
Homework 2
CS 173: Intermediate Computer Science Spring 2014
Instructor: Thomas Bressoud Due: 2014-02-07, classtime

• The point of this project is to make concrete your understanding of ADTs by
implementing a Stack ADT and an RPN calculator ADT in the context of this
specific application.

• A Grading Guide will be published separately, but you are expected to use good
functional abstraction and pre and post conditions specified in docstrings along with
good inline comments documenting your solution.

In this project, you will create an object-oriented Reverse Polish Notation (RPN)
calculator. RPN, also called postfix notation, is a parenthesis-free notation in which a
binary operator follows the two operands. For example, the infix expression

3 + 5

is written as
3 5 +

in RPN.
RPN is of interest because RPN expressions can be evaluated easily from left to right
using a stack. When you encounter an operand, push it on the stack. When you encounter
a binary operator, pop two numbers off the stack, apply the operator, and push the result
back onto the stack. At the end of the expression, the result is on the top of the stack.
For example, consider the following longer RPN expression:

3 5 + 7 ∗ 8 11 ∗ −

First, we push 3 and 5 onto the stack. To apply the addition operator, we pop 3 and 5 off
the stack, and push the result 8. Then we push 7. To apply the multiplication operator,
we pop 8 and 7, and push the result, 56. Then we push 8 and 11, pop them off when we
get to the multiplication operator, and push 88. Finally, we pop 56 and 88, subtract them,
and push the final result, -32.

The first step in this project is to implement an ADT Stack as a Python class. Your class
should have 6 methods: a constructor, top, pop, push, and isEmpty and str . Your class
and each of your methods should have a docstring describing the class or method and
containing appropriate precondition and postconditions, and your methods should test
preconditions and raise appropriate exceptions. Build a unit test and test your class and
methods thoroughly before moving on to the next step. Your underlying representation
for this stack class can be a Python list. As implementor of the ADT, you can decide
whether the index 0 element of the list is the ”top of stack” (TOS) or the last element in
the list is the TOS.

1



Next, implement a class called RPNCalculator that contains a Stack object as part of the
information it maintains and has 8 methods: a constructor, evaluate (evaluate a string
using the other methods), push (push a number), pop (remove the top of the stack and
return the top), add, subtract, multiply, and divide. The last four methods follow the
steps outlined above. Your class should check for different types of errors. You should
build a unit test for this class as well. The string for the evaluate method should contain
space separated numbers and operators.

Finally, in a file called main.py write a main() function that creates an instance of your
calculator and allows someone to interactively use it:

$ python3 main.py

RPN> 2 2 +

4

RPN> 8 4 /

2

RPN> 3 5 + 7 * 8 11 * -

-32

RPN> 2 + 2

INVALID

RPN> quit

So in the above sequence, the main() function will first create the RPNCalculator object
and then, repeatedly, print the ’RPN> ’ prompt, retrieve the string entered by the user,
evaluate the string using the RPNCalculator, and retrieve (pop) the top value and print it
out to the user. If an exception is raised by the RPNCalculator, the main should detect
(catch) it and output the string ’INVALID’ to the user. If the string ’quit’ is input by the
user, the program should terminate.
Please submit your homework (Stack.py, test Stack.py, RPNCalculator.py,
test RPNCalculator.py, and RPNmain.py) in submitbox by the due date.

2


