Denison University

Cache Memories

CS-281: Introduction to Computer Systems

Instructor:
Thomas C. Bressoud

Denison University

Random-Access Memory (RAM)

m Key features
= RAM s traditionally packaged as a chip.
= Basic storage unit is normally a cell (one bit per cell).
= Multiple RAM chips form a memory.

m Static RAM (SRAM)

= Each cell stores a bit with a four or six-transistor circuit.

= Retains value indefinitely, as long as it is kept powered.

= Relatively insensitive to electrical noise (EMI), radiation, etc.
= Faster and more expensive than DRAM.

= Dynamic RAM (DRAM)

= Each cell stores bit with a capacitor. One transistor is used for access
= Value must be refreshed every 10-100 ms.

= More sensitive to disturbances (EMI, radiation,...) than SRAM.

= Slower and cheaper than SRAM.

Denison University

SRAM vs DRAM Summary

Trans. Access Needs Needs
per bit time refresh? EDC? Cost Applications

SRAM 4o0r6 1X No Maybe 100x Cache memories

DRAM 1 10X Yes Yes 1X Main memories,
frame buffers

Denison University

Memory Modules

addr (row = i, col = j)

O : supercell (i,j)

| | DRAM 0
—— - 64 MB
[I 5 0 memory module
I DRAM 7 Il » e n consisting of
ol U i eight 8Mx8 DRAMs
[l I

bits bits bits bits bits bits bits bits
56-63 48-55 40-47 32-39 24-31 16-23 815 0-7

63 56 55 4847 40 39 32 31 24 23 16 15 8 7 0

Memory
controller

64-bit doubleword at main memory address A

64-bit doubleword

Denison University

Traditional Bus Structure Connecting
CPU and Memory

m A bus is a collection of parallel wires that carry address, data,
and control signals.

m Buses are typically shared by multiple devices.

m Load, Store, Instruction Fetch
CPU chip

Register file

ALU

: System bus Memory bus
: . 110 Main
Bus interface < : > bridge < > memory

[y

/0 Bus (DMA)

CPU chip

Register file

: ALU

Bus interface

gSystem bus

Memory bus

|

/0
bridge

Main
memory

Denison University

HHE>

USB
controller

Mouse Keyboard

Graphics
adapter

'

Monitor

1/0 bus \ |

Disk
controller

A

A 4

Expansion slots for
other devices such
as network adapters.

Denison University

The CPU-Memory Gap
The gap widens between DRAM, disk, and CPU speeds.

100,000,000.0
10,000,000.0 ¢ ¢ ¢

1,000,000.0
SSD
100,000.0 i
10,000.0 —&—Disk seek time

—4&—Flash SSD access time
—-DRAM access time

2 1,000.0 A —8—SRAM access time
DRAM —{+CPU cycle time
100.0 \‘\ —O—Effective CPU cycle time
" \04?;
0.1 CPU

0.0

n

1980 1985 1990 1995 2000 2003 2005 2010
Year 8

Denison University

Locality

m Principle of Locality: Programs tend to use data and
instructions with addresses near or equal to those they have

used recently

m Temporal locality:

= Recently referenced items are likely
to be referenced again in the near future

C /

m Spatial locality:

= |tems with nearby addresses tend
to be referenced close together in time

Denison University

Locality Example

sum = 0;

for (1 = 0; i < n; i++)
sum += a[i];

return sum;

m Data references
= Reference array elements in succession

(stride-1 reference pattern). Spatial locality
= Reference variable sum each iteration. Temporal locality
m Instruction references
= Reference instructions in sequence. Spatial locality

= Cycle through loop repeatedly. Temporal locality

10

Denison University

Caches

m Cache: A smaller, faster storage device that acts as a staging area
for a subset of the data in a larger, slower device.

m Fundamental idea of a memory hierarchy:

= For each k, the faster, smaller device at level k serves as a cache for the larger,
slower device at level k+1.

m Why do memory hierarchies work?

= Because of locality, programs tend to access the data at level k more often than
they access the data at level k+1.

= Thus, the storage at level k+1 can be slower, and thus larger and cheaper per bit.

m Big Idea: The memory hierarchy creates a large pool of storage
that costs as much as the cheap storage near the bottom, but that
serves data to programs at the rate of the fast storage near the

top.

