asltiress o§l obal _val ue and
the location of the buffer.

e Determining the byte encoding of instruction sequencesdnyllis tedious and prone to errors. You can
let tools do all of the work by writing an assembly code file aming the instructions and data you
want to put on the stack. Assemble this file wghc - nB2 - ¢ and disassemble it witbbj dunp
- d. You should be able to get the exact byte sequence that ybtypél at the prompt. (A brief example
of how to do this is included at the end of this writeup.)

e Keep in mind that your exploit string depends on your machyoeir compiler, and even your userid’s
cookie. Do all of your work on one of the machines assigned duyr ynstructor, and make sure you
include the proper userid on the command lin8trBOMB.

e Watch your use of address modes when writing assembly coote. tNatmovl $0x4, %eax moves
the value 0x00000004 into register¥eax; whereastovl 0x4, %ax moves the valuat mem-

ory location0x00000004 into Yeax. Since that memory location is usually undefined, the second

instruction will cause a segfault!

e Do not attempt to use eitherjarp or acal | instruction to jump to the code fdrang. These instruc-
tions uses PC-relative addressing, which is very trickyetioup correctly. Instead, push an address on
the stack and use theet instruction.

Level 3: Dynamite (20 pts)

Our preceding attacks have all caused the program to jumpetadde for some other function, which then
causes the program to exit. As a result, it was acceptablset@xploit strings that corrupt the stack, overwrit-
ing saved values.

The most sophisticated form of buffer overflow attack caukesprogram to execute some exploit code that
changes the program’s register/memory state, but makesrtlyggam return to the original calling function
(t est in this case). The calling function is oblivious to the alttathis style of attack is tricky, though, since
you must: 1) get machine code onto the stack, 2) set the rptimer to the start of this code, and 3) undo
any corruptions made to the stack state.

Your job for this level is to supply an exploit string that Inglauseget buf to return your cookie back to

t est, rather than the value 1. You can see in the codet st that this will cause the program to go
“Boon .” Your exploit code should set your cookie as the return @atestore any corrupted state, push the
correct return location on the stack, and executeta instruction to really return tb est .

Some Advice:

e You can useGDB to get the information you need to construct your exploiingtr Set a breakpoint
within get buf and run to this breakpoint. Determine parameters such asathes return address.

e Determining the byte encoding of instruction sequencesdnyllis tedious and prone to errors. You can
let tools do all of the work by writing an assembly code file taéming the instructions and data you
want to put on the stack. Assemble this file withc and disassemble it withBaDumP. You should be
able to get the exact byte sequence that you will type at thpt. (A brief example of how to do this
is included at the end of this writeup.)

e Keep in mind that your exploit string depends on your machyoerr compiler, and even your userid’s
cookie. Do all of your work on the machines assigned by yostrirctor, and make sure you include the
proper userid on the command lineROFBOMB.

Once you complete this level, pause to reflect on what you hagemplished. You caused a program to
execute machine code of your own design. You have done soliffieiently stealthy way that the program
did not realize that anything was amiss.

Level 4: Nitroglycerin (10 pts)

Please note: You'll need to use ther,” command-line flag in order to run this stage.

From one run to another, especially by different users, Haetestack positions used by a given procedure
will vary. One reason for this variation is that the valueslbenvironment variables are placed near the base
of the stack when a program starts executing. Environmeidhlas are stored as strings, requiring different
amounts of storage depending on their values. Thus, thk space allocated for a given user depends on the
settings of his or her environment variables. Stack passtialso differ when running a program undsws,
sinceGDB uses stack space for some of its own state.

In the code that callget buf , we have incorporated features that stabilize the stacthatahe position of
get buf 's stack frame will be consistent between runs. This madessible for you to write an exploit string
knowing the exact starting addresdff . If you tried to use such an exploit on a normal program, youldo
find that it works some times, but it causes segmentatiotsfatibther times. Hence the name “dynamite”™—an
explosive developed by Alfred Nobel that contains stainifizelements to make it less prone to unexpected
explosions.

For this level, we have gone the opposite direction, makivg stack positions even less stable than they
normally are. Hence the name “nitroglycerin”—an explogivat is notoriously unstable.

