
NextClass6

CS173: Intermediate Computer Science Spring 2014

Instructor: Thomas Bressoud 2014-02-11

Consider the following line-annotated Python code. Type the code into Python Tutor

(pythontutor.com), editing the code, selecting the option of Python3. To understand what

is going on, you may wish to toggle back and forth the options on inline primitives/render

all on the heap and arrow references versus text labels. Then answer the following

questions.

1 x = [1 , 2 , 3]

2 y = x

3 y . append (4)

4 print (x)

5 del y

6 del x

7

8 x = [1 , 2 , 3]

9 y = x [:]

10 y . append (4)

11 print (x)

12 del y

13 del x

14

15 def copy (L) :

16 newL = []

17 for element in L :

18 newL . append (element)

19 return newL

20

21 x = [1 , 2 , 3]

22 y = copy (x)

23 y . append (4)

24 print (x)

25 del y

26 del x

27

28 x = [[1 , 2 , 3] , 4]

29 y = x

30 y [0] . append (5)

31 print (x)

32 del y

33 del x

34

35 x = [[1 , 2 , 3] , 4]

36 y = copy (x)

37 y [0] . append (5)

38 print (x)

1. In terms of both inspection of the source code and the resultant memory picture in

Python Tutor, what is the di↵erence between lines 1-4 and lines 8-11? What

common programmer mistake does this illustrate?

2. Inspecting lines 21-24, what result do you expect from the print() on line 24, and

what result in the memory picture for this case? After you predict the memory

picture, use Python Tutor to walk through the code. Was you prediction on target?

3. Lines 28-31 and lines 35-38 are similar in form to lines 1-4 and lines 21-24. Predict

and draw the resultant memory picture for these two cases. Then execute through

the code in Python Tutor and identify exactly what is di↵erent between your

prediction and the actual result.