1

Denison University

Cache Memories

m Cache memories are small, fast SRAM-based memories
managed automatically in hardware.
= Hold frequently accessed blocks of main memory

m CPU looks first for data in caches (e.g., L1, L2, and L3), then
in main memory.

m Typical system structure:

Cach? <:—:> X /| ALU
memories :

@ : \ | System bus Memclry bus
[o LT wain
bridge memory

Bus interface

12

Cache

Memory

General Cache Concepts

Denison University

Smaller, faster, more expensive
memory caches a subset of
the blocks

Larger, slower, cheaper memory
viewed as partitioned into “blocks”

4 9 10 3
Data is copied in block-sized
10 transfer units
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

13

Denison University

General Cache Concepts: Hit

Request: 14 Data in block b is needed
h 2 5 12 3 Block b is in cache:
Cache Hit!
Memory 0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
000000000 0O0OCOCGOGOOOSOOS

14

Denison University

General Cache Concepts: Miss

Request: 12 Data in block b is needed
h . 5 12 3 Block b is not in cache:
Cache Miss!
Block b is fetched from
12 Request: 12
memory
Block b is stored in cache
Memory 0 1 2 3 * Placement policy:
4 5 6 7 determines where b goes
* Replacement policy:
1 11
8 2 0 determines which block
12 13 14 15 gets evicted (victim)

15

General Caching Concepts:

Types of Cache Misses

m Cold (compulsory) miss
= Cold misses occur because the cache is empty.

m Conflict miss

= Most caches limit blocks at level k+1 to a small subset (sometimes a singleton) of
the block positions at level k.

= E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

= Conflict misses occur when the level k cache is large enough, but multiple data
objects all map to the same level k block.

= E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.
m Capacity miss
= Qccurs when the set of active cache blocks (working set) is larger than the cache.

16

Denison University

General Cache Organization (S, E, B)

E = 2¢ lines per set
A

- N
p
o000
o000
S=Zssets< ceoo
0 0000000 0000COCEOGFEOGOEOEOEOEOEOEOOOOOOSOO
o000
\
Cache size:
v tag olil2] - 81 C =S x E x B data bytes
valid bit N~

B = 2® bytes per cache block (the data)

17

Denison University

* Locate set
CaChe Read * Check if any line in set

has matching tag

E = 2¢ lines per set * Yes + line valid: hit
e A ~ * Locate data starting
4 at offset
o000

Address of word:
t bits s bits | b bits

w—H—W
S=Zssets< eocooe

tag set block

index offset

OO0 00000000000 0O0C0OCOGEOGEOGEOGEOSGOSO®OOSOOO
o000
\.
data begins at this offset
v tag ol1]2] - B-1
valid bit ~~ ~— —

B = 2° bytes per cache block (the data)

18

Denison University

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

4 . olil2131alzlel Address of int:
Y 28 tbits | 0..01 | 100

v tag 011121314 |5]|6]7

find set

S=Zssets<
v tag 011121314 |5]|6]7

Vv tag 011|12)13l4\|5]|6]7

19

Denison University

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of int:
t bits 0..01 | 100

valid? + match: assume yes = hit

v tag 0|]1]2]|3]|4]|5]|6]7

block offset

20

Denison University

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of int:
t bits 0..01 | 100

valid? + match: assume yes = hit

v tag 011121314]|5]|6]7

block offset

int (4 Bytes) is here

No match: old line is evicted and replaced

21

Denison University

Direct-Mapped Cache Simulation

t=1 s=2 b=l M=16 byte addresses, B=2 bytes/block,
X XX X S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit

7 [0111,], miss
8 [1000,], miss
0 [0000,] miss

v Tag Block

Set0 | 1 0 M[0-1]
Set1l
Set 2
Set3 | 1 0 M[6-7]

22

Denison University

Ignore the variables sum, i, j

A Higher Level Example assume: cold (empty) cache,

a[0][0] goes here

int sum array rows (double a[l16][16]) |
{
int 1, j; v
double sum = O0;

for (i = 0; 1 < 16; i++)
for (j = 0; j < 16; j++)
sum += a[i][]j];
return sum;

int sum array cols(double a[16][16])

int 1, j;
double sum = 0;

\ J
Y

32 B =4 doubles

for (j = 0; i < 16; i++)
for (1 = 0; j < 16; j++)
sum += a[i][]j];
return sum;

