
Chapter 2 Data Abstraction

Objectives
• To learn how abstract data types are used in software design.

• To review the basic principles and techniques of object-oriented design.

• To learn about unit testing and how to write unit tests in Python.

• To learn about operator overloading and how to overload operators in Python.

2.1 Overview

Algorithms are one fundamental building block of programs. In Chapter 1, we
saw the benefits that come from separating the idea of what a function does from
the details of how it is implemented. In this chapter, we'll take a look at the
data that our programs process. Separating behavior from implementation is even
more powerful when we consider data objects. This process of data abstraction is
a foundational concept that must be mastered in order to build practical software
systems. Computer scientists formalize the idea of data abstraction in terms of
abstract data types (ADTs). Abstract data types, in turn, are the foundation for
object-oriented programming, which is the dominant development method for large
systems.

We'll start out by examining ADTs and how they relate to object-oriented
programming. Along the way we'll show how object-oriented programming can
be used to extend a programming language with new data types that can make it
more suitable for solving problems in new domains. In languages that support a
special technique known as operator overloading, new data types can be made to
look and act just like the language's own built-in types.

39

4 0 C h a p t e r 2 D a t a A b s t r a c t i o n

Using ADTs and objects, program design becomes a process of breaking a
problem into smaller pieces: a set of cooperating objects that provide most of the
program's functionality. As these smaller pieces are implemented, they can be tested
in isolation so that developers have confidence in their correctness before the parts
are combined into a larger system. Learning how to do effective testing is another
important piece of the software development puzzle.

2.21 Abstract Data Types
One important property of any value stored in a computer is its data type. The type
of an object determines both what values it can have and what we can do with it (i.e.,
what operations it supports). For example, on a 32-bit computer the built-in type
int can represent integers in the range from —231 to 231 — 1 and can be used with
operations such as addition (+), subtraction (-), multiplication (*) and division(/).
Knowing this information, you can write programs that use ints without having to
know how such numbers are actually stored on the computer. Using our terminology
from last chapter, we would say that a program that manipulates int values is a
client of the int data type.

Of course, in order for a data type to actually be useful, there must be some un
derlying implementation of that type. The implementation consists of both a way to
represent all the possible values of the type and a set of functions that manipulate the
underlying representation. Consider again the int data type. It is typically stored
on today's computers as a 32-bit binary number. Algorithms for operations such
as addition and subtraction are defined in the underlying machine hardware, and
functions for input and output of ints are built into most programming languages.

2.2.1 From Data Type to ADT

Applying the idea of abstraction, we can separate the concerns of how data is
represented from how it is used. That is, we can provide a specification for a
data type that is independent of any actual implementation. Such a specification
describes abstract data type . A precise and complete description allows client
programs to be written without worrying about how an ADT is realized in the
computer. In this way, data abstraction extends the advantages of implementation
independence. We can delay decisions about how data should be represented in our
programs until we have sufficient information about how that data is going to be
used. We can also go in and change a representation, and the abstraction barrier
ensures that the rest of the program will not be adversely affected.

2.2 Abstract Data Types 41

Data abstraction is particularly important for those parts of a program that are
likely to change. Major design decisions can be encapsulated in ADTs, and the
implementation of the ADTs can be adjusted as necessary without affecting the rest
of the program. As you will see, it is often the case that changing how data is
represented can have a major impact on the efficiency of the associated operations;
so, having the freedom to modify representations is a big win when trying to tune
a program's efficiency.

Another advantage of ADTs is that they promote reuse. Once a relevant abstrac
tion has been implemented, it can be used by many different client programs. Those
clients are freed from the hassle of having to reinvent the data type. This allows
programmers to extend programming languages with new data objects that are
useful in their particular area of programming. After the ADT has been thoroughly
tested, it can be used with confidence and the implementation details never have to
be revisited.

2.2.2 Defining an ADT
You can think of an ADT as a collection of functions or methods that manipulate
an underlying representation. The representation is really just some collection of
data. To specify an ADT we just describe what the operations supported by the
ADT do. We can apply the same techniques we used for specifying functions. The
only difference is that a single ADT is described by a collection of functions.

