On the existence of N_{∞} operads in equivariant homotopy theory

David White

Denison University

Joint with Javier Gutiérrez June 20, 2019

David White

Denison University

Exotic Smooth Structures on Spheres

Classical: If two smooth manifolds are homeomorphic, are they diffeomorphic?

Answer (Milnor, 1956): No! S^7 has exotic smooth structures.

Next question: Can we classify all exotic smooth structures on spheres, S^n ? (First, assume $n \neq 4$).

Milnor and Kervaire (1963): the group of smooth *n*-dim manifolds homeomorphic to S^n (under connect sum operation) is isomorphic to the group Θ_n of *h*-cobordism classes of homotopy *n*-spheres. Note: an *h*-cobordism is a cobordism $M \hookrightarrow W \leftrightarrow N$ where the inclusions are homotopy equivalences.

Note: M is a homotopy sphere iff M is an h-cobordism sphere (Smale et. al) iff M is a topological sphere (by Perelman).

 $\Theta_n = h$ -cobordism classes of homotopy *n*-spheres; finite, abelian. Cyclic subgroup $bP^{n+1} \leq \Theta_n$ of *n*-spheres that bound parallelizable manifolds. "Easy."

Parallelizable manifold has trivial tangent bundle (hence also trivial normal bundle). **Framed** means it has a chosen trivialization of the normal bundle. Kervaire-Milnor; Levine:

$$bP^{n+1} = \begin{cases} 0 & \text{if } n+1 \text{ is odd} \\ C_{Bernoulli} & \text{if } n+1 = 4k \\ 0 \text{ or } C_2 & \text{if } n+1 = 4k+2 \end{cases}$$

 $bP^{n+1} \cong C_2 = \mathbb{Z}/2$ when $n+1 = 4k+2, 2k+1 \neq 2^{\ell}-1$

David White

Denison University

Kervaire Invariant and Framed Surgery

 bP^{n+1} known except $n + 1 = 2^{j+1} - 2$ (where 0 or $\mathbb{Z}/2$), i.e. dim 2, 6, 14, 30, 62, 126, 254, ...

Recall *J*-homomorphism $J : \pi_n(SO(k)) \to \pi_{n+k}(S^k)$

Framed surgery theory gives an injection (onto if *n* is odd) $\Theta_n/bP^{n+1} \xrightarrow{\psi} coker(J) = \pi_*^s/im(J)$. It's an iso. iff Kervaire invariant in dim *n* is 0 (otherwise, image of index 2)

Kervaire invariant (of *n*-dim framed manifold) is Arf invariant of the skew-symmetric pairing on the middle-dimensional homology. It's an obstruction to framed surgery.

Pushing the problem into stable homotopy

Browder (1969): $K(M^n) = 1$ only possible if $n = 2^{j+1} - 2$. It's 1 iff the class $h_j^2 \in Ext_A^{2,2^{j+1}}(Z/2, Z/2)$ persists to the E_{∞} -page, i.e. represents an element $\theta_j \in \pi_{2^{j+1}-2}^s$

There are *M* with K(M) = 1 in dim 2, 6, 14, 30, and 62.

Exact sequence $0 \to bP^{n+1} \to \Theta_n \to \pi^s_* / \operatorname{im}(J) \to 0$ splits when $n \neq 2^{\ell} - 1$ or $2^{\ell} - 2$.

Other $n: 0 = bP^{n+1} \to \Theta_n \to \pi^s_* / \operatorname{im}(J) \xrightarrow{\Phi} C_2 \to bP^n \to 0$

Extension problem: Φ iso. (if K(M) = 1) or $bP^n \cong 0$.

David White

Denison University

Enter Hill, Hopkins, Ravenel (2009)

Browder (1969 + computations in π_n^s): Can only have Kervaire invariant 1 if $n = 2^{j+1} - 2 = 2, 6, 14, ...$

HHR (2009): For $j \ge 7$, the element $h_j^2 \in Ext_A^{2,2^{j+1}}(Z/2, Z/2)$ does not represent an element $\theta_j \in \pi_{2^{j+1}-2}^s$

Corollary: Unless n = 2, 6, 14, 30, 62, 126, there is no manifold of Kervaire invariant 1. So, only n = 126 is left!

Corollary: In most dimensions, $\Theta_n/bP^{n+1} \rightarrow \pi_*^s/\operatorname{im}(J)$ is an isomorphism.