} blackboard

23

Denison University

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

v| | tag | [of1]2{3]als]6l7]| [|v] [tag] [0]2]2]3]4]5]6]7

v| [tag | [ol1]2]3]a]5]6]7]| [[v] [teg] [0]2]2]3]a]5]6]7 find set

v| | tag | [of1]2{3]als]6l7]| [|v] [tag] [0]2]2]3]4]5]6]7

v| | tag | [of1]2[3]als]6|7]| [|v] [tag] [0]2]2]3]4]5]6]7

24

Denison University

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes = hit

v| [tag | |of1]2[3]afs]6l7]| |[|v] [tag] [0]2]2]3[4]5]|6]7

block offset

25

Denison University

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes = hit

v| [tag | |of1]2{3]afs5]67]| [|v] [tag] [0]2]2]3]4]5]6]7

block offset

short int (2 Bytes) is here

No match:
* One line in set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

26

Denison University

2-Way Set Associative Cache Simulation

t=2 s=1 b=1
XX X X M=16 byte addresses, B=2 bytes/block,

S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,], miss
0 [0000,] hit

v Tag Block

1 10 M[8-9]

(BN

Set 1 01 M[6-7]

27

Denison University

A H ig her Level Exam ple Ignore the variables sum, i, j

assume: cold (empty) cache,
int sum array rows (double a[l16][16]) a[0][0] goes here
{
int i, j; |
double sum = 0; v

for (1 = 0; i < 16; i++)
for (jJ = 0; j < 16; j++)
sum += a[i] []]’
return sum;

} W Y,
Y

32 B =4 doubles

int sum array rows (double a[l1l6][16])

int i, j;
double sum = 0;
for (j = 0; i < 16; i++)
for (1 = 0; j < 16; j++)
sum += a[i]l []j]:

return sum; blackboard

28

What about writes?

m Multiple copies of data exist:
= [1,L2, Main Memory, Disk
m What to do on a write-hit?

= Write-through (write immediately to memory)
= Write-back (defer write to memory until replacement of line)
= Need a dirty bit (line different from memory or not)

m What to do on a write-miss?
= Write-allocate (load into cache, update line in cache)
= Good if more writes to the location follow
= No-write-allocate (writes immediately to memory)
m Typical
= Write-through + No-write-allocate
= Write-back + Write-allocate

29

Denison University

Intel Core i7 Cache Hierarchy

Access: 30-40 cycles

L3 unified cache

(shared by all cores) Block size: 64 bytes for

all caches.

Processor package

' Core 0 Core 3 L1 i-cache and d-cache:
R R 32 KB, 8-way,

: €gs €gs Access: 4 cycles

L1 L1 L1 L1 L2 unified cache:

. | |d-cache| |i-cache d-cache| |i-cache | | 256 KB, 8-way,
" Access: 11 cycles

' | | L2 unified cache L2 unified cache | | | |3 ynified cache:

8 MB, 16-way,

Main memory

30

Denison University

Cache Performance Metrics

m Miss Rate
= Fraction of memory references not found in cache (misses / accesses)
=1 -hit rate
= Typical numbers (in percentages):
= 3-10% for L1
= can be quite small (e.g., < 1%) for L2, depending on size, efc.

m Hit Time
= Time to deliver a line in the cache to the processor
= includes time to determine whether the line is in the cache
= Typical numbers:
= 1-2 clock cycle for L1
= 5-20 clock cycles for L2

m Miss Penalty
= Additional time required because of a miss
= typically 50-200 cycles for main memory (Trend: increasing!)

31

Denison University

Lets think about those numbers

m Huge difference between a hit and a miss
= Could be 100x, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?

= Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

= Average access time:

97% hits: 1 cycle +0.03 * 100 cycles = 4 cycles
99% hits: 1 cycle +0.01 * 100 cycles = 2 cycles

m This is why “miss rate” is used instead of “hit rate”

32

Denison University

Writing Cache Friendly Code

m Make the common case go fast
= Focus on the inner loops of the core functions

m Minimize the misses in the inner loops
= Repeated references to variables are good (temporal locality)
= Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories.

33

Denison University

Today

m Performance impact of caches
= The memory mountain

34

Denison University

The Memory Mountain

m Read throughput (read bandwidth)

= Number of bytes read from memory per second (MB/s)

m Memory mountain: Measured read throughput as a function
of spatial and temporal locality.
= Compact way to characterize memory system performance.

