Introduction to Discrete-Event Simulation

Reference book: "Simulation, Modeling & Analysis (3/e) by Law and Kelton, 2000"

Outline

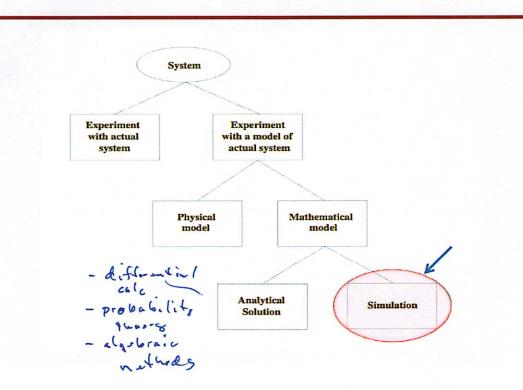
System, Model, and Simulation

- · System: Discrete and Continuous
- Ways to Study a System
- · Why Model
- Model Taxonomy
- Why Simulation

Discrete-Event Simulation

- What is Discrete-Event Simulation (DES)
- Example: A Single Server System
- Advancement of Simulation Time
- · Components and Organization of Discrete-Event Simulation Model
- Design of Event List

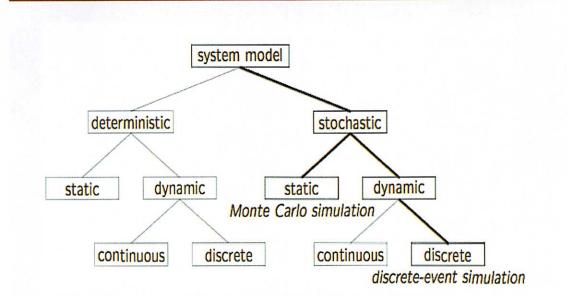
Example: A Single Server System


- Sample Design for Event-Scheduling
- Sample Design for Arrival and Departure Event Routine

The Stages of a Simulation Project

System: Discrete and Continuous

- System:
 - a collection of entities that act and interact together toward the accomplishment of some logical end.
- Discrete system:
 - state variables change instantaneously at separated point in time, e.g., a bank, since state variables - number of customers, change only when a customer arrives or when a customer finishes being served and departs
- Continuous system:
 - state variable change continuously with respect to time, e.g., airplane moving through the air, since state variables position and velocity change continuously with respect to time


Ways To Study a System

Why Model?

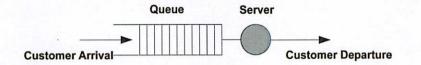
- Model:
 - A representation of the system and study it as a surrogate for the actual system
- Why Model?
 - System is not physically exists
 - Building a system is expensive
 - Measuring a system is time-consuming
- Characterizing a Model
 - Deterministic or Stochastic
 - · Does the model contain stochastic components?
 - Static or Dynamic
 - · Is time a significant variable?
 - Continuous or Discrete
 - Does the system state evolve continuously or only at discrete points in time?
 - Continuous: classical mechanics
 - · Discrete: queuing, inventory, machine shop models

Model Taxonomy

Why Simulation?

- Many systems are highly complex, precluding the possibility of analytical solution
- The analytical solutions are extraordinarily complex, requiring vast computing resources
- Thus, such systems should be studied by means of simulation
 - numerically exercising the model for inputs in question to see how they affect the output measures of performance

"Simulation is the process of designing a model of a real system and conducting experiments with this model for the purpose either of understanding the behavior of the system or of evaluating various strategies (within the limits imposed by a criterion or set of criteria) for the operation of a system."


-Robert E Shannon 1975

What is Discrete-Event Simulation (DES)

- A discrete-event simulation
 - models a system whose state may change only at discrete point in time.
- System
 - is composed of objects called entities that have certain properties called attributes
- State
 - a collection of attributes or state variables that represent the entities of the system.
- Event
 - an instantaneous occurrence in time that may alter the state of the system
- An event initiates an activity, which is the length of time during which entities engage in some operations
- Entities, attributes, events, activities and the interrelationships between these components are defined in the model of the system

Example: A Single Server System

- Entities: customers; server
- Attributes of a customer: service required
- Attributes of server: server's skill (its service rate)
- Events: arrival of a customer; departure of a customer
- Activities: serving a customer, waiting for a new customer

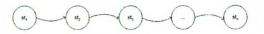
What is Discrete-Event Simulation (DES)

 Discrete-event simulation is stochastic, dynamic, and discrete

Stochastic = Probabilistic

- Inter-arrival times and service times are random variables
- Have cumulative distribution functions
- Discrete = Instantaneous events are separated by intervals of time
 - The state variables change instantaneously at separate points in time
 The system can change at only a countable number of points in time.
 - These points in time are the ones at which an event occurs.

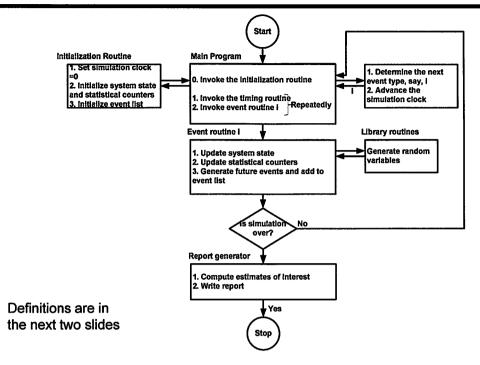
Dynamic = Changes over time


- Simulation clock
 - Keep track of the current value of simulated time as the simulation proceeds
- A mechanism to advance simulated time from one value to another
 Next-event time advance

Advancement of Simulation Time

- Fundamental to every simulation study is a mechanism to model the passage of time
- Every model contains a variable called the internal clock, or the simulation clock
- Time may be modeled in a variety of ways within the simulation
- How do we advance simulated time?
 - Time as linked events (Next-event time advance)
 - Time divided into equal increments (Fixed-increment time advance)

Advancement of Simulation Time


- Time as linked events (Next-event time advance)
 - All state changes occur only at event times for a discreteevent simulation model
 - Periods of inactivity are skipped over by jumping the clock from event time to event time
 - This method is called event-driven DES and is asynchronous as opposed to time-stepped approach which is synchronous

 Time divided into equal increments (Fixedincrement time advance)

 $\blacksquare = \frac{|\mathsf{st}_1| |\mathsf{st}_2| |\mathsf{st}_3| |\mathsf{st}_4| | \dots |\mathsf{st}_n|}{|\mathsf{st}_1| |\mathsf{st}_2| |\mathsf{st}_3| |\mathsf{st}_4| |\mathsf{$

Components and Organization of Discrete-Event Simulation Model

Components and Organization of Discrete-Event Simulation Model

System state

 The collection of state variables necessary to described the system at a particular time

Simulation clock

- A variable giving the current value of simulated time

Event list

A list containing the next time when each type of event will occur

Statistical counters

Variables used for storing statistical information about system information

Initialization routine

- A subprogram to initialize the simulation model at time 0

Timing routine

 A subprogram that determines the next event from the event list and then advances the simulation clock to the time when that event is to occur

Components and Organization of Discrete-Event Simulation Model

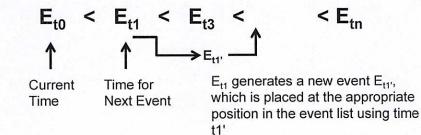
Report generator

 A subprogram that computes estimates (from the statistical counters) of the desired measures of performance and produces a report when the simulation ends

Event routine

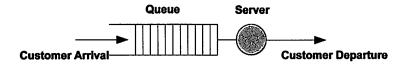
- A subprogram that updates the system state when a particular type of event occur
 - · There is one event routine for each event type

Library routines


 A set of subprogram used to generate random observations from probability distributions that were determined as part of the simulation model

Main program

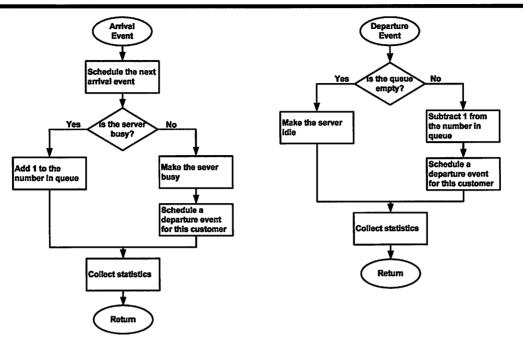
- A subprogram that invokes the timing routine
 - · determine the next event and
- transfer control to the corresponding event routine
 update the system state appropriately
- check for termination
 - · invoke the report generator when the simulation is over.


Design of Event List

- · Events are chronologically ordered in time.
- Event List
 - sometimes called the pending event set because it lists events that are pending.
 - contains all scheduled events, arranged in chronological time order.
 - In the simulator, this is just a data structure, e.g. list, tree

Example: A Single Server System

- Entities: customers; server
- · Attributes of a customer: service required
- Attributes of server: server's skill (its service rate)
- Events: arrival of a customer; departure of a customer
- Activities: serving a customer, waiting for a new customer



Sample Design for Event-Scheduling

Main (executive routine):

- 1. set clock = 0
- 2. set cumulative statistics to 0
- 3. define initial system state (queue empty, server idle)
- 4. generate the occurrence time of the first arrival and place in event list
- 5. select the next event on event list (arrival or departure event)
- 6. advance simulation clock to time of next event
- 7. process this event (execute the corresponding event routine)
- 8. if not end-of-simulation, goto step 5

Sample Design for Arrival and Departure Event Routine

The Stages of a Simulation Project

- Planning
 - Problem Formulation: what is it and what do I want to do with it?
 - Resource Estimation: time, people and money.
 - System and Data Analysis
- Modeling
 - Model Building: find relationships.
 - Data Acquisition: find and collect appropriate data.
 - Model Translation: program and debug.
- Verification and Validation
 - Verification: does the PROGRAM execute as intended?
 - Validation: does the PROGRAM represent reality as intended?
- Typically an iterative process

- It is not so hard to write a simulation program
- Efficiency is critical point to a simulation program

Reference

- Simulation, Modeling & Analysis (3/e) by Law and Kelton, 2000
- www.cs.wm.edu/~esmirni/Teaching/cs526/DESAFC-1.1.ppt
- www.cs.uml.edu/~giam/91.570/Lect1/Lecture1.ppt
- www.geo.hunter.cuny.edu/.../Discrete%20Event%20 Simulation.ppt
- www.pcs.csie.ntu.edu.tw/course/pcs/2007/project/Si mulation.pdf