Let's look at a simple example. Suppose we are writing some programs dealing
with card games, say bridge or Texas hold 'em. A playing card could be modeled
as a simple ADT. Here's a description of the ADT:

ADT Card:
A simple playing card. A Card is characterized by two components;
rank: an integer value in the range 1-13, inclusive (Ace-King)
su i t : a character in 'cdhs ' for c lubs, d iamonds, hear ts , and

spades.

Operat ions:

c r e a t e (r a n k , s u i t) :
Create a new Card
pre: rank in range(1,14) and sui t in 'cdhs '
post: returns a Card of the given rank and suit

s u i t () :
Card sui t
post: Returns Card's sui t as a single character

_

42 Chapter 2 Data Abstraction

r a n k () :
Card rank
post: Returns Card's rank as an int

sui tName():
Card suit name
pos t : Re tu rns one o f (' c l ubs ' , ' d i amonds ' , ' hea r t s ' ,

' spades ') cor r responding to Card 's su i t .

rankName():
Card rank name
p o s t : R e t u r n s o n e o f (' a c e ' , ' t w o ' , ' t h r e e ' , . . . , ' k i n g ')

corresponding to Card's rank.

toStr ingO :
Str ing representat ion of Card
post: Returns string naming the Card, e.g. 'Ace of Spades'

Notice how this specification describes a Card in terms of some abstract at
tributes (rank and suit) and the things that we can do with a card. It does not
describe how a Card is actually represented or how the operations are achieved. In
fact, the specification doesn't even explicitly refer to any card object or parameter;
it is implicit that these are the operations that can somehow be applied to any card.

In the process of designing an ADT, our goal is to include a complete set of
operations necessary to make the ADT useful. Of course, there are many different
design choices that could be made for the Card ADT. For example, we could have
different names for the operations; some designers prefer to use names starting
with "get" for accessing components of an ADT. Thus, they might use getSuit and
getRank in place of suit and rank. Other designers might choose different types for
the parameters of the various operations. Perhaps suits might be represented with
ints instead of strings. Another approach is to "hide" the exact representation
of suits and ranks by simply providing a set of variables representing the suits and
ranks. For example, an identifier named CLUBS might be assigned to some value
representing that suit, similar to the way the identifier None refers to Python's
special None object. The ranks could be represented using names like ACE, TWO,
THREE, etc.

As you gain experience working with ADTs, you will develop your own design
sense. The most important thing to keep in mind is implementation independence.
An ADT describes only a set of operations, not how those operations are imple
mented. One good way of "testing" the design for an ADT is to try writing some
client algorithms that use it. For example, here is an algorithm that prints out the
rank, suit, and "name" of all the cards in a standard deck:

■:>

2 . 2 A b s t r a c t D a t a T y p e s 4 3

for s in 'cdhs':
for r in range(1,14):

card = create(r, s)
pr in t 'Su i t : ' , su i t (card)
print 'Rank:', rank(card)
print toString(card)

Notice how this algorithm is expressed using a Python-like syntax, but makes
use of the abstract functions of the ADT presented above. The algorithm shows us
that our set of operations would be sufficient to create and print out all 52 possible
cards.

2.2.3 Implementing an ADT

It is possible to design and reason about ADTs in a language-independent fashion,
but once we get down to the point of implementing and using an ADT in a program,
we need to fill in some details that are specific to the particular programming envi
ronment. There are numerous ways that a programmer could go about translating
an ADT into a particular programming language. Virtually all languages provide
the ability to define new functions, so one way of implementing an ADT is simply
to write an appropriate set of functions. For example, in Python we could write a
function for each Card operation and place them together in a module file.

Of course, in writing the functions we will need to decide how a Card will be
represented on the computer. The abstract type has components for rank and suit.
In Python, a simple representation would be to package the rank and suit together
as a pair of values in a tuple. A Python tuple is an immutable (unchangeable)
sequence of values. A tuple literal is indicated by enclosing a comma-separated
sequence in parentheses. Using tuples, the ace of clubs would be represented by the
tuple (1,' c') and the king of spades would be (13,' s').