35

Denison University

Memory Mountain Test Function

/* The test function */

void test(int elems, int stride) {
int i, result = 0;
volatile int sink;

for (i = 0; i < elems; i += stride)
result += datal[i];
sink = result; /* So compiler doesn't optimize away the loop */

}

/* Run test(elems, stride) and return read throughput (MB/s) */
double run(int size, int stride, double Mhz)
{

double cycles;

int elems = size / sizeof(int) ;

test (elems, stride); /* warm up the cache */
cycles = fcyc2(test, elems, stride, 0); /* call test(elems,stride) */
return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */

36

Denison University

Intel Core i7

- 32 KB L1 i-cache
The Memory Mountain 22 K81 cache
256 KB unified L2 cache

8M unified L3 cache
7000

6000 All caches on-chip

5000

4000

3000

Read throughput (MB/s)

2000

1000

Working set size (bytes)

37

The Memory Mountain

Read throughput (MB/s)

Denison University

Intel Core i7
32 KB L1 i-cache
32 KB L1 d-cache

8M unified L3 cache

All caches on-chip

256 KB unified L2 cache

Working set size (bytes)

38

Denison University

Intel Core i7
- 32 KB L1 i-cache
The Memory Mountain 32K811 rcache
256 KB unified L2 cache
- 8M unified L3 cache

g 7000
= e
< 6000 All caches on-chip
é_ y
5 5000
=
o
£ 4000 |]
o XN - e Ridges of
é 2000 ~ | ” Temporal

2000 =GNy locality
Slopes of] L3
spatial
locality

0 X
; ™ Mem v
“ B~ ¥ ©
n O 0 -
= o = o
. N «— W0 o~ > -
Stride (x8 bytes) ? o o = co Working set size (bytes)
(o]

39

Denison University

Today

= Rearranging loops to improve spatial locality

40

Denison University

Miss Rate Analysis for Matrix Multiply

m Assume:
= Line size = 32B (big enough for four 64-bit words)
= Matrix dimension (N) is very large
= Approximate 1/N as 0.0
= (Cache is not even big enough to hold multiple rows

m Analysis Method:

= | ook at access pattern of inner loop

G

4

Denison University

Matrix Multiplication Example

Variable sum

m Description: /* ijk */ held in register
= Multiply N x N matrices for (i=0; i<n; i++) {
= O(N?3) total operations for (3=0; j<n; Jj++) { /
sum = 0.0; <

= N reads per source element

= N values summed per
destination

= but may be able to hold }
in register

for (k=0; k<n; k++)
sum += a[i] [k] * b[k]I[Jj];
c[i][J] = sum;

42

Denison University

Layout of C Arrays in Memory (review)

m C arrays allocated in row-major order
= each row in contiguous memory locations
m Stepping through columns in one row:
" for (i1 = 0; 1 < N; 1i++)
sum += al[0][i];
= accesses successive elements
= if block size (B) > 4 bytes, exploit spatial locality
= compulsory miss rate = 4 bytes / B
m Stepping through rows in one column:
" for (1 = 0; 1 < n; 1i++)
sum += a[1][0];
= accesses distant elements
= no spatial locality!

= compulsory miss rate = 1 (i.e. 100%)

43

Denison University

Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {

for (j=0; j<n; j++) { i
sum = 0.0; g(i’*) i
A B

Inner loop:

for (k=0; k<n; k++)
sum += a[i] [k] * b[k]l[]j];

c[i][j] = sum; ‘ ‘ ‘
}

Row-wise Column- Fixed
wise

Misses per inner loop iteration:
A B C

0.25 1.0 0.0

44

Denison University

Matrix Multiplication (jik)

/* jik */
for (j=0; j<n; j++) {

for (i=0; i<n; i++) { *

sum = 0.0; L;;;J | ﬁ]iﬁ: (&D
for (k=0; k<n; k++) (i,%)

sum += a[i] [k] * b[k][j]; A B

c[il[§] = sum ‘ ‘ ‘
}

Row-wise Column- Fixed
wise

Inner loop:

Misses per inner loop iteration:

A B C

0.25 1.0 0.0

45

Denison University

Matrix Multiplication (Kkij)

(kIR Inner loop:
for (k=0; k<n; k++) {
for (i=0; i<n; i++) { (i,k) :(k'*)g
r = a[i] [k]’ = (i,)
for (j=0; j<n; j++) A B C
c[i][J] += r * b[k][]]; ‘ ‘ ‘
Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B C

0.0 0.25 0.25

46

Denison University

Matrix Multiplication (ikj)

& lk‘-_J K4 _ _ Inner loop:
for (i=0; i<n; i++) {
for (k=0; k<n; k++) { (i,k) :(k'*)g
r = a[i] [k]; O (i,%)
for (j3=0; j<n; Jj++) A B C
c[i] [J] += r * b[k][]]~ ‘ ‘ ‘
Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B C

0.0 0.25 0.25

47

Matrix Multiplication (jki)

/* jki */
for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][]]’
for (i=0; i<n; i++)

c[i][]j] += al[i]l[k] * r;

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

Inner loop:

(*,k)

B

A

|

Column-

wise

(I:,J')