When you runBuFBOMB with the command line flag-“n,” it will run in “Nitro” mode. Rather than calling
the functionget buf , the program calls a slightly different functigret buf n:

[+ Buffer size for getbufn =/
#defi ne KABOOM BUFFER_SI ZE 512

This function is similar tayet buf , except that it has a buffer of 512 characters. You will nédsladditional
space to create a reliable exploit. The code that ggdisbuf n first allocates a random amount of storage on
the stack (using library functioal | oca) that ranges between 0 and 255 bytes. Thus, if you were toleamp
the value of%ebp during two successive executions gdit buf n, you would find they could differ by as
much ast240.

In addition, when run in Nitro mod&gUFBOMB requires you to supply your string 5 times, and it will execut
get buf n 5 times, each with a different stack offset. Your exploitrgfrmust make it return your cookie each
of these times.

Your task is identical to the task for the Dynamite level. @mgain, your job for this level is to supply an
exploit string that will causget buf n to return your cookie back to test, rather than the value 1u &&mn
see in the code for test that this will cause the program tokghBOOM .” Your exploit code should set your
cookie as the return value, restore any corrupted statl,thasorrect return location on the stack, and execute
ar et instruction to really return tbest n.

Some Advice:

e You can use the programex2rRAW to send multiple copies of your exploit string. If you haveragte
copy in the fileexpl oi t . t xt , then you can use the following command:

uni x> cat exploit.txt | ./hex2raw -n | ./bufbonb -n -u bressoud

You must use the same string for all 5 executiongef buf n. Otherwise it will fail the testing code
used by our grading server.

e The trick is to make use of theop instruction. It is encoded with a single byte (cae90). It may be
useful to read about "nop sleds” on page 262 of the CS:APBR2adek.

L ogistical Notes

Handin occurs to the grading server whenever you correclies levelanduse the s option. Upon receiving
your solution, the server will validate your string and uigdine Buffer Lab scoreboard Web page, which you
can view by pointing your Web browser at

http://tashi.mathsci.deni son. edu: 18213/ scor eboar d

You should be sure to check this page after your submissiomatce sure your string has been validated. (If
you really solved the level, your strirghouldbe valid.)

Note that each level is graded individually. You do not needd them in the specified order, but you will
get credit only for the levels for which the server receivesmbid message. You can check the Buffer Lab
scoreboard to see how far you've gotten.

The grading server creates the scoreboard by using thé lesests it has for each phase.

Good luck and have fun!

Generating Byte Codes

UsingGccas an assembler amibumPas a disassembler makes it convenient to generate the lijge frr
instruction sequences. For example, suppose we write eXé@pl e. S containing the following assembly
code:

Exanpl e of hand-generated assenbly code

push $0xabcdef # Push val ue onto stack

add $17, %eax # Add 17 to Y%ax

.align 4 # Following will be aligned on nultiple of 4
.1 ong Oxf edcba98 # A 4-byte constant

The code can contain a mixture of instructions and data. ngtto the right of a#’ character is a comment.
We can now assemble and disassemble this file:

uni x> gcc -nB2 -c example.S
uni x> obj dunp -d exanple.o > exanple.d

The generated filexanpl e. d contains the following lines

0: 68 ef cd ab 00 push $0xabcdef
5: 83 c0 11 add $0x11, %eax
8: 98 cwt |

9: ba . byt e Oxba

a: dc fe fdivr 9t, %t (6)

Each line shows a single instruction. The number on the heficates the starting address (starting with 0),
while the hex digits after the ° character indicate the byte codes for the instruction. sTke can see that the
instructionpush $0x ABCDEF has hex-formatted byte coé8 ef cd ab 00.

Starting at address 8, the disassembler gets confusedksltdrinterpret the bytes in the fiexanpl e. o as
instructions, but these bytes actually correspond to dbée, however, that if we read off the 4 bytes starting
at address 8 we ge®8 ba dc fe. Thisis a byte-reversed version of the data wWOrd-EDCBA98. This
byte reversal represents the proper way to supply the bgtesstring, since a little endian machine lists the
least significant byte first.

Finally, we can read off the byte sequence for our code as:

10

68 ef cd ab 00 83 cO 11 98 ba dc fe

This string can then be passed throwghx2RAW to generate a proper input string we can givetzBOMB.
Alternatively, we can edit example.d to look like this:

68 ef cd ab 00 /* push $O0xabcdef =*/
83 c0 11 /+ add $0x11, %eax */

98

ba dc fe

which is also a valid input we can pass througtx 2RAW before sending tBUFBOMB.

11

