Bousfield Localization and Commutative Monoids

David White

Wesleyan University

January 16, 2014
Big goal: understand how homotopy theory interacts with algebraic structure. We’ll use model categories and operads as our language. Notation: $\mathcal{M} =$ monoidal model category, $P =$ operad.

Subgoal: when does Bousfield localization preserve the structure of algebras over an operad?

Motivation: Hill-Hopkins-Ravenel’s resolution of the Kervaire Invariant One Problem relied on an equivariant spectrum $\Omega = D^{-1}MU^{(4)}$. When is the localization of a commutative equivariant ring spectrum commutative?
Example: Localization Can Break Commutativity

\(G = \) finite group, \(\mathcal{SP}^G = \) category of equivariant spectra.

Example presented by Mike Hill at Oberwolfach 2011:

The reduced real regular representation \(\bar{\rho} = \mathbb{R}[G]/\mathbb{R}[e] \) has representation sphere \(S^{\bar{\rho}} \). Let \(a_{\bar{\rho}} : S^0 \rightarrow S^{\bar{\rho}} \) be inclusion.

Let \(E = S^0[a_{\bar{\rho}}^{-1}] \). This is not a commutative ring spectrum! If it were, \(H < G \) would give \(N^G_H res_H E \rightarrow E \) by adjointness. But \(res_H(E) \simeq * \) so this would imply \(* \simeq E \), contradiction.

Hill-Hopkins (2013) prohibit this behavior via hypotheses on the maps being inverted. Foreshadow: What’s failing is that \(a_{\bar{\rho}} \otimes (G/H)_+ \) is not an \(a_{\bar{\rho}} \)-equivalence.
Monoidal Model Categories

1. **Pushout Product Axiom:** Given $f : A \rightarrow B$ and $g : X \rightarrow Y$ cofibrations, $f \Box g$ is a cofibration. If $f \in \mathcal{W}$ then $f \Box g \in \mathcal{W}$.

 $\begin{align*}
 A \otimes X &\longrightarrow B \otimes X \\
 &\downarrow \quad \downarrow \\
 A \otimes Y &\longrightarrow P \\
 &\downarrow \quad \downarrow \\
 B \otimes Y &
 \end{align*}$

2. **Unit Axiom:** For cofibrant X, $QS \otimes X \rightarrow S \otimes X \cong X$ is in \mathcal{W}.

3. **Resolution Axiom:** for all cofibrant X, $X \otimes \mathcal{W} \subset \mathcal{W}$.
Model Categories and Bousfield Localization

\[\mathcal{M} = \text{model category}, \; \mathcal{W} = \text{weak equivalences}, \; f \notin \mathcal{W}. \]

When \(\mathcal{M} \) is left proper and either combinatorial or cellular, there is a model category \(L_f \mathcal{M} \) called the Bousfield localization of \(\mathcal{M} \) with respect to \(f \), with \(\mathcal{W}_f = \langle f \cup \mathcal{W} \rangle \supset \mathcal{W}, \; Q_f = Q, \; \mathcal{F}_f \subset \mathcal{F} \).

Definition

We say \(L_f \) preserves \(P \)-algebras if for all cofibrant \(E \in P-\text{alg} \), \(L_f(E) \in P-\text{alg} \) and \(E \to L_f(E) \) is a \(P-\text{alg} \) homomorphism.

More generally: given \(E \in P-\text{alg} \), we need \(\widetilde{E} \in P-\text{alg} \) with \(L_f(E) \simeq \widetilde{E} \).
Preservation of P-algebras

When P–alg inherits a model structure via $P : \mathcal{M} \rightleftarrows P–\text{alg}: U$, then fibrations and weak equivalences are created by forgetful U.

Theorem (W.)

Let \mathcal{M} be a monoidal model category and let P be an operad valued in \mathcal{M}. If P-algebras in \mathcal{M} and in $L_f(\mathcal{M})$ inherit (semi) model structures, then L_f preserves P-algebras.

Proof: $L_f(E) \simeq R_fQE$. We prove $R_fQE \simeq R_{f,P}QPE$ in \mathcal{M}.

![Diagram](image)

David White
Wesleyan University

Bousfield Localization and Commutative Monoids
When do P–algebras inherit a model structure?

Theorem (Spitzweck, 2000)

Suppose P is a Σ-cofibrant operad and \mathcal{M} is a monoidal model category. Then P-alg is a semi-model category which is a model category if P is cofibrant and \mathcal{M} satisfies the monoid axiom.

Monoid Axiom (Schwede-Shipley): Transfinite compositions of pushouts of maps in \{Trivial-Cofibrations $\otimes id_X$\} are in \mathcal{W}.

