Bousfield Localization and Commutative Monoids

David White

Wesleyan University

January 16, 2014

David White

Wesleyan University

Big goal: understand how homotopy theory interacts with algebraic structure.We'll use model categories and operads as our language. Notation: $\mathcal{M} =$ monoidal model category, P = operad.

Subgoal: when does Bousfield localization preserve the structure of algebras over an operad?

Motivation: Hill-Hopkins-Ravenel's resolution of the Kervaire Invariant One Problem relied on an equivariant spectrum $\Omega = D^{-1}MU^{(4)}$. When is the localization of a commutative equivariant ring spectrum commutative?

Example: Localization Can Break Commutativity

G = finite group, $\mathscr{S}^G =$ category of equivariant spectra.

Example presented by Mike Hill at Oberwolfach 2011:

The reduced real regular representation $\overline{\rho} = \mathbb{R}[G]/\mathbb{R}[e]$ has representation sphere $S^{\overline{\rho}}$. Let $a_{\overline{\rho}} : S^0 \to S^{\overline{\rho}}$ be inclusion.

Let $E = S^0[a_{\overline{\rho}}^{-1}]$. This is not a commutative ring spectrum! If it were, H < G would give $N_H^G res_H E \to E$ by adjointness. But $res_H(E) \simeq *$ so this would imply $* \simeq E$, contradiction.

Hill-Hopkins (2013) prohibit this behavior via hypotheses on the maps being inverted. Foreshadow: What's failing is that $a_{\overline{\rho}} \otimes (G/H)_+$ is not an $a_{\overline{\rho}}$ -equivalence.

Monoidal Model Categories

Pushout Product Axiom: Given *f* : *A* → *B* and *g* : *X* → *Y* cofibrations, *f*□*g* is a cofibration. If *f* ∈ *W* then *f*□*g* ∈ *W*.

- 2 Unit Axiom: For cofibrant X, $QS \otimes X \rightarrow S \otimes X \cong X$ is in \mathcal{W} .
- Sesolution Axiom: for all cofibrant $X, X \otimes W \subset W$.

Model Categories and Bousfield Localization

 \mathcal{M} = model category, \mathcal{W} = weak equivalences, $f \notin \mathcal{W}$.

When \mathcal{M} is left proper and either combinatorial or cellular, there is a model category $L_f \mathcal{M}$ called the *Bousfield localization* of \mathcal{M} with respect to f, with $\mathcal{W}_f = \langle f \cup \mathcal{W} \rangle \supset \mathcal{W}, Q_f = Q, \mathcal{F}_f \subset \mathcal{F}$

Definition

We say L_f preserves P-algebras if for all cofibrant $E \in P$ -alg, $L_f(E) \in P$ -alg and $E \rightarrow L_f(E)$ is a P-alg homomorphism.

More generally: given $E \in P$ -alg, we need $\widetilde{E} \in P$ -alg with $L_f(E) \simeq \widetilde{E}$.

Preservation of P-algebras

When *P*-alg inherits a model structure via $P : \mathcal{M} \rightleftharpoons P$ -alg:*U*, then fibrations and weak equivalences are created by forgetful *U*.

Theorem (W.)

Let \mathcal{M} be a monoidal model category and let P be an operad valued in \mathcal{M} . If P-algebras in \mathcal{M} and in $L_f(\mathcal{M})$ inherit (semi) model structures, then L_f preserves P-algebras.

Proof: $L_f(E) \simeq R_f Q E$. We prove $R_f Q E \simeq R_{f,P} Q_P E$ in \mathcal{M} .

When do *P*-algebras inherit a model structure?

Theorem (Spitzweck, 2000)

Suppose P is a Σ -cofibrant operad and \mathcal{M} is a monoidal model category. Then P-alg is a semi-model category which is a model category if P is cofibrant and \mathcal{M} satisfies the monoid axiom.

Monoid Axiom (Schwede-Shipley): Transfinite compositions of pushouts of maps in {Trivial-Cofibrations $\otimes id_X$ } are in \mathcal{W} .

