
Homework 1
CS 173: Intermediate Computer Science Spring 2014
Instructor: Thomas Bressoud Due: 2014-01-31 (classtime)

In this exercise, you will compare the running times of three sorting algorithms: selection
sort, insertion sort, and Python’s built-in sort method.
The selection sort algorithm is described in programming exercise 3 on page 37 of your
text book.
Insertion sort is the algorithm that most people use to sort a deck of cards. Start with
your left hand empty and the entire deck in your right hand. Your left hand will always
contain a sorted pile of the cards considered so far while your right hand will contain the
cards yet to be sorted. At each step, take the top card from your right hand and insert it
into the sorted cards in your left hand. Repeat this process n times. In your function, all
of the items remain in your original list; the index of the top item in your right hand will
be marked with an increasing for loop variable and all of the items to the left of this
index will be sorted. Inserting an item in the correct location in the left side of the list
will require another (while) loop.
Both of these sorting algorithms should be done in-place and not create and
append/delete from lists but should operate by swapping values within the list.

1. In a file called studentsort.py, write functions for selection sort, named
selection sort and insertion sort, named insertion sort that each take a list of
numbers as a parameter, return nothing, and sort the list in place. Also create a
boolean function, sorted that takes a list as a parameter and returns a boolean,
indicating whether or not the passed list is indeed in non-decreasing order. There
may be repeated values in the lists. Be sure and write good function-level docstrings
(with good pre and post-conditions) and inline comments describing your algorithms.

2. In a separate Python file called runsort.py in the same directory, use from

studentsort import * to gain access to your functions and in this new file create a
main function and its invocation to drive testing of your solutions. Use the time()
function (see page 19) to time each of the three sorts (your two plus the built-in
Python sort function) multiple times on lists of 10,000, 100,000, and 1,000,000
random integers between 1 and 1,000,000. Plot your timing results. (I find Excel the
easiest to use for this, particularly if I print comma separated values from my
program and then copy them into a text file that I can import into Excel.)

3. What is the θ running time of selection sort and insertion sort? Based on your
timing results, what do you think the θ running time of the built-in sort method is?

I am still working on the best way to submit your work to me. I am currently thinking of
using either DropBox or Google Drive to allow submission in the cloud, but need to
validate the method, so I will inform you next week of the submission process.

1


