The homotopy theory of substitudes

David White

Joint with Michael Batanin¹

Masaryk University June 16, 2022

¹This material is based upon work supported by the National Science Foundation under Grant No. IIA-1414942

David White

Denison University

The Baez-Dolan Stabilization Hypothesis

'Higher Dimensional Algebra and Topological Quantum Field Theory' (1995) by Baez and Dolan studied *n*-dimensional TQFTs via *n*-category representations.

Look for relationships between categories of weak *n*-categories as *n* varies.

Many definitions of weak *n*-category, by Rezk, Tamsamani, Simpson's higher Segal categories, Ara's *n*-quasi-categories, Bergner-Rezk models on simplicial presheaves, etc.

Let Sp_k be k-truncated spaces, modeling k-types ($\pi_{>k} = 0$). Rezk's $\Theta_n Sp_k$ models (n + k, n)-categories so $nCat \cong \Theta_n Sp_0$. The Θ construction encodes shapes of pasting diagrams.

David White

Stabilization and Eckmann-Hilton

Consider the reindexing functor $U : n \text{-cat} \rightarrow (n-1)\text{-cat}$:

Now objects have a composition law, morphisms have vertical and horizontal composition, etc. That's extra structure!

Example: start with a 2-category $C = (x, 1_x, hom(1_x, 1_x))$ with 1 object and 1 morphism, reindex twice: 2-cat \rightarrow 0-cat. Eckmann-Hilton: $hom(1_x, 1_x)$ is a commutative monoid. 3-cat \rightarrow 0-cat gives no further structure; we say that reindexing stabilized. What about 3-cat to 1-cat, 4-cat to 1-cat, etc?

David White

Forget k levels: $n + \overline{k} \rightarrow n$

	n = 0	n = 1	n=2
k = 0	sets	categories	2-categories
k = 1	monoids	monoidal	monoidal
		categories	2-categories
k = 2	commutative	braided	braided
	$\operatorname{monoids}$	$\operatorname{monoidal}$	monoidal
		categories	2-categories
k = 3	، ب	symmetric	weakly involutory
		$\operatorname{monoidal}$	$\operatorname{monoidal}$
		categories	2-categories
k = 4	د ۲	، ,	strongly involutory
			$\operatorname{monoidal}$
			2-categories
k = 5	د،	٤,	٤,

David White

k-tuply monoidal weak n-categories

If a (n + k)-cat *C* is trivial up to *k*, reindex to \mathcal{D} , an *n*-cat with extra structure. $nCat_k$ is the category of such \mathcal{D} . Forgetful $U : nCat_k \rightarrow nCat_{k-1}$ has a left adjoint *S* called suspension.

Conjecture (Baez-Dolan Stabilization Hypothesis)

If $k \ge n + 2$ then $S : nCat_k \rightarrow nCat_{k+1}$ is an equivalence.

Batanin: the extra structure on \mathcal{D} is that of an algebra in *nCat* over the *k*-operad *G_k*, the cofibrant replacement of 1_{*k*} in *Op_k*. Stabilization Hypothesis (Equivalent Formulation): For $k \ge n + 2$, Alg_{*G_k*(*nCat*) \leftrightarrows Alg_{*G_{k+1}*(*nCat*) is a Quillen equivalence. We'll deduce from a Q.E. *Op*^{loc}_{*k*+1}(*nCat*) \leftrightarrows *Op*^{loc}_{*k*+1}(*nCat*) \leftrightarrows *SO*.}}

k-Operads I: k-ordinals

Definition (T is a k-ordinal)

Let $T \in FinSet$, with k binary relations $<_0, \ldots, <_{k-1}$ s.t.:

- is nonreflexive;
- If or every pair a, b ∈ T, there exists exactly one p such that a
- if $a <_p b$ and $b <_q c$ then $a <_{min(p,q)} c$.

Every n-ordinal can be represented as a pruned planar tree with n levels. For example, the 2-ordinal

$$0 <_0 1, \ 0 <_0 2, \ 0 <_0 3, \ 1 <_1 2, \ 2 <_1 3$$

is represented by the following pruned tree

$$\bigcup^{0\ 1\ 2\ 3}$$

k-Operads II: the definition

 \mathbb{V} is symmetric monoidal, U_k = terminal *k*-ordinal.

Definition (A_T is a k-operad in \mathbb{V})

 $\forall T \in Ord(k)$, a collection A_T of objects of \mathbb{V} with:

- a morphism $e : I \rightarrow A_{U_k}$ (the unit);
- for every order preserving $\sigma : T \rightarrow S$, a morphism

 $m_{\sigma}: A_{S} \otimes A_{T_{0}} \otimes \cdots \otimes A_{T_{i}} \rightarrow A_{T}$ (the multiplication).