Corollary: Except in dimensions 2, 6, 14, 30, 62, and maybe 126, every stably framed smooth manifold is framed cobordant to a homotopy sphere. Surgery works!

Back to Exotic Smooth Structures

For $n \neq 4$, 125, 126, if the order of π_n^s is known, we can compute the number of exotic *n*-spheres. Except for *n* of the form $2^k - 3 \ge 125$, we can also describe the group Θ_n precisely.

Example: For dimension n = 7, the group Θ_7 is the cyclic group $\mathbb{Z}Z/28$

Theorem (HHR): Unless n = 2, 6, 14, 30, 62, 126,

- when n = 4k + 2, $\Theta_{4k+2} \cong \pi^{s}_{4k+2}$, and
- when n = 4k + 1, $|\Theta_{4k+1}| = a_k |\pi_{4k+1}^s|$ where $a_k = 1$ if k even and 2 if k odd.

Theorem (Wang-Xu): no exotic smooth structures in dim 5, 6, 12, 56, 61. Proof by computing π_n^s .

HHR proof sketch

To show $h_j^2 \in Ext_A^{2,2^{j+1}}(Z/2, Z/2)$ does NOT represent $\theta_j \in \pi_{2^{j+1}-2}^s$:

- Create the 256-periodic spectrum (generalized cohomology theory) Ω = D⁻¹MU^A.
- The Detection Theorem can see if θ_j is zero or not via its Hurewicz image in Ω^{2-2^{j+1}}(pt)
- **O** The Periodicity Theorem: $\Omega^{*+256}(X) \cong \Omega^{*}(X)$
- The Gap Theorem: $\Omega^i(pt) = 0$ for -4 < i < 0

Proof relies on Slice Spectral Sequence in *G*-spectra $(G = \mathbb{Z}/8)$.

Orthogonal G-spectra

An orthogonal *G*-spectrum is a sequence (X_n) of $G \times O(n)$ -spaces, with $\sigma_n : \Sigma X_n \to X_{n+1}$. Structure maps $X_n \wedge S^k \to X_{n+k}$ are $G \times O(n) \times O(k)$ -equivariant. Denote Sp^G .

Topological closed symmetric monoidal model category with $Hom(X, Y)_n = \prod_{m \ge n} Map_{O(m-n)}(X_{m-n}, Y_m).$

$$(X \wedge Y)_n = \bigvee_{p+q=n} O(n)_+ \wedge_{O(p) \times O(q)} (X_p \wedge Y_q)$$

E is a commutative ring *G*-spectrum if $\tau : E \land E \rightarrow E \land E$, $\eta : S \rightarrow E$, and associative, unital, commutative $\mu : E \land E \rightarrow E$ (via commutative diagrams). Denote $CAlg(Sp^G)$.

David White

Multiplicative Norms for Commutative G-spectra

Adjoint
$$\operatorname{ind}_{H}^{G}(X) \dashv \operatorname{res}_{H}^{G} : G\operatorname{-set} \to H\operatorname{-set}; \operatorname{ind}_{H}^{G}(X) = \coprod_{G/H} X$$

For G-spectra, $ind_{H}^{G}(X) = \bigvee_{i \in G/H} (H_i)_{+} \wedge_{H} X$

Can also define $N_H^G(X) = \wedge_{i \in G/H}(H_i)_+ \wedge_H X$. For any finite *G*-set *T*, can define $N^T X = \bigwedge_T X$.

 $\label{eq:constraint} \mbox{Adjunction} \ (N^G_H \dashv \textit{res}^G_H) : \mbox{CAlg}(\mbox{Sp}^H) \leftrightarrows \mbox{CAlg}(\mbox{Sp}^G)$

Commutative ring *G*-spectra *X* have multiplicative norm maps $N^T X \rightarrow X$ for all *T*. These are used in the HHR computations that resolve the Kervaire Invariant One problem.

Every homomorphism $\rho : G \to \Sigma_{|T|}$ gives $G \rtimes \Sigma$ action on $N^T X$. Norm maps via $G_+ \wedge_H N^T (\operatorname{res}_H X) \cong (G \times \Sigma_n) / \Gamma_T \wedge_{\Sigma_{|T|}} X^{\wedge |T|}$ and $X^{\wedge |T|} \to X$.