The underlying representation of an ADT is called the concrete representation.
We would say that the tuple (5,'d') is the concrete representation of the abstract
Card known as the five of diamonds.

Now that we have a representation for our Card ADT, writing the implementa
tion code is straightforward. Here is one version:

cardADT.py
Module file implementing the card ADT with functions

.SUITS = 'cdhs'
_SUIT_NAMES = ['clubs', 'diamonds', 'hearts', 'spades']

44 Chapter 2 Data Abstraction

.RANKS = ranged, 14)
_RANK_NAMES = ['Ace', 'Two', 'Three', 'Four', 'Five', 'Six',

'Seven' , 'Eight ' , 'Nine' , 'Ten' ,
'Jack', 'Queen', 'King']

def create(rank, suit):
assert rank in _RANKS and suit in _SUITS
r e t u r n (r a n k , s u i t)

def rank(card) :
return card[0]

d e f s u i t (c a r d) :
r e t u r n c a r d [l]

def suitName(card):
index ■ _SUITS. index(sui t (card))
return _SUIT_NAMES[index]

def rankName(card):
index = _RANKS.index(rank(card))
return _RANK_NAMES[index]

d e f t o S t r i n g (c a r d) :
return rankName(card) + ' of ' + suitName(card)

Take a look at the create function. It uses an assert to check that the
preconditions for creating a card are met, and then it simply returns a rank-suit
tuple. In this way, the function returns a single value that represents all the
information about a particular card.

The rank and suit operations simply unpackage the appropriate part of the card
tuple. Tuple components are accessed through indexing, so card [0] gives the first
component, which is the rank, and card[l] gives the suit. These two operations
are so simple, you might even wonder if they are necessary. Couldn't a client using
the Card ADT simply access the suit directly by doing something like myCardfl]?
The answer is that the client could do this, but it shouldn't. The whole point of an
ADT is to uncouple the client from the implementation. If the client accesses the
representation directly, then changing the representation later will break the client
code. Remember this rule: clients may use an ADT only through the provided
operations.

One other point worth noting about this code is the use of some special values:
_RANKS, _SUITS, _RANK_NAMES, and _SUIT_NAMES. The suitName and rankName
methods could have been written as large multi-way if statements. Instead, we have
employed a table-driven approach. We use the index method to find the position

_

2 . 2 A b s t r a c t D a t a T y p e s 4 5

of a rank or suit, and then use it to look up the corresponding name. This shortens
the code and makes it much easier to modify. For example, we could easily add a
fifth suit by simply adding another item to the end of _SUITS and _SuTT_NAMES.

Just in case you were wondering, there's a reason for the funny-looking variable
names used for the lookup tables. The use of uppercase is a programming convention
often employed for constants, that is, things that are assigned once and never
changed. The leading underscore is a Python convention indicating that these names
are "private" to the module. If the client imports the module via

from cardADT import *

the identifiers beginning with an underscore are not imported into the local program.
This keeps implementation details, such as the use of lookup tables, from cluttering
up the client's namespace (the set of defined identifiers).

Now that we have the Card ADT implementation, we can actually code up our
program that prints out cards using this card module.

test_cardADT.py
import cardADT

def p r in tA l lO :
f o r s u i t i n ' c d h s ' :

for rank in ranged, 14):
myCard = cardADT. create (rank,' suit)
pr in t cardADT.toStr ing(myCard)

i f n a m e = = ' m a i n ' :
p r i n t A l l ()

To summarize, one way of implementing an ADT is to choose a concrete rep
resentation and then write a set of functions that manipulate that representation.
If our implementation language includes modules (a la Python), we can place the
implementation in a separate module so that it has its own independent namespace.

