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Exotic Smooth Structures on Spheres

Classical: If two smooth manifolds are homeomorphic, are they
diffeomorphic?
Answer (Milnor, 1956): No! S’ has exotic smooth structures.

Next question: Can we classify all exotic smooth structures on
spheres, S"? (First, assume n # 4).

Milnor and Kervaire (1963): the group of smooth n-dim manifolds
homeomorphic to S (under connect sum operation) is isomorphic
to the group ©,, of h-cobordism classes of homotopy n-spheres.
Note: an h-cobordism is a cobordism M — W < N where the
inclusions are homotopy equivalences.

Note: M is a homotopy sphere iff M is an h-cobordism sphere
(Smale et. al) iff M is a topological sphere (by Perelman).
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Framed Manifolds and bP"*! < ©,

©p, = h-cobordism classes of homotopy n-spheres; finite, abelian.
Cyclic subgroup bP™' < ©, of n-spheres that bound
parallelizable manifolds. “Easy.”

Parallelizable manifold has trivial tangent bundle (hence also
trivial normal bundle). Framed means it has a chosen trivialization
of the normal bundle. Kervaire-Milnor; Levine:

0 if n+1 is odd
an+1 = CBernouIIi ifn+1 =4k
OorCo ifn+1=4k+2

bP"t' = Cy, =7Z/2whenn+1=4k+2,2k +1# 2/ -1
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Kervaire Invariant and Framed Surgery

bP" ! known except n 4+ 1 = 2/*1 — 2 (where 0 or Z/2), i.e. dim 2,
6, 14, 30, 62, 126, 254, ...

Recall J-homomorphism J : 7,(SO(k)) — mnyk(S¥)

Framed surgery theory gives an injection (onto if n is odd)
©p/bP"t! <z coker(J) = n$/im(J). It's an iso. iff Kervaire
invariant in dim nis 0 (otherwise, image of index 2)

Kervaire invariant (of n-dim framed manifold) is Arf invariant of the
skew-symmetric pairing on the middle-dimensional homology. It's
an obstruction to framed surgery.
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Pushing the problem into stable homotopy

Browder (1969): K(M") = 1 only possible if n = 2/*1 — 2. It's 1 iff
the class h/'2 € Extj’zl+1 (Z/2,Z/2) persists to the E.,-page, i.e.

. S
represents an element 6; € 75,

There are M with K(M) = 1 indim 2, 6, 14, 30, and 62.

Exact sequence 0 — bP™! — ©, — x$/im(J) — 0 splits when
n#2—1or2f -2

Other n: 0 = bP™! > ©, — 75/im(J) > C» — bP" 0
Extension problem: ¢ iso. (if K(M) = 1) or bP" = 0.
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Enter Hill, Hopkins, Ravenel (2009)

Browder (1969 + computations in 7;5): Can only have Kervaire
invariant 1if n =21 -2 =2,6,14,...

HHR (2009): For j > 7, the element h? € Ext22"'(Z/2, Z/2) does
Ji A

. S
not represent an element 6; € 73, |

Corollary: Unless n = 2,6, 14,30, 62, 126, there is no manifold of
Kervaire invariant 1. So, only n = 126 is left!

Corollary: In most dimensions, ©,/bP"*! — z$/im(J) is an
isomorphism.

Corollary: Except in dimensions 2, 6, 14, 30, 62, and maybe 126,
every stably framed smooth manifold is framed cobordant to a
homotopy sphere. Surgery works!
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Back to Exotic Smooth Structures

For n # 4,125, 126, if the order of x3 is known, we can compute
the number of exotic n-spheres. Except for n of the form
2k —3 > 125, we can also describe the group ©, precisely.

Example: For dimension n = 7, the group ©7 is the cyclic group
7Z]28

Theorem (HHR): Unless n = 2,6, 14, 30, 62, 126,
® when n =4k + 2, O 40 = njk+2, and

@ when n =4k + 1, |O41| = ak|njk+1| where a, = 1 if k even
and 2 if k odd.

Theorem (Wang-Xu): no exotic smooth structures in dim 5, 6, 12,
56, 61. Proof by computing r5.
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HHR proof sketch

To show h? e Extf\’zj+1 (Z/2,Z/2) does NOT represent

@ Create the 256-periodic spectrum (generalized cohomology
theory) Q = D~ MU,

© The Detection Theorem - can see if ¢ is zero or not via its
Hurewicz image in Q22" (pt)

© The Periodicity Theorem: Q*+256(X) = Q*(X)
@ The Gap Theorem: Q/(pt) = 0for -4 <i <0
Proof relies on Slice Spectral Sequence in G-spectra

(G = Z/8).
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Orthogonal G-spectra

An orthogonal G-spectrum is a sequence (X;,) of G x O(n)-spaces,
with o : X, — Xp11. Structure maps X, A SK — X, « are
G x O(n) x O(k)-equivariant. Denote Sp€.

Topological closed symmetric monoidal model category with
Hom(X, Y)n = [Tmzn MapO(m—n)(Xm—na Yim).

(XAY)a=\/ O(n) Aogyor) (Xo A Ye)
p+q=n

E is a commutative ring G-spectrumifr: EAE — E A E,
n: S — E, and associative, unital, commutative u : E A E — E (via
commutative diagrams). Denote CAlg(Sp®).
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Multiplicative Norms for Commutative G-spectra

Adjoint ind{(X) - res& : G-set — H-set; ind{(X) = [1g/n X
For G-spectra, indS(X) = Vicgu(Hi)+ An X

Can also define NS(X) = Aieg/H(Hi)+ An X. For any finite G-set
T, can define NTX = A1 X.

