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Brave New Algebra

Let M be a monoidal model category of spectra. Analogy:

Classical Algebra Brave New Algebra
Ring of Integers Z Sphere Spectrum S
Abelian groups = Z-modules Spectra = S-modules
(Unital) Ring Ring spectrum
Commutative ring E∞-ring spectrum
Both: projective/injective modules, homological dim, semisimple, etc.
Ideal I ⊂ R s.t. R/I is a ring ???

‘Subobject’ is the wrong idea. Better: an ideal is something you

can quotient by I
j
// R

coker
// R/I . Jeff Smith (2006): an ideal is

an arrow j ∶ I // R with extra structure.
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Ideals are arrows with algebraic structure

If (M,⊗,1) is a closed symmetric monoidal category, then the
arrow category Arr(M) has two monoidal structures:

1 Tensor monoidal structure: f ⊗ g ∶ X0 ⊗Y0 // X1 ⊗Y1, unit is
Id1 ∶ 1 // 1.

2 Pushout product monoidal structure (unit ∅ // 1):

(X0 ⊗Y1) ∐
X0⊗Y0

(X1 ⊗Y0)
f ◻g

// X1 ⊗Y1

Definition: A Smith ideal is a monoid in
Ð→
M◻ ∶= (Arr(M),◻)

Note: A monoid in
Ð→
M⊗ is a monoid homomorphism in M.
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Unpacking definition of Smith ideal as monoid in
Ð→
M◻

A Smith ideal is a monoid R , an R-bimodule I , and a map of
R-bimodules j ∶ I // R such that µ(1⊗ j) = µ(j ⊗ 1) ∶ I ⊗ I // I .
Reason: η ∶ (∅ // 1) // j and unpack µ ∶ j ◻ j // j :

(I ⊗R)∐I⊗I (R ⊗ I ) //

��

R ⊗R

��
I // R

Note: R/I is a ring spectrum and coker(j) ∶ R // R/I is a ring
homomorphism.
Theorem (Hovey, 2014): The cokernel functor from

Ð→
M◻ to

Ð→
M⊗ is

strong symmetric monoidal (j ↦ (R // R/I )), and right adjoint is
the kernel. This forms a Quillen equivalence

Ð→
M◻ ⇆

Ð→
M⊗.
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Smith’s motivation: algebraic K -theory

Suppose that R is a ring spectrum with Smith ideals I and J.
Define the Smith ideal I ∧R J. Let T be the homotopy pushout:

R //

��

R/I

��
R/J // T

in the category of ring spectra. Smith: “there is a fiber sequence
K(R/(I ∧R J)) // K(R/I ) ⊗K(R/J) // K(T ) of algebraic
K-theory spectra.” Proven by Land-Tamme, 2023; plus
T ≅ R/I ⊙MR R/J, the ⊙-ring from their 2019 Annals paper, for
M = (R/I ) ∧R (R/J).
Operad structure matters: in E∞ context, A′ ⊙MA B ≃ B ⊙MA A′.
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Our setup (W.-Yau)

Note: monoid morphisms are algebras over a 2-colored operad.
Smith ideals are too. Generalize from Ass to operad O?

1 Goal: homotopy theory of ideals structured by an operad O,
e.g., commutative ideals, A∞-ideals, E∞-ideals, En, Lie, L∞,
etc. Now coker(j) ∶ R // R/I is O-alg morphism.

2 Let L0 ⊣ Ev0, L1 ⊣ Ev1. Given O, define
Ð→
O⊗ = L0O (resp.

Ð→
O ◻ = L1O), C -colored operad in

Ð→
M⊗ (resp.

Ð→
M◻).

3 A Smith O-ideal is an algebra over
Ð→
O ◻; a morphism of

O-algebras is an algebra over
Ð→
O⊗.

4 coker is a Quillen equiv. Alg(
Ð→
O ◻;
Ð→
M◻) ⇆ Alg(

Ð→
O⊗;
Ð→
M⊗)

5 There is a (C ∐C)-colored operad Os in M such that
Alg(
Ð→
O ◻;
Ð→
M◻) ≅ Alg(Os ;M). Use to transfer model str.
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Unpacking Smith O-ideal j ∶ X // A s.t. A/X is O-algebra

Proposition (W.-Yau)

A Smith O-ideal in M is precisely:
an O-algebra (A,λ1) in M,
an A-bimodule (X ,λ0) in M, and
an A-bimodule map f ∶ (X ,λ0) // (A,λ1)

such that, for 1 ≤ i < j ≤ n, the following commutes

O(dc) ⊗Ac1⋯Aci−1XciAci+1⋯Xcj⋯Acn

(Id,fci ,Id)
��

(Id,fcj ,Id)
// O(dc) ⊗Ac1⋯Aci−1XciAci+1⋯Acn

��

λ0

��

O(dc) ⊗Ac1⋯Acj−1XcjAcj+1⋯Acn
λ0 // Xd
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What is this Os with Alg(
Ð→
O ◻;
Ð→
M◻) ≅ Alg(Os ;M)?

