# Traversals of Infinite Graphs with Random Local Orientations

# David White

Wesleyan University

January 16, 2014

David White

Wesleyan University

Big Problem: graph exploration by a mobile entity using only constant memory, e.g. software moving on a network, web-crawler on the internet, a robot exploring an unfamiliar terrain.

Let's focus on a simple case:  $G = [n] \times [n]$  or  $\mathbb{Z} \times \mathbb{Z}$ .

From any vertex, how does agent choose where to go next? One method: simple random walk. Cover time is  $O(|V|^2)$ . Duplicating work. The *basic walk* is an alternative to the simple random walk proposed by Leszek Gąsieniec.

Make all edges in *G* bidirectional and label both directions. At every *v*, the outgoing labels are 1, 2, ..., deg(v)

Give the agent 2 bits of memory. If it enters a vertex v along edge labeled i then it exits by label  $i + 1 \mod deg(v)$ .

There is a labeling with cover time O(|V|).

The *random basic walk* labels all edges uniformly at random at the start, then chooses a random starting point.

# Example: Basic Walk



### David White

Wesleyan University

# Pólya's Theorem for Simple Random Walk

The simple random walk on *G* is *recurrent* if it returns to its starting vertex with probability 1. Otherwise it is *transient*. Transient walks escape to infinite distance from the starting vertex.

### Theorem (Pólya's Theorem)

The simple random walk on  $\mathbb{Z}^d$  is recurrent for  $d \le 2$ , but transient for all d > 2.

Conjecture: The random basic walk will behave similarly.

# Transience vs. Cycling for Random Basic Walk

The random basic walk need not return to its starting vertex at all. It could instead get trapped in a cycle:



If this occurs with probability 1 we say the random basic walk *cycles* (note: it only explores a finite subgraph). Otherwise the random basic walk is *transient* (it escapes to infinity).

### Theorem (W.)

In  $\mathbb{Z}^2$ , the random basic walk cycles with probability 1.

David White

Wesleyan University

# Proof of cycling: Shells Method

Theorem (W.)

In  $\mathbb{Z}^2,$  the random basic walk cycles with probability 1.



When any shell is first reached, Pr(trap)=constant c > 0.So Pr(escape)= $(1 - c) * (1 - c) * \dots = 0.$ 

Corollary (Random Basic Walk behaves very differently from SRW)

The random basic walk cycles on any  $\mathbb{Z}^d$ , due to hypercube shells.

David White

Wesleyan University

# Generalizations

The shells method works for expander graphs, but more is true:

### Theorem (W.)

On any graph G with all vertex degrees bounded by a constant D, the random basic walk cycles with probability 1.

Proof: Label as you go. Look for star-shaped graphs. Take care with independence. P(trap)= c > 0, so P(escape)=  $(1 - c)^{\infty} = 0$ .

# •

### Theorem (W.)

Let T be the tree where every vertex in level n has 2<sup>n</sup> children.

David White

Wesleyan University

# **Results on Finite Graphs**

Our proof methods provide upper bounds on the expected number of vertices a random basic walk will visit on finite grids.

The class of complete graphs has random basic walks asymptotically visit a constant fraction of the nodes:

### Theorem (joint with Danny Krizanc)

As  $n \to \infty$ , a random basic walk on  $K_n$  is expected to visit at least (1 - 1/e) \* n nodes.

### Conjecture

The expected number of arcs traversed by a random basic walk on  $K_n$  is 1.8 \* n as  $n \to \infty$ .

## Details are in my thesis, at arXiv:1308.1041

David White