Genuine commutativity in \mathcal{S}^G is encoded by the cofibrant operad E_∞^G with $E_\infty^G[n] = E_G\Sigma_n$ characterized by $(E_G\Sigma_n)^H = \emptyset$ if $H \cap \Sigma_n \neq \{e\}$ and $(E_G\Sigma_n)^H \simeq \ast$ otherwise. Lesser commutativity is encoded by $E_\infty^{\mathcal{F}}$.
When is $L_f(\mathcal{M})$ a monoidal model category?

Characterization of Monoidal Bousfield Localizations (W.)

$L_f(\mathcal{M})$ satisfies the Pushout Product Axiom and the Resolution Axiom iff $f \otimes K$ is an f-local equivalence for all cofibrant K.

For tractable \mathcal{M} (domains of generating I and J are cofibrant), one need only check $K \in \{(co)domains \ of \ I \cup J\}$

Corollary

In \mathcal{S}^G a Bousfield localization preserves genuine commutativity iff $f \otimes (G/H)_+$ is an f-local equivalence for all subgroups H.

David White
Wesleyan University
Bousfield Localization and Commutative Monoids
Javier Gutiérrez and I found semi-\mathcal{F}-model structures on G–operads. The cofibrant replacements of Com are Blumberg-Hill N_∞ operads which we denote by $E_{\infty}^{\mathcal{F}}$. Hill’s example is maximally bad, taking E_{∞}^{G}-structure down to naive E_{∞}. The example generalizes to give any drop required.

Corollary

$\text{For } X \text{ above } E_{\infty}^{\mathcal{F}}$-structure, $L(X)$ has $E_{\infty}^{\mathcal{F}}$-structure iff $f \otimes (G/H)^{+}$ is an f-local equivalence for all subgroups $H \in \mathcal{F}$.
Model Structure on Strict Commutative Monoids

Commutative monoid axiom: If g is a (trivial) cofibration then g^\Box^n / Σ_n is (trivial) cofibration. Suff. to check on generators. Stronger (Lurie, HTT): g^\Box^n is a Σ_n-projective cofibration.

Theorem (W.)

If a monoidal model category satisfies the monoid axiom and the commutative monoid axiom then commutative monoids inherit a model structure. Without monoid axiom it’s a semi-model structure.

Corollary: Preservation of Strict Commutative Monoids (W.)

If $\text{Sym}^n(f)$ is a weak equivalence in $L_f(\mathcal{M})$ for all n then $L_f(\mathcal{M})$ satisfies the commutative monoid axiom. Here $\text{Sym}(X) = S \biguplus X \biguplus X^\otimes 2 / \Sigma_2 \biguplus \cdots$
Examples: g (triv) cofib $\Rightarrow g^\square_n / \Sigma_n$ (triv) cofib

Ch(k) where $\text{char}(k) = 0$. Lurie’s hypothesis holds.
sSet & Top, though they fail Lurie’s hypothesis.
Positive (Flat) model structure on symmetric spectra.
Positive orthogonal (equivariant) spectra
Positive motivic symmetric spectra - joint with M. Spitzweck.

Corollary

Any monoidal localization in sSet preserves commutative monoids, e.g. L_E for a homology theory E. Truncations in sSet, Top, and Ch(k) all preserve strict commutative monoids.
Other Non-Cofibrant Operads

Harper (2010): If all symmetric sequences in \mathcal{M} are projectively cofibrant then for any P, P–alg inherits a model structure.

Theorem (W.)

Each row in the following table yields a semi-model structure on P-algebras, under a strengthened monoid axiom.

<table>
<thead>
<tr>
<th>Hypothesis on \mathcal{M}</th>
<th>Class of operad</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\forall X \in \mathcal{M}^\Sigma_n$ projectively cofibrant, $X \otimes_{\Sigma_n} f^{\circ n}$ is a (trivial) cofibration (this follows from the pushout product axiom)</td>
<td>Cofibrant or Σ-Cofibrant</td>
</tr>
<tr>
<td>$\forall X \in \mathcal{M}^\Sigma_n$ cofibrant in \mathcal{M}, $X \otimes_{\Sigma_n} f^{\circ n}$ is a (trivial) cofibration</td>
<td>Levelwise cofibrant</td>
</tr>
<tr>
<td>Note: $X = *$ is the Σ_n-equivariant monoid axiom</td>
<td>Special case: $P = \text{Com}$</td>
</tr>
<tr>
<td>$\forall X \in \mathcal{M}^\Sigma_n$, $X \otimes_{\Sigma_n} f^{\circ n}$ is a (trivial) cofibration</td>
<td>Arbitrary</td>
</tr>
</tbody>
</table>