If the implementation language does not support the idea of separate modules,
then we could run into trouble with the names of operations between ADTs "clash
ing." For example, if we were writing a program to play a card game, we might also
have a deckADT representing a deck of cards. Of course, the deckADT would have its
own create method. Without modules, we'd have to rely on naming conventions
to keep the operations straight. For example, all of the operations on cards might
begin with card_ while those for decks would start with deck_. Thus, we would
have separate functions, card_create and deck_create.

46 Chapter 2 Data Abstraction

2.3 ADTs and Objects

As we have seen, an ADT comprises a set of operations that manipulate some
underlying data representation. This should sound familiar to you. If you are
working in an object-oriented language (such as Python), then it is natural to
think of implementing an ADT as an object, since objects also combine data and
operations. Simply put, an object "knows stuff (data) and does stuff (operations)."
The data in an object is stored in instance variables, and the operations are its
methods. We can use the instance variables to store the concrete representation of
an ADT and write methods to implement the operations.

As you know, new object types are defined using the class mechanism. As the
Python language has evolved, it has come to support two different kinds of classes
sometimes called the classic and new-style classes. For our examples, classic and
new-style classes behave exactly the same. We will use Python's new-style classes
throughout this book as they are strongly recommended for new code. A new-style
class is indicated simply by having the class inherit from the built-in class object.
You do not need to know any details about inheritance in order to use new-style
classes; you just need to change the class heading slightly. For example, to create a
Card class with new-style classes, we write class Card(object) : instead of class
Card:.1

2.3.1 Specification

In object-oriented languages, new object data types can be created by defining a
new class. We can turn an ADT description directly into an appropriate class
specification. Here is a class specification for our Card example:

c lass Card(ob jec t) :
"""A simple playing card. A Card is characterized by two components,
rank: an integer value in the range 1-13, inclusive (Ace-King)
sui t : a character in 'cdhs ' for c lubs, d iamonds, hear ts , and

spades. " " "

l i t) :d e f i n i t (s e l f , r a n k ,
" " "Cons t ruc to r
pre: rank in range(1,14) and sui t in 'cdhs '
post: sel f has the given rank and sui t"""

xIn Python 3.0, support for classic classes has been dropped and either class heading form will
produce a new-style class.

2.3 ADTs and Objects 47

d e f s u i t (s e l f) :
" " "Card su i t
post : Returns the su i t o f se l f as a s ing le character"" "

d e f r a n k (s e l f) :
"""Card rank
post: Returns the rank of sel f as an int"""

de f su i tName(se l f) :
"""Card suit name
post : Returns one o f ('C lubs ' , 'D iamonds ' , 'Hear ts ' ,

'Spades ') co r r respond ing t o se l f ' s su i t . " " "

def rankName(self):
"""Card rank name
p o s t : R e t u r n s o n e o f (' A c e ' , ' Tw o ' , ' T h r e e ' , ' K i n g ')

co r respond ing to se l f ' s rank . " " "

d e f _ _ s t r _ _ (s e l f) :
" " "S t r i ng rep resen ta t i on
post : Returns s t r ing represent ing se l f , e .g . 'Ace o f Spades ' " " "

Basically, this specification is just the outline of a Card class as it would look in
Python. The docstring for the class gives an overview, and the docstrings for the
methods specify what each one does. Following Python conventions, the method
names that begin and end with double underscores (init and str) are
special. Python recognizes __init__ as the constructor, and the __str__ method
will be called whenever Python is asked to convert a Card object into a string. For
example:

>» c = Card (4 , ' c ')
> » p r i n t c
Four of Clubs

We have now translated our ADT into an object-oriented form. Clients of this
class will use dot notation to perform operations on the ADT. Here's the code that
prints out all 52 cards translated into its object-based form:

48 Chapter 2 Data Abstraction

printcards.py
Simple test of the Card ADT

from Card import Card

def pr in tA lK) :
for suit in 'cdhs':

for rank in range(1,14):
card = Card(rank, suit)
print 'Rank:', card.rankO
pr in t 'Su i t : ' , ca rd .su i t ()
print card

i f n a m e = = ' m a i n ' :
print AllO

Notice that the constructor is invoked by using the name of the class, Card, and the
str method is implicitly called by Python when it is asked to print the card.