G-operads

Operads encode algebraic structure. An operad *P* is a collection of sets (or spaces or *G*-spaces) *P*(*n*) parameterizing *n*-ary operations $f : X^{\wedge n} \to X$ for all *n*. Action of Σ_n on *P*(*n*), unit $1 \in P(1)$, and composition $\circ : P(k) \times (P(n_1) \times \cdots \times P(n_k)) \to P(n)$ for $n = \sum_{i=1}^k n_i$.

Algebras X have $P(n) \wedge_{\Sigma_n} X^n \to X$ for all *n*. Examples:

- Or mas Com(n) = * for all n. Algebras = $CAlg(Sp^G)$.
- In Top, $E_{\infty}(n) = E\Sigma_n$ (free Σ_n -action and contractible), and E_{∞} -operads parameterize "homotopy coherent" commutativity.
- **(a)** In Top^G , N_{∞} -operads encode E_{∞} plus multiplicative norms.

David White

An N_{∞} **operad** is a *G*-operad *P* such that P(0) is *G*-contractible, the action of Σ_n on P(n) is free, and P(n) is the universal space for a family $\mathcal{F}_n = \mathcal{N}_n(P)$ of subgroups of $G \times \Sigma_n$ which contains all subgroups of the form $H \times 1$.

Here $P(n)^{\Gamma} = \emptyset$ if $\Gamma \notin \mathcal{F}_n$, and $P(n)^{\Gamma} = *$ otherwise.

If \mathcal{F}_n is all subgroups of $G \times \Sigma_n$ that contain all subgroups of the form $H \times 1$, then you have all norms, and it's *complete* N_{∞} . These operads are *G*-weakly equivalent to *Com*.

If $\mathcal{F}_n = \{H \times 1\}$, then N_∞ is the same as E_∞ in Top^G .

Motivating Question: Which collections $\mathcal{F} = (\mathcal{F}_n)$ have associated N_{∞} -operads?

David White

A **model category** is a setting for abstract homotopy theory. Examples: Top, sSet, Ch(R), stable module cat, Spectra, G-spectra, motivic spectra, operads, categories, graphs, flows, ...

Formally, a bicomplete category \mathcal{M} and classes of maps $\mathcal{W}, \mathcal{F}, Q$ (= weak equivalences, fibrations, cofibrations) satisfying axioms to behave like Top. Lifting, factorization, 2 out of 3, retracts.

An object *X* is **cofibrant** if $\emptyset \to X$ is a cofibration (where \emptyset is initial). The **cofibrant replacement** *QY* of *Y* is the result of factoring $\emptyset \to Y$ into cofibration followed by trivial fibration $QY \to Y$. Ex: CW approximation, Projective Resolution.

Existence of N_{∞} -operads (idea)

Non-equivariantly, $E\Sigma_n$ is the cofibrant replacement of * in Top^{Σ_n} (with the projective model structure). Think: free Σ_n -action and contractible.

So an E_{∞} -operad *P* is cofibrant in $Coll = \prod_{n=0}^{\infty} Top^{\Sigma_n}$.

Given a family \mathcal{F}_n of subgroups of $G \times \Sigma_n$, a universal classifying space $E\mathcal{F}_n$ is a cofibrant replacement of * in the *fixed-point* model structure $Top_{\mathcal{F}_n}^{G \times \Sigma_n}$, where *f* is a weak equivalence (resp. fibration) iff f^{Γ} is for all $\Gamma \in \mathcal{F}_n$. Think: good fixed point behavior.

So, given $\mathcal{F} = (\mathcal{F}_n)$, an N_{∞} -operad associated to \mathcal{F} (if it exists) is cofibrant in $Coll_{\mathcal{F}} = \prod_{n=0}^{\infty} Top_{\mathcal{F}_n}^{G \times \Sigma_n}$.

Given \mathcal{F} , transfer a model structure along the free-operad functor $F : Coll_{\mathcal{F}} \hookrightarrow Op_{\mathcal{F}}^{G} : U$. A map of operads *f* is a weak equivalence (resp. fibration) iff U(f) is.

In $Op_{\mathcal{F}}^G$, define P to be the cofibrant replacement of Com.

Prove U(P) is still cofibrant in $Coll_{\mathcal{F}}$. This is hard!