Given a C -colored operad O, denote by C 0 (resp. C 1) the first
(resp. second) copies of C ∐C . Given c ∈ C , write cϵ ∈ C ϵ for the
same c in each copy, for ϵ ∈ {0,1}. Define:

Os( d1

c
ϵ1
1 ,...,cϵn

n
) = O(dc)

Os( d0

c
ϵ1
1 ,...,cϵn

n
) =

⎧⎪⎪
⎨
⎪⎪⎩

O(dc) if at least one ϵi = 0 and
∅ otherwise.

So, an Os -algebra is a pair (A,X ) of C -colored objects, plus
structure maps making A into an O-algebra, X into an A-bimodule,
and f ∶ X // A into an A-bimodule map.
This is similar to the two-colored operad for monoid maps.
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Main theorem

Theorem (W.-Yau)

If M is nice, and cofibrant Smith O-ideals are also entrywise
cofibrant in

Ð→
M◻ then there is a Quillen equivalence

{Smith O-Ideals}
coker // {O-Algebra Maps}
ker

oo

For Σ-cofibrant O, just need M stable, monoidal, cof gen.
For O = Com, M needs strong commutative monoid axiom.
For general O, need X ⊗Σn (−)

◻n and f ◻Σn (−) ∶M
Σn // M

homotopically well behaved, like preserving trivial cofibrations.
Examples: symmetric spectra, Ch(k), StMod(k[G ]), motivic,
equivariant orthogonal spectra, enriched functors, S-modules, etc.
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Comparison with ∞-operads

Theorem (W.-Yau)

If M is cof. gen., M♭ ⊂M, and O is ΣC -cofibrant (symmetric)
C -colored operad.

Denote by Alg(O;M)c[W −1
O ] the ∞-category obtained from

the semi-model category Alg(O;M), by first passing to the
subcategory of cofibrant objects, and then inverting the weak
equivalences between O-algebras.
Denote by Alg(O;M[W −1]) the ∞-category obtained by first
passing from M to the (symmetric) monoidal category
M[W −1] and then passing to O-algebras, where O is viewed
as a colored operad in M[W −1] ≃M♭[W −1].

Then Alg(O;M)c[W −1
O ] ≃ Alg(O;M[W −1]) as ∞-categories.
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Open Problems

Almost every question you can ask, e.g., What is the relationship
between ideals of π∗(R) and ideals of ring spectra? If R = S , the
sphere spectrum, and 2 ∈ π0S is the cofiber of the ‘times 2’ map,
then (2) is an ideal of π∗S but the mod 2 Moore spectrum is not a
ring spectrum, even up to homotopy. So what is the ring spectrum
quotient of S by 2?
Let f ∶ I // R be any map. What is the Smith ideal generated by
f ? The free functor T yields an ideal of T (R) not R .
Every ring spectrum is weakly equivalent to a quotient of the
sphere spectrum by some Smith ideal. Define a monoid
homomorphism p ∶ R // S to be a strong quotient if
S ⊗R QN // N is a w.e. for all fibrant N (and cof. rep. Q). Can
we classify strong quotients of ring spectra?
What is the connection to the ‘homotopy normal maps’ of Prasma?
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Work to do relating K -theory and ideals

Now is a great time to compute examples of various R/I ,
R/(I ∧R J), and A′ ⊙MA B .
Land-Tamme is about ring spectra, but Smith ideals work in
general stable model categories. Can you prove Smith’s vision
regarding E(R/(I ∧R J)) for motivic spectra, equivariant spectra,
chain complexes, and the stable module category?
Section 6 of White-Yau lists conjectures and open problems related
to Smith O-ideal theory in: positive flat model on symmetric
spectra and equivariant orthogonal spectra, positive complete
model structure, global equivariant, injective model structures, and
S-modules.
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