2.3.2[Implementation
We can translate our previous implementation of the card ADT into our new class-
based implementation. Now the rank and suit components of a card can just be
stored in appropriate instance variables:
Card.py
class Card(object):

••""A simple playing card. A Card is characterized by two components:
rank: an integer value in the range 1-13, inclusive (Ace-King)
suit: a character in 'cdhs' for clubs, diamonds, hearts, and

,s."""

SUITS = 'cdhs'
SUIT_NAMES = ['Clubs', 'Diamonds', 'Hearts', 'Spades']

RANKS = range(1,14)
RANK NAMES = ['Ace', 'Two', 'Three', 'Four', 'Five1

'Seven' , 'Eight ' , 'Nine' , 'Ten' ,
'Jack', 'Queen', 'King']

def __ in i t „ (se l f , rank, su i t) :
"""Constructor
pre: rank in range(1,14) and suit in 'cdhs'
post: self has the given rank and suit"""

self.rank_num = rank
self.suit.char = suit

' S i x ' ,

&&

2.3 ADTs and Objects 49

d e f s u i t (s e l f) : ' ~
" " "Card su i t
post : Returns the su i t o f se l f as a s ing le character" " "

r e t u r n s e l f . s u i t _ c h a r

d e f r a n k (s e l f) :
"""Card rank
post : Returns the rank of sel f as an int"""

re turn se l f . rank_num

def su i tName(se l f) :
"""Card suit name
pos t : Re tu rns one o f (' c l ubs ' , ' d i amonds ' , ' hea r t s ' ,

' spades ') cor respond ing to se l f ' s su i t .1

index = se l f .SUITS. index(se l f . su i t_char)
return self.SUIT_NAMES[index]

' k i n g ')

def rankName(self) :
"""Card rank name
p o s t : R e t u r n s o n e o f (' a c e ' , ' t w o ' , ' t h r e e ' ,

co r respond ing to se l f ' s rank . " " "

index = self.RANKS.index(self.rank num)
return self.RANK_NAMES[index]

de f __s t r__ (se l f) :
" " " S t r i n g r e p r e s e n t a t i o n
post : Returns s t r ing represent ing se l f , e .g. 'Ace of Spades '

return self .rankNameQ + ' of > + self .suitNameO

Notice that the lookup tables from the previous version have now been imple
mented as variables that are assigned inside of the Card class but outside of any
of the methods of the class. These are class variables. They "live" inside the class
definition, so there is one copy shared by all instances of the class. These variables
are accessed just like instance variables using the self .<name> convention. When
Python is asked to retrieve the value of an object's attribute, it first checks to see
f the attnbu e has been assigned directly for the object. If not, it will look in

tGifiu%l t®ll d [L F°r GXample' When the sultNaffie meth°d accessesself SUITS, Python sees that self does not have a SUIT attribute, so the value
from the Card class is used (because self is a Card).

— . C h a p t e r 2 D a t a A b s t r a c t i o n

gJ?™zii ̂ r k, *kindsofvariabies&rstorinsinf°rmat̂ p̂r<>ShS„ Vrr ,.instance wiabies'Md ciass variaMes- chooLgthe right kind of variable for a given piece of information is an important decision
when implementing ADTs. The first question you must answer is whether the data
needs to be remembered from one method invocation to another. If not, you shou d
use a ocal variable. The index variable used in rankle O is a good ~k of
a loca variable; its value is no longer needed once the method terminal ice
hat there is also a local variable called index in the snitMame method These â e

two completely independent variables, even though they happen to have the san̂ e
name. Each exists only while the method where they are used * executing We Zd

SgTwouiir "tr t™ variabie seif •index - *■« ̂ ° ss
«T?£ T f ! ""f16^1^ **S» <*>«». because we have no reason to hangonto the value of index from the last execution of r-kta. or suitName £2