B

Fixed

Denison University

*,1)

N

C

|

Column-

wise

48

Denison University

Matrix Multiplication (kji

/* kji */
for (k=0; k<n; k++) {

for (3=0; j<n; j++) { * k) *
r = b[k][j]; (I:'j)

for (i=0; i<n; i++)

Inner loop:

c[il [j] += a[il[k] * r; A‘\ T c‘:
Column- Fixed Column-
wise wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

49

Denison University

Summary of Matrix Multiplication

for (i=0; i<n; i++) {
for (3=0; j<n; j++) { . .
sum = 0.0; Uk (& J'k):
for (k=0; k<n; k++) ¢ 2 loads, O stores
sum += a[il[k] * b[k][]j]; * misses/iter = 1.25
c[i] [j] = sum;
}
}
for (k=0; k<n; k++) { .. ep.s
for (i=0; i<n; i++) { kij (& ikj):
r = a[i] [k]; e 2 |loads, 1 store
for (3j=0; j<n; j++) * misses/iter = 0.5
c[i][j] += r * b[k][]]’
}
}
for (3=0; j<n; j++) {
for (k=0; k<n; k++) { jki (& kji):
r = b[k][j]; e 2 |loads, 1 store
ECE O L e misses/iter = 2.0
c[i][j] += a[i][k] * r;
}
} 50

Denison University

Core i7 Matrix Multiply Performance

60

jki / kiji
__pg— PR

50 f
40

/ ©-jik

- —+kij

ijk / jik il

A |

20 ’

) J /
o—K M Kij / iki

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750
Array size (n) 51

Cycles per inner loop iteration

Denison University

Today

= Using blocking to improve temporal locality

52

Denison University

Example: Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; 1 < n; i++)
for (J = 0; j < n; j++)
for (k = 0; k < n; k++)
c[i*n+j] += a[i*n + k]*b[k*n + j];

1)

Il
*

53

Denison University

Cache Miss Analysis

m Assume:

= Matrix elements are doubles
= Cache block = 8 doubles
= (Cache size C << n (much smaller than n)

n
m First iteration: —N
= n/8+n=9n/8 misses i
— t 3
= Afterwards in cache;
(schematic) . ————
= %

8 wide
54

Denison University

Cache Miss Analysis

m Assume:
= Matrix elements are doubles
= (Cache block = 8 doubles
= (Cache size C << n (much smaller than n)

n
m Second iteration: —
= Again: :
n/8 + n =9n/8 misses _ "
8 wide

m Total misses:
= 9n/8*n?=(9/8) *n3

55

Denison University

Blocked Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; i < n; i+=B)
for (j = 0; j < n; j+=B)
for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */
for (i1l = i; il < i+B; i++)
for (j1 = j; jl < j+B; j++)
for (k1 = k; k1l < k+B; k++)
c[il*n+jl] += a[il*n + k1l]*b[kl*n + jl];

I

Block size Bx B

56

Denison University

Cache Miss Analysis

m Assume:
= (Cache block = 8 doubles
= (Cache size C << n (much smaller than n)
= Three blocks it into cache: 3B?< C

' ' ' B block
m First (block) iteration: _ n/t :c s
= B8 misses for each block EEEEE m
= 2n/B * B?%8 =nB/4 =
(omitting matrix c) = % N
= Afterwards in cache O . Block size B x B
(schematic)

Il
*

57

Denison University

Cache Miss Analysis

m Assume:
= (Cache block = 8 doubles
= (Cache size C << n (much smaller than n)
= Three blocks it into cache: 3B2< C

. . n/B blocks
m Second (block) iteration: A
= Same as first iteration [RN
= 2n/B * B%/8 = nB/4
= *
m Total misses: Block size B x B

= nB/4 * (n/B)2 = n%/(4B)

58

Denison University

Summary

m No blocking: (9/8) * n3
m Blocking: 1/(4B) * n3

m Suggest largest possible block size B, but limit 3B2 < C!

m Reason for dramatic difference:
= Matrix multiplication has inherent temporal locality:
= |nput data: 3n?, computation 2n?
= Every array elements used O(n) times!
= But program has to be written properly

59

Denison University

Concluding Observations

m Programmer can optimize for cache performance
= How data structures are organized
= How data are accessed
= Nested loop structure
= Blocking is a general technique

m All systems favor “cache friendly code”
= (etting absolute optimum performance is very platform specific
= Cache sizes, line sizes, associativities, etc.
= (Can get most of the advantage with generic code
= Keep working set reasonably small (temporal locality)
= Use small strides (spatial locality)

60