Genuine commutativity in \mathscr{S}^G is encoded by the cofibrant operad E^G_{∞} with $E^G_{\infty}[n] = E_G \Sigma_n$ characterized by $(E_G \Sigma_n)^H = \emptyset$ if $H \cap \Sigma_n \neq \{e\}$ and $(E_G \Sigma_n)^H \simeq *$ otherwise. Lesser commutativity is encoded by $E^{\mathscr{F}}_{\infty}$

When is $L_f(\mathcal{M})$ a monoidal model category?

Characterization of Monoidal Bousfield Localizations (W.)

 $L_f(\mathcal{M})$ satisfies the Pushout Product Axiom and the Resolution Axiom iff $f \otimes K$ is an *f*-local equivalence for all cofibrant *K*.

For tractable \mathcal{M} (domains of generating *I* and *J* are cofibrant), one need only check $K \in \{(co) \text{ domains of } I \cup J\}$

Corollary

In \mathscr{S}^{G} a Bousfield localization preserves genuine commutativity iff $f \otimes (G/H)_{+}$ is an f-local equivalence for all subgroups H.

Intermediate equivariant commutative structures

Javier Gutiérrez and I found semi- \mathscr{F} -model structures on *G*-operads. The cofibrant replacements of *Com* are Blumberg-Hill N_{∞} operads which we denote by $E_{\infty}^{\mathscr{F}}$. Hill's example is maximally bad, taking E_{∞}^{G} -structure down to naive E_{∞} . The example generalizes to give any drop required.

Corollary

For X above $E_{\infty}^{\mathscr{F}}$ -structure, L(X) has $E_{\infty}^{\mathscr{F}}$ -structure iff $f \otimes (G/H)_+$ is an f-local equivalence for all subgroups $H \in \mathscr{F}$.

David White

Model Structure on Strict Commutative Monoids

Commutative monoid axiom: If *g* is a (trivial) cofibration then $g^{\Box n} / \Sigma_n$ is (trivial) cofibration. Suff. to check on generators. Stronger (Lurie, HTT): $g^{\Box n}$ is a Σ_n -projective cofibration.

Theorem (W.)

If a monoidal model category satisfies the monoid axiom and the commutative monoid axiom then commutative monoids inherit a model structure. Without monoid axiom it's a semi-model structure.

Corollary: Preservation of Strict Commutative Monoids (W.)

If Sym^{*n*}(*f*) is a weak equivalence in $L_f(\mathcal{M})$ for all *n* then $L_f(\mathcal{M})$ satisfies the commutative monoid axiom. Here Sym(X) = $S \coprod X \coprod X^{\otimes 2} / \Sigma_2 \coprod \cdots$

Examples: g (triv) cofib $\Rightarrow g^{\Box n} / \Sigma_n$ (triv) cofib

Ch(k) where char(k) = 0. Lurie's hypothesis holds.

sSet & Top, though they fail Lurie's hypothesis.

Positive (Flat) model structure on symmetric spectra.

Positive orthogonal (equivariant) spectra

Positive motivic symmetric spectra - joint with M. Spitzweck.

Corollary

Any monoidal localization in sSet preserves commutative monoids, e.g. L_E for a homology theory E. Truncations in sSet, Top, and Ch(k) all preserve strict commutative monoids.

Other Non-Cofibrant Operads

Harper (2010): If all symmetric sequences in \mathcal{M} are projectively cofibrant then for *any* P, P-alg inherits a model structure.

Theorem (W.)

Each row in the following table yields a semi-model structure on *P*-algebras, under a strengthened monoid axiom.

Hypothesis on \mathcal{M}	Class of operad
$\forall X \in \mathcal{M}^{\Sigma_n}$ projectively cofibrant, $X \otimes_{\Sigma_n} f^{\Box n}$ is a (trivial) cofibration (this follows from the pushout product axiom)	Cofibrant or Σ-Cofibrant
$\forall X \in \mathcal{M}^{\Sigma_n}$ cofibrant in $\mathcal{M}, X \otimes_{\Sigma_n} f^{\odot_n}$ is a (trivial) cofibration Note: $X = *$ is the Σ_n -equivariant monoid axiom	Levelwise cofibrant Special case: <i>P</i> = Com
$\forall X \in \mathcal{M}^{\Sigma_n}, X \otimes_{\Sigma_n} f^{\Box n}$ is a (trivial) cofibration	Arbitrary

David White