- Associativity given $T \rightarrow S \rightarrow R$
- Coherent w.r.t identity $T \rightarrow T$ and unique mor $T \rightarrow U_k$.

where $T_i = \sigma^{-1}(i)$ for $\sigma : T \to S$. Batanin provided the following adjunction des_k : $SO(\mathbb{V}) \hookrightarrow Op_k(\mathbb{V}) : sym_k$

A morphism of *k*-ordinals (order-preserving map) is a quasibijection if it is a bijection of underlying sets. Let Q_k be the subcategory of quasibijections of Ord(k). Have $U: Op_k(\mathbb{V}) \to [Q_k^{op}, \mathbb{V}]$. Think: collections. Q_k^{op} acts on Op_k , but not invertibly.

 $Q_k \cong \coprod Q_k(m)$ where m = |Ord(k)|, just like $\Sigma \cong \coprod \Sigma_n$.

 Q_k^{op} are the unary operations of the substitude we use to encode k-operads. Q_k^{op} is not a groupoid, so we don't use Feynman categories or colored operads to encode k-operads.

Idea: localize to force Q_k^{op} to act invertibly, up to homotopy.

Higher Braided Operads

Let Op_k^{loc} be a localization so that Q_k^{op} acts invertibly. Call them locally constant *k*-operads, a.k.a. higher braided operads.

- For k = 1, 2, ∞, Ho(locally constant k-operads) ≃ Ho(nonsymmetric), Ho(braided), and Ho(symmetric).
- Contractible operads detect 1-fold, 2-fold, and infinite loop spaces. Cofibrant replacement of the terminal higher braided operad is an *E_n*-operad, so detects *n*-fold loop spaces.
- Solution The nerve of $Q_k(m)$ is ho. equiv. to unordered configuration space of *m* points in \mathbb{R}^k , a $K(\pi, 1)$ only for $n = 1, 2, \infty$.
- Fund. grpd: $\pi_1(Q_\infty) \simeq \Sigma$ (sym gps), $\pi_1(Q_2) \simeq Br_2$ (braid gps), $\pi_1(Q_1)$ is contractible (non-sym operads).

$$\bigcirc Q_k \to \Sigma \text{ is iso on } \pi_{\leq k}$$

Substitudes (Day-Street)

Let \mathbb{V} be a symmetric monoidal category, e.g., $\Theta_n Sp_0$.

A V-substitude (P, A) is a small V-category A together with a sequence of V-functors: $P_n : \underbrace{A^{op} \otimes \cdots \otimes A^{op}}_{n-times} \otimes A \to V, n \ge 0$, equipped naturally with associative, unital, and equivariant:

- substitution operations (like operad composition)
- 2 unit morphisms $\eta : A(a_1, a_2) \rightarrow P_1(a_1; a_2)$
- ose solution is solved a for a fo

Think: colored operad \mathscr{E} with identity-on-objects \mathbb{V} -functor $\eta : A \to U(\mathscr{E})$ =unary ops. Example: $(O^{(k)}, Q_k^{op})$ for Op_k . \mathbb{V} -substitudes are equivalent to regular patterns (Getzler), category-colored operads (Petersen)

David White

Transferring Model Structures

Lemma (well-known)

If T = UF is a monad on cofibrantly generated M and if for all generating trivial cofibrations $j : K \to L$ in M, transfinite compositions of pushouts in Alg_T(M):

are weak equivalences then $Alg_T(\mathcal{M})$ has transferred model structure, with weak equivalences and fibrations defined in \mathcal{M} .

If above works only for \mathcal{O} cofibrant then get transferred semi-model structure. Apply to Σ -free unary tame substitudes (P, A) whose unit is faithful, where $\mathcal{M} = [A, \mathbb{V}]$. Get $Op_k(\Theta_n Sp_0)$.

David White

Fundamental localizers (Grothendieck; Cisinski)

Let *W* be a class of functors between small categories.

Definition (*W* is a fundamental localizer)

- W contains all identities; satisfies two out of three;
- If i : A → B has a retraction r : B → A and r · i : B → B is in W then i is in W;
- If $A \in Cat_*$ (has terminal obj) then $A \rightarrow \mathbf{1}$ is in W;
- If $u/c : A/c \rightarrow B/c$ is in W for each object $c \in C$ in:

then u is in W. Call W's elements W-equivalences.

David White

Denison University

Fix a fundamental localizer *W*. A small category *A* is *W*-aspherical if the unique functor $!: A \rightarrow 1$ is in *W*. Like being nullhomotopic.

W is a proper fundamental localizer if there exists a set *S* of small categories such that *W* is minimal in making elements of *S* aspherical, in the sense that any $A \in S$ is in *W*-aspherical. We write W(S) := W in this case.

Example: W_{∞} is the class of functors whose nerve is a weak equivalence of simplicial sets. Cisinski proved: W_{∞} is the minimal fundamental localizer. This implies, among other things, that $W_{\infty} = W(\{A\})$ for any *A* with a terminal object.

Fundamental localizer for truncation

Let $W_n = W(\{S^{n+1}\})$, where S^{n+1} is a small category which has the homotopy type of (n + 1)-sphere. W_n -equivalences are *n*-equivalences (functors inducing isos on $\pi_{\leq n}N(-)$).

Ex: W_0 is functors that induce isomorphism on connected components, and W_0 -aspherical categories are connected.