Cth TThle *?*?" W°Uld imply a Connection »*« — ê t,
.,hni * f r ^ t0 be remembe^ from one method invocation to anothershould be stored in either instance variables or class variables. The decilnXrt

oE to Z If T^ePendS T Wh6ther the data ™* be ^er™: L
~le self IJ! / 1S ^ Same f°r ■" °bjeCts 0f the class- *» °ur <»rd
wteThltL r T^ self-su"-c^ are'values that will'vary amongcards. They are part of the intrinsic state of a particular card, so they have to bf
instance variables. The suit names, on the other hand will be the same fotal cal

td caSr̂ ts -a ciass ̂ f°r that- C« ™ s
ob£t X nl Ho? ™S 6S' ^ by definiti°n'they « the same ^ °ne
™*f » £ ?Ver'there aw ata> times when non-constant class variablesŝs; ciLr.6 these simpie ruies in mind shouid ̂ *» *» ̂dS
»„h^ ^kw ^th6re iS a natUraJ despondence between the notion of an ADT
ulu™? T^T Cl8SS- 7^ ^ an obj^t-oriented language "u^
* tW ^ ? "nu>lement ^ ADT " a class- The «*» thing about u^inglZr isxsa r;re *-facets °f - adt «-- «-s
I2-3-3! Changing the Representation
We have emphasized that the primary strength of using- Arm tn ,w

2 . 3 A D T s a n d O b j e c t s 5 1

values as instance variables. Isn't the client directly using the representation when
it manipulates suits and ranks?

The reason it seems that the client has access to the representation in this case
is simply because the concrete representation that we've chosen directly mirrors the
data types that are used to pass information to and from the ADT. However, since
access to the data takes place through methods (like suit and rank) we can actually
change the concrete representation without affecting the client code. This is where
the independence comes in.

Suppose we are developing card games for a handheld device such as a PDA
or cell phone. On such a device, we might have strict memory limitations. Our
current representation of cards requires two instance variables for each card; the
rank, which is a 32-bit int; and the suit, which is a character. An alternative way
to think about cards is simply to number them. Since there are 52 cards, each can
be represented as a number from 0 to 51. Think of putting the cards in order so
that all the clubs come first, diamonds second, etc. Within each suit, put the cards
in rank order. Now we have a complete ordering where the first card in the deck is
the ace of clubs, and the last card is the king of spades.

Given a card's number, we can calculate its rank and suit. Since there are
13 cards in each suit, dividing the card number by 13 (using integer division)
produces a value between 0 and 3 (inclusive). Clubs will yield a 0, diamonds a
1, etc. Furthermore, the remainder from the division will give the relative position
of the card within the suit (i.e., its rank). For example, if the card number is 37,
37//13 = 2 so the suit is hearts, and 37%13 = 11 which corresponds to a rank of
queen since the first card in a suit (the ace) will have a remainder of 0. So card 37
is the queen of hearts. Using this approach, the concrete representation of our Card
ADT can be a single number. We leave it as an exercise for the reader to complete
an implementation of the Card class using this more-memory-efheient alternative
representation.

2.3.4 Object-Oriented Design and Programming

As you have seen, there is a close correspondence between the ideas of ADTs
and object-oriented programming. But there is more to object-orientation (00)
than just implementing ADTs. Most 00 gurus talk about three features that
together make development truly object-oriented: encapsulation, polymorphism,
and inheritance.

52 Chapter 2 Data Abstraction

Encapsulation

As von know objects know stuff and do stuff. They combine data and operations^
This procTof packaging some data along with the set of operations that can be
nerformed on the data is called encapsulation.

Insulation is one of the major attractions of using objects. It pronto a
convSrZ to compose solutions to complex problems that corresponds to our
ZTtive view of how the world works. We naturally think of the world around us
"c I sting of interacting objects. Each object has its own identity and knowing
what kind of object it is allows us to understand its nature and capabilities. When
^u look out your window, you see houses, cars, and trees, not a swarming mass of
c o u n t l e s s m o l e c u l e s o r a t o m s . „ i t i ~ , i s e r v i c e o f

From a design standpoint, encapsulation also provides the critical service ot
separating the concerns of "what" vs. "how." The actual implementation of an
ob'ets independent of its use. Encapsulation is what gives us mplementataa
independence Encapsulation is probably the chief benefit of using objects, but alone
It only makes a sysfem oojeet-oased. To be truly objected-oriented, the approach
must also have the characteristics of polymorphism and inheritance.

