cs281: Introduction to Computer Systems

Prelab for Lab06 — Introduction to Sequential Circuits

Overview

In this lab, we will learn about designing circuits that utilize memory (and a clock) in order to achieve some
functionality. Through the prior labs, you have learned the fundamentals of creating combinational circuits,
in which the outputs of the circuit are determined by the inputs ... they require no memory, nor any notion of
the sequence of operations that may have happened in the past. When we introduce the idea of a clock, we are
incorporating a model of time into our thinking, and so we more precisely say that a combinational circuit is
one where the outputs at time ¢ 4 € is determined by the inputs at time ¢. The € is intended to convey that, in
real time, the change on the outputs does not happen instantaneously. When the inputs change, the changed
current values takes time to traverse through the wires and gates of the circuit, and we use € to denote that
small delay time.

To understand how we design the CPU of a computer, we need the concept of a sequence of steps that occur
over time. For instance, we can think of the CPU executing an instruction in one step, and then another
instruction in the next step, and so forth. When we talk about circuits requiring memory in this context, we are
not necessarily talking about large amounts of memory, like the RAM in a computer, nor even more moderate
amounts of memory, like the Register File in the CPU. In the current lab, for instance, we require two single
bits of memory storage, used to track where we are in a short sequence of possible states.

A clock is a digital signal that simply alternates between logical one and logical zero (aka HIGH/LOW or

+5V/0V) with consistent, regular timing, yielding what we can depict with a square wave:

Rising Edge Period

e

1
Clock J I_
0

t t+1

Falling Edge ﬂ",

This is very much like the HIGH/LOW sequence we see with the Function Generator on the breadboard, and
we can, in fact, use the Function Generator to provide a clock if we wish. The rising edge refers to the transition
from O to 1, and the falling edge refers to the transition back down from 1 to 0. The period refers to the interval
of time for a full cycle, so on the illustration, the period is shown as the time from one rising edge of the clock
to the next rising edge of the clock.

A clocked sequential circuit is one in which we employ a clock as well as bits of memory storage along and
the combinational circuit design process we have already learned about to achieve some desired functionality.
The storage device to holding a single bit of information is called a flip-flop. The J-K Flip-Flop is one variant
and can be represented pictorially as follows:

—J Q —
—] Clk
1k Q —

The left-hand side shows the inputs to the device, and the right-hand side shows the outputs. Since the device
stores a single bit, we generically call that bit (), and so the device gives both the stored bit and its negation as
outputs. The bit stored remains stable with its current value for the duration of a clock period, but can change
its value to store a (possibly) different bit based on its J and K inputs and does so at a certain point in the
clock cycle. If the point in time when a flip-flop may take on a new value occurs on the falling edge of the
clock, it is called negative-edge-triggered, and if the value change occurs on the rising edge of a clock cycle,
it is called positive-edge-triggered. In the lab, we have negative-edge-triggered J-K flip-flops, so we will use
that triggering as an example here'.

For a one-bit memory device, we want at least three possible manipulations of the bit stored, given a clock
transition:

e If we want the device to store 0, we set J to 0, and K to 1.

o If we want the device to store 1, we set J to 1, and K to 0.

e If we want the device to maintain the previously stored value across a clock transition, we set both J and K
to 0.

The J-K flip-flop also defines what should happen if both J and K are 1 ... it sets the stored value to its
complement. We can represent this in tabular form, and use the notation Q to denote the value of (Q at the
next transition (¢ + 1), while) represents the stored bit from time ¢ up to time ¢ + 1.

JIK[QF] |
0] 0| @ | Unchanged
0] 1 0 Reset
110 1 Set
1| 1] @Q | Complement

To illustrate, we will draw the clock, values for inputs J and K, and begin the output of a J-K flip-flop,) with
the signal levels aligned vertically. We will use A, B, C, D, and E to represent the time points associated with
the five falling edges of the clock in the picture.

A B (¢} D E
Clock J I_
J
K
—>
Q
A B C D E

'Note that the LogiSim software package that we will use for simulating more complicated circuits uses positive-edge-triggered
storage devices. That will not affect our design process, but will affect when things change as we observe the circuits.

Q1 In the above figure, complete the drawing depicting the value of () across the rest of the example.

Q2 Explain why Q transitions from 0 to 1 at time A.

Q3 Explain why Q has the value it does at time B.

Q4 Explain why Q has the value it does at time C.

QS Explain why Q has the value it does at time D.

Q6 Explain why Q has the value it does at time F .

In a clocked sequential circuit system, suppose we have a single (external) binary input X and a single (exter-
nal) binary output Y. If we consider a clock period to represent a step, then we can refer to the value of the
input X at any given step, and the value of the output Y at any given step. We can also consider the sequence
of input values for X. We can then characterize the output Y at a given point in time based on the sequence
of inputs for X. Suppose, for example, the characterization that Y should be 1 if the current and last values in
the input were both the same (0 and 0, or 1 and 1) and O otherwise.

Q7 Suppose we can determine a way to use a single J-K Flip-Flop so that it stores the last value of X . Describe
the use of just a few boolean logic gates so that, given the output of the J-K Flip-Flop and the current value
of X, you compute the current value of Y.

Q8 If you were successful in Q7, then all that remains is, based on the value of the current input X, to

determine values for the J and K to the flip-flop so that, at the next clock transition, the flip-flop stores the
value of X. Draw the truth table and fill it in. (Hint: There is only one input, X, so the table has two rows. There
are two outputs from this combinational circuit subproblem that we have defined, in addition to the one input, so there
are three columns in the table.)