Ex: For $k \ge 3$, the total order functor induces an *n*-equivalence $[-]: Q_k \to \Sigma$ for $1 \le n + 1 \le k$, by a classifying space computation. Hence Baez-Dolan stabilization theorem needs $n + 1 \le k$, for the critical Quillen equivalence. Also, $[-]_2: Q_2 \to Br$ is an *n*-equivalence for $1 \le n \le \infty$.

Homotopy Theories: $Ho_W = Cat[W^{-1}]$, $Ho_{W_{\infty}}$ is HoTop, Ho_{W_n} is *n*-truncated homotopy types.

Let *A* be a small category and \mathbb{V} a model category. Let $Ho[A, \mathbb{V}]$ be the localization of $[A, \mathbb{V}]$ with respect to levelwise weak equivalences. Let *W* be a proper fundamental localizer.

Definition (Cisinski): A presheaf $F : A \to \mathbb{V}$, is called *W*-locally constant if for any *W*-aspherical small category *A'* and any functor $u : A' \to A$ the presheaf $u^*(F) : A' \to \mathbb{V}$ is isomorphic to a constant presheaf in $Ho[A', \mathbb{V}]$. Denote them $LC_W[A, \mathbb{V}]$.

Ex: *F* is W_{∞} -locally constant if and only if for any $f : a \to b$ in *A*, F(f) is a weak equivalence in \mathbb{V} . Because $W_{\infty} = W(0 \to 1)$

Say *u* is a local *W*-equivalence if u^* is an equivalence of categories on $LC_W[-, \mathcal{M}]$ for any model category \mathcal{M} .

Cisinski localization

Theorem (Cisinski, Batanin – W.)

Let W be a proper fundamental localizer and \mathbb{V} a combinatorial model category. Then:

- For A ∈ Cat there exists a left Bousfield localization (of proj, inj, Reedy) [A, V]^W such that its local objects are levelwise fibrant and W-locally constant presheaves.
- ② For a local W-equivalence u : A → B between small categories, the restriction functor

$$u^*: [B, \mathbb{V}]_{proj}^W \to [A, \mathbb{V}]_{proj}^W$$

is a right Quillen equivalence.

Related: Homotopy theory of homotopy functors (Chorny-W)

David White

Denison University

Given $C \subset mor(\mathcal{M})$, $L_C \mathcal{M}$ is a universal model structure where C are weak equivalences and $id : \mathcal{M} \to L_C \mathcal{M}$ is left Quillen. Same cofibrations as \mathcal{M} , more weak equivalences. Say W is a C-local object if $map(B, W) \to map(A, W)$ is a w.e. in sSet for all $f : A \to B$ in C. Say $g : X \to Y$ is a C-local equivalence if $map(Y, W) \to map(X, W)$ is a w.e. for all C-local W.

Goal: lift localizations from $[A, \mathbb{V}]_{proj}^{W}$ to Op_{k}^{W}

Problem: Op_k is not known to be left proper.

Solution: semi-model categories.

Semi-model categories (Spitzweck; Fresse; many others)

Definition: (\mathcal{M}, W, Q, F) satisfies all model category axioms except we only require the following for A and K cofibrant:

Still have cofibrant replacement. All model category results have semi-model category analogues (often cofibrantly replace first): Ken Brown lemma, cylinders and path objects, cube lemma, Quillen equivalences, Reedy model structures, (co)simplicial frames, homotopy (co)limits, simplicial mapping spaces, etc. Combinatorial semi is Quillen equiv. to combinatorial model. A model category M is left proper if in pushout on left below, f is a weak equivalence. It's like the gluing property in Top.

Upside 1 (right): a lift $QB \rightarrow X$ yields a lift $B \rightarrow X$.

Upside 2: pushout square with one leg a cofibration is homotopy pushout square.

Semi-model version: when *A*, *B* cofibrant, these results are automatic.

Semi-model Smith theorem

Theorem (Batanin-W.)

Suppose \mathcal{M} is a locally presentable category with a class \mathscr{W} of weak equivalences and a set of maps I satisfying

- **1** \mathscr{W} is κ -accessible, closed under retracts, two out of three.
- Any morphism in inj(I) is a weak equivalence.
- Within cof I ∩ W, maps with cofibrant domain are closed under pushouts to arbitrary cofibrant objects and under transfinite composition.

• Domains of I and initial object are cofibrant. Then there is a cofibrantly generated semi-model structure on \mathcal{M} with generating cofibrations I, generating trivial cofibrations J, cofibrations cof I, and fibrations defined by the right lifting property with respect to J. Furthermore, the generating trivial cofibrations J have cofibrant domains.

Semi-model Bousfield localization

Theorem (Bousfield localization without left properness)

Suppose that M is a combinatorial semi-model category whose generating cofibrations have cofibrant domain, and C is a set of morphisms of M. Then there is a semi-model structure $L_C(M)$ on M, whose weak equivalences are the C-local equivalences, whose cofibrations are the same as M, and whose fibrant objects