Polymorphism

Literally the word polymorphism means "many forms." When used in object
ed'literature, tUrefers to the fact that what an object.does in resporise
to a message (a method call) depends on the type or class of the object. Consider a
stapk example. Suppose you are working with a graphics library for drawing two-
drensionaTshapesPThe library provides a number of primitive ■"*»*£
that can be drawn into a window on the screen. Each shape has an operat on that
actually draws the shape. We have a collection of classes something like this.

c l a s s C i r c l e (o b j e c t) :
def drawCself, window):

code to draw the circle

c lass Rectang le(ob jec t) :
def drawCself, window):

code to draw the rectangle

c lass Po lygon(ob jec t) :
def drawCself, window):

code to draw the polygon

r

2.3 ADTs and Objects 53

Of course, each of these classes would have other methods in addition to its draw
method. Here we're just giving a basic outline for illustration.

Suppose you write a program that creates a list containing a mixture of geometric
objects: circles, rectangles, polygons, etc. To draw all of the objects in the list, you
would write code something like this:

fo r ob j i n ob jec ts :
ob j .d raw(win)

Now consider the single line of code in the loop body. What function is called when
obj. draw (win) executes? Actually, this single line of code calls several distinct
functions. When obj is a circle, it executes the draw method from the circle class.
When obj is a rectangle, it is the draw method from the rectangle class, and so on.
The draw operation takes many forms; the particular one used depends on the type
of obj. That's the polymorphism.

Polymorphism gives object-oriented systems the flexibility for each object to
perform an action just the way that it should be performed for that object. If we
didn't have objects that supported polymorphism we'd have to do something like
this:

fo r ob j i n ob jec ts :
i f t y p e (o b j) i s C i r c l e :

d r a w _ c i r c l e (. . .)
e l i f t ype (ob j) i s Rec tang le :

d r a w _ r e c t a n g l e (. . .)
e l i f t ype (ob j) i s Po l ygon :

draw_po lygon(. . .)

Not only is this code more cumbersome, it is also much less flexible. If we
want to add another type of object to our library, we have to find all of the places
where we made a decision based on the object type and add another branch. In
the polymorphic version, we can just create another class of geometric object that
has its own draw method, and all the rest of the code remains exactly the same.
Polymorphism allows us to extend the program without having to go in and modify
the existing code.

Inheritance

The third important property for object-oriented development is inheritance. As
its name implies, the idea behind inheritance is that a new class can be defined to
borrow behavior from another class. The new class (the one doing the borrowing)

54 Chapter 2 Data Abstraction

is called a subclass, and the existing class (the one being borrowed from) is its
superclass.

For example, if we are building a system to keep track of employees, we might
have a class Employee that contains the general information and methods that
are common to all employees. One sample attribute would be a home Address
method that returns the home address of an employee. Within the class of all
employees, we might distinguish between SalariedEmployee and HourlyEmployee.
We could make these subclasses of Employee, so they would share methods like
homeAddress; however, each subclass would have its own monthlyPay function,
since pay is computed differently for these different classes of employees. Figure 2.1
shows a simple class diagram depicting this situation. The arrows with open heads
indicate inheritance; the subclasses inherit the homeAddress method defined in the
Employee class, but each defines its own implementation of the monthlyPay method.

Employee

homeAddressQ

monthlyPay()

HourlyEmployee

monthlyPayO
wmmmmmmm

SalariedEmployee

Figure 2.1: Simple example of inheritance with subclasses inheriting one shared
method and each separately implementing one method

Inheritance provides two benefits. One is that we can structure the classes of
a system to avoid duplication of operations. We don't have to write a separate
homeAddress method for the HourlyEmployee and SalariedEmployee classes. A
closely related benefit is that new classes can often be based on existing classes, thus
promoting code reuse.