Q9 Give the boolean expression for J:

Q10 Give the boolean expression for K:

What if we had three inputs to a clocked sequential circuit system (A, B, C') and two flip-flops (with outputs
Qo and 1) to store the state needed for our desired functionality, and two output bits from the system, Y and
Z?7 We could generalize the strategy we used above and design a combinational logic circuit whose inputs
were both the system inputs (A, B, and ') and also the bits representing the current state (i.e. Qo9 and (1)
and whose outputs were the J’s and K’s to be fed to the two flip-flops (call them Jy and Ky, and J; and K; for
storage elements 0 and 1, respectively). We generically call this the NextState circuit, and the same approach
works even if we have a different number of system inputs and a different number of bit-storage elements. This
is the generalized equivalent of what you did in Q8. Similarly to what we did in Q7, we could also define a
combinational circuit to calculate the outputs of Y and Z, given the storage bits from the flip-flops. A pictorial
representation of the solution strategy is:

NextState

—=>1 A
—>1 B
—>1C
Flip-Flops Output
e ————— 1
Jo —=luo 1
Q0 Ko __#%'Ko :
J1 J1 ~
—1 Q1 1 Qo> Qo =
K1 > K1 Qn a zl»
1 1
1 1
1 1
1 CLK 1

To solve more general problems, what we need now is a mechanism to describe a solution to a problem by
defining a set of states and, for the steps needed to solve the problem, the transitions, based on the inputs, from
one state to another. We also need a way of annotating the states with the desired outputs of the system, if
indeed the output is determined solely by the state.

The needed mechanism is a graphical representation of a set of states and the transitions between them, and is
known as a Finite State Machine (FSM). We will represent nodes/vertices in the graph with circles and label the
circles with a designation identifying a unique state (in general, we will simply start with state Sy, and create
as many new states S1, S2, ... as we need to solve the problem). Directed arcs will show transitions between
the states, and each arc will be labeled with the input(s) that cause the transition. To allow the annotation of
the outputs associated with each state, we will add the output beneath the label within the circle for each state.

An example will help clarify. Consider the following pictorial:

In this example, we have four states, Sy through S3. The output (the value below the dividing line in the node),
which we will call Z, has value 1 if, at a point in the clock-timed sequence, we are “in” state Sy and Z has
value O if we are in any other state. The labels on the arcs are the values of the input, call it X, that, at each
cycle of the clock, cause us to transition from one state to the next. Since our single bit of input X can only
have value of O or 1 at any point in time, each state should have two outgoing transitions. Note that, although
not shown in this example, a transition from a state back to itself for a given value of the input is perfectly
legal.

Q11 : Assuming we start in state Sy, what state is the system in if the value of X over clock periods is “0 1 0
0 1 1”? What is the output at that time?

Q12 : What state and output if the inputis “101 10 17?

Q13 Given four non-trivial sequences such that the system ends in state Sy (and so has output 1)?

Q14 Give an English description of the patterns by which a sequence ends in state S1? So? Evaluate your
description against a variety of patterns. Does your description continue to hold up?

Now let us develop a circuit that uses 2 JK flip flops of memory and a clock to implement the above FSM. We
first observe that we have four states (0 to 3), and we need to map from our two bits of memory to encode the
four states. If we use subscripts 1 and O to refer to the two flip-flops, and consider their outputs @)1 and Qg,
one way to encode our current state is given by the following natural state assignment:

Associated
@1 | Qo State
0 0 So
0 1 S1
1 0 So
1 1 S3

So, for example, whenever flip-flop 1 has value ()1 = 1 and flip-flop 0 has value Q)¢ = 0, the system is in state
S2. With our FSM model, given by the picture above, and the state assignment given by this table, we can now
design our two needed combinational circuits, the NextState circuit, and the Output circuit.

For the NextState circuit, we have two bits of input coming from the flip-flops, (i.e. @1 and (p), and 1 bit
of input for X. The outputs are the values needed for Jfr , K fr , Jar , K(]L , where the superscript ‘+ indicates
this is the next value for each, so that, on the next clock transition, the flip-flops take on the appropriate values
needed to put the system “in” the desired state. Fill in the remainder of the NextState truth table below.

As an example, the first line represents the situation that the system is currently in state Sy because)1 is 0 and
(21 1s 0 and, since X is 0, our next state needs to be S3. This means flip-flop 1 must take on the value 1 and
flip-flop 0 must take on the value 0.)7 has value 0, and flip-flop 1 needs to take on value 1. To do this, we
can either toggle the current value, so J/K would be 1/1 or we can “set” with .J/ K of 1/0. Thus we get J;"
of 1 and “don’t care” for K; .

row | Q1 Qo X Ji K Jo K
0 /l0 0 0 1 X 0 X
1 [0 o0 1
210 1 0
300 1 1
4 11 0 0
511 0 1
6 | 1 1 0
711 1 1

Q15 Describe why Jgr is 0 and K is X in the first line of the truth table.

Fill in the K-maps, circling a minimal set of prime implicants for each of the output variables in the NextState
circuit. Then, to the right, give a boolean expression for the circuit.

| QuX
0.1 00 01 11 10
Ji 0
1
| QoX
Q1 00 01 11 10
K —5
1
| QuX
0.1 00 01 11 10
Ji 0
1
| QuX
Q1 00 01 11 10
L
1