Note: highly non-constructive. Related work of Bonventre-Pereira and Rubin.

Obstruction: Composition \circ : $P(k) \times (P(n_1) \times \cdots \times P(n_k)) \rightarrow P(n)$ could become $* \rightarrow \emptyset$ after taking Γ -fixed points, for $\Gamma \notin \mathcal{F}_n$

David White

Existence of N_{∞} -operads (formal statement)

Definition (Realizable sequence of families of subgroups)

A sequence $\mathcal{F} = (\mathcal{F}_n)$ is *realizable* if, for each decomposition $n = n_1 + \cdots + n_k$,

$$\mathcal{F}_k \wr (\mathcal{F}_{n_1} \times \cdots \times \mathcal{F}_{n_k}) \subset \mathcal{F}_n,$$

i.e. every subgroup of $G \times \Sigma_n$ "built from" subgroups of $G \times \Sigma_{n_i}$ via blocks twisted by $G \times \Sigma_k$ is already in \mathcal{F}_n .

Theorem (Gutiérrez-W.)

A sequence $\mathcal{F} = (\mathcal{F}_n)$ is realizable if and only if there is an N_{∞} -operad P such that P(n) is a universal classifying space for the family \mathcal{F}_n .

David White

Denison University

Existence Proof (the hard work)

To show *P* cofibrant in $Op_{\mathcal{F}}^{G}$ implies U(P) cofibrant in $Coll_{\mathcal{F}}$, prove that for every cofibration $K \to L$ in $Coll_{\mathcal{F}}$, and every cofibrant $P \in Op_{\mathcal{F}}^{G}$, then the pushout $P \to P[u]$ is a cofibration in $Op_{\mathcal{F}}^{G}$.

Use tree-decomposition of F due to Berger-Moerdijk (2003).

David White

Denison University

Model Structure on Algebras over N_{∞} -operads

For \mathcal{H} a family of subgroups of G, a \mathcal{H} - N_{∞} -operad has families with all $H \times 1$ for $H \in \mathcal{H}$. These are realizable too.

Theorem

- (W.-Yau) For every operad P in Top^G, P-algebras in Sp^G have a model structure where f is a weak equivalence (resp. fibration) if and only if U(f) is in Sp^G.
- (Gutiérrez-W.) In the positive (complete) model structure on $Sp^{\mathcal{H}}$, a weak equivalence $f : P_{\mathcal{F}} \to P'_{\mathcal{F}'}$ in $Op^{G}_{\mathcal{F}'}$ induces a Quillen equivalence $Alg_P \leftrightarrows Alg_{P'}$.

David White

Left Bousfield Localization, L_C

Given $C \subset mor(Sp^G)$, $L_C Sp^G$ is a universal model structure where C are weak equivalences.

Theorem (W.)

- $L_C Sp^G$ is a monoidal model category iff $C \otimes (G/H)_+$ is a new weak equivalence for all H.
- L_CSp^G satisfies the commutative monoid axiom (so CAlg(L_CSp^G) has a transferred model structure) if and only if Sym(C) consists of new weak equivalences.
- Such localizations L_C preserve all N_∞-operad algebras and commutative ring G-spectra.

Relevance: HHR needed their $\Omega = L_C(MU^{\wedge 4})$ to be commutative!

David White

References

- Gutierrez-White: Encoding Equivariant Commutativity via Operads, arXiv:1707.02130
- Hill-Hopkins-Ravenel: On the non-existence of elements of Kervaire invariant one, 0908.3724
- HHR: The Arf-Kervaire invariant problem in algebraic topology: introduction.
- Blumberg-Hill: Operadic multiplications in equivariant spectra, norms, and transfers, 1309.1750
- Hovey-White: An alternative approach to equivariant stable homotopy theory, 1312.3846
- White: Model structures on commutative monoids in general model categories, arXiv 1403.6759
- White: Monoidal Bousfield localization and algebras over operads, 1404.5197
- White-Yau: Right Bousfield Localization and Operadic Algebras, 1512.07570
- Cortinas-Ellis: Isomorphism Conjectures with proper coefficients.
- Milnor (2011): Differential Topology 40 years later
- Kervaire-Milnor (1963): Groups of homotopy spheres I
- Browder (1969): The Kervaire invariant of framed manifolds and its generalization
- Levine: lectures on groups of homotopy spheres

David White