Math 118 - Quiz 7
 April 18, 2011

How is it that $0.999 \ldots=1$?
Let us count some ways.
Tool 1: $x^{n}-1=(x-1)\left(1+x+x^{2}+\cdots+x^{n-1}\right)$. This is essentially the formula for the sum of a geometric series as given in Chapter 9, Section 2.
App 1: $10^{n}-1=9 \times\left(1+10+10^{2}+\cdots+10^{n-1}\right)=999 \ldots 9$ (n nines $)$. To see this, put $x=10$ in the formula.

Tool 2: Take Tool 1 and divide both sides by $x-1$. Then multiply the left-handside by $(-1) /(-1)$ to change signs in the numerator and denominator. Add $x^{n} /(1-x)$ to both sides and then multiply by x. Fill in these steps to get the result below:

$$
\frac{x}{1-x}=x+x^{2}+x^{3}+\cdots+x^{n}+\frac{x^{n+1}}{1-x}, x \neq 1
$$

App 2: Take x to be $1 / 10$ in this formula to show that

$$
\frac{1}{9}=\frac{1}{10}+\frac{1}{10^{2}}+\frac{1}{10^{3}}+\cdots+\frac{1}{10^{n}}+\frac{1}{9 \times 10^{n}}
$$

Way 1

(i) Express the number 0.9 as a fraction; What is 0.99 as a fraction? What about 0.999?
(ii) What is the fractional form of the number $0.999 \ldots 9$ (n nines)?
(iii) Use (ii) above and App 1 to get another form (using no $9^{\prime} s$) of the fraction for 0.999... 9 (n nines).
(iv) Define a sequence by $s_{1}=0.9, s_{2}=0.99, s_{3}=0.999$, etc. Use the alternate fractional forms of these numbers, as in (iii) above, to determine the limit of this sequence.

Way 2

Now define another sequence $\left\{t_{n}\right\}$ by

$$
t_{n}=\frac{1}{10}+\frac{1}{10^{2}}+\frac{1}{10^{3}}+\cdots+\frac{1}{10^{n}}
$$

(i) Write out the first three terms t_{1}, t_{2} and t_{3}. Is this sequence monotone?
(ii) Give an argument to show that $\lim _{n \rightarrow \infty} t_{n}$ exists. What is this limit? (Hint: App 2 and (i) above)
(iii) Beyond what point in the sequence $\left\{t_{n}\right\}$ can we be sure that every term differs from the limit by less than $1 / 899$? Why? (Hint: App 2 again.)

Way 3

Fact: If $\left\{s_{n}\right\}$ is a sequence with limit L and k is any number, then the sequence $\left\{k s_{n}\right\}$ obtained by multiplying each term in $\left\{s_{n}\right\}$ by k has limit $k L$. That is, $\lim _{n \rightarrow \infty} k \times s_{n}=k \times \lim _{n \rightarrow \infty} s_{n}$.

Applying this fact to the constant $k=9$ and the sequence defined as above by $t_{n}=\frac{1}{10}+\frac{1}{10^{2}}+\frac{1}{10^{3}}+\cdots+\frac{1}{10^{n}}$, whose limit is $1 / 9$, conclude that

$$
\begin{aligned}
1 & =9 \times \frac{1}{9}=9 \times \lim _{n \rightarrow \infty}\left(\frac{1}{10}+\frac{1}{10^{2}}+\frac{1}{10^{3}}+\cdots+\frac{1}{10^{n}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{9}{10}+\frac{9}{10^{2}}+\frac{9}{10^{3}}+\cdots+\frac{9}{10^{n}}\right) \\
& =\lim _{n \rightarrow \infty}(\underset{n \text { nines }}{0.999 \ldots 9})
\end{aligned}
$$

so we see again that the decimal all of whose digits are nines represents the number 1 .

Can you explain similarly what the equation

$$
\frac{1}{s}=0.333 \ldots
$$

means? That is, what sequence is $1 / 3$ the limit of? How do we know that the sequence you propose has the indicated limit? Can you derive this from what we have seen about $1 / 9$, or the Fact above?