Adjunction (N§ 4 resS) : CAlg(Sp") < CAlg(Sp®)

Commutative ring G-spectra X have multiplicative norm maps
NTX — X for all T. These are used in the HHR computations that
resolve the Kervaire Invariant One problem.

Every homomorphism p : G — X7 gives G > X action on NTX.
Norm maps via G4 Ay NT(resy X) = (G x £,)/Tt Ag,, X" and
XN X,
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Operads encode algebraic structure. An operad P is a collection of
sets (or spaces or G-spaces) P(n) parameterizing n-ary
operations f : X" — X for all n. Action of X, on P(n),

unit 1 € P(1), and composition

o: P(k)x (P(ny)x---x P(ng)) = P(n) forn =YX n;.

Algebras X have P(n) Ay, X" — X for all n. Examples:
@ Com has Com(n) = = for all n. Algebras = CAlg(Sp€).

@ In Top, E,(n) = EX, (free X,-action and contractible), and
E..-operads parameterize “homotopy coherent” commutativity.

© In Top®, N,,-operads encode E,, plus multiplicative norms.
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N..-operads (Blumberg-Hill 2015)

An N, operad is a G-operad P such that P(0) is G-contractible,
the action of X, on P(n) is free, and P(n) is the universal space for
a family ¥, = N,(P) of subgroups of G x ¥, which contains all
subgroups of the form H x 1.

Here P(n)" = @if I ¢ 75, and P(n)" = x otherwise.

If 75, is all subgroups of G x X, that contain all subgroups of the
form H x 1, then you have all norms, and it's complete N.,. These
operads are G-weakly equivalent to Com.

If 7, = {H x 1}, then N, is the same as E., in Top®.

Motivating Question: Which collections ¥ = (¥,) have associated
N-operads?
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Model Categories

A model category is a setting for abstract homotopy theory.
Examples: Top, sSet, Ch(R), stable module cat, Spectra,
G-spectra, motivic spectra, operads, categories, graphs, flows,

Formally, a bicomplete category M and classes of maps ‘W, F,Q
(= weak equivalences, fibrations, cofibrations) satisfying axioms to
behave like Top. Lifting, factorization, 2 out of 3, retracts.

An object X is cofibrant if @ — X is a cofibration (where @ is
initial). The cofibrant replacement QY of Y is the result of
factoring @ — Y into cofibration followed by trivial fibration
QY — Y. Ex: CW approximation, Projective Resolution.
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Existence of N.,-operads (idea)

Non-equivariantly, EX, is the cofibrant replacement of * in Top™"
(with the projective model structure). Think: free ¥ ,-action and
contractible.

So an E..-operad P is cofibrant in Coll = [] Top>".

n=0
Given a family ¥, of subgroups of G X ¥, a universal classifying
space E¥, is a cofibrant replacement of = in the fixed-point model

structure Top%xz”, where f is a weak equivalence (resp. fibration)

iff 1 is for all I € #,,. Think: good fixed point behavior.

So, given ¥ = (¥5), an N-operad associated to F (if it exists) is

cofibrant in Colly = [] TopZ*™".
n=0 n
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Existence of N..-operads (proof)

Given 7, transfer a model structure along the free-operad functor
F: Colly & Opf, : U. A map of operads f is a weak equivalence
(resp. fibration) iff U(f) is.

In Opf., define P to be the cofibrant replacement of Com.
Prove U(P) is still cofibrant in Collz. This is hard!

Note: highly non-constructive. Related work of Bonventre-Pereira
and Rubin.

Obstruction: Composition o : P(k) x (P(nq1) x --- x P(nk)) — P(n)
could become * — @ after taking I'-fixed points, for I ¢ F,
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EX|stence of N.-operads (formal statement)

Definition (Realizable sequence of families of subgroups)

A sequence ¥ = (¥,) is realizable if, for each decomposition
n=n+---+ ng,

Tkz(fm X"'XTHK)CTI%

i.e. every subgroup of G x X, “built from” subgroups of G x X, via
blocks twisted by G x X is already in .

—
N

1
~

Theorem (Gutiérrez-W.

A sequence & = (F,) is realizable if and only if there is an
No-operad P such that P(n) is a universal classifying space for the
family F,.
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Existence Proof (the hard work)

To show P cofibrant in Opf. implies U(P) cofibrant in Collz, prove
that for every cofibration K — L in CollF, and every cofibrant
P € Opg, then the pushout P — P[u] is a cofibration in Op.

F(K) - F(L)
\J \J
P - Plu]

Use tree-decomposition of F due to Berger-Moerdijk (2003).
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Model Structure on Algebras over N..-operads

For H a family of subgroups of G, a H-N-operad has families
with all H x 1 for H € H. These are realizable too.

@ (W.-Yau) For every operad P in Top®, P-algebras in Sp® have
a model structure where f is a weak equivalence (resp.
fibration) if and only if U(f) is in Sp@.

@ (Gutiérrez-W.) In the positive (complete) model structure on
Sp™, a weak equivalence f : Py — P/, in Opg, induces a
Quillen equivalence Algp < Algp: .

© (Gutiérrez-W.) For complete H-N.,-operads P, the unique
map P — Com induces a Quillen equivalence Algp < CAlg.
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Left Bousfield Localization, L.

Given C c mor(Sp®), LcSp® is a universal model structure where
C are weak equivalences.

Theorem (W.)

@ LcSpC is a monoidal model category iff C ® (G/H) is a new
weak equivalence for all H.

Q L:SpC satisfies the commutative monoid axiom (so
CAIlg(LcSp@) has a transferred model structure) if and only if
Sym(C) consists of new weak equivalences.

@ Such localizations Lc preserve all N,-operad algebras and
commutative ring G-spectra.

Relevance: HHR needed their Q = Lo(MU"*) to be
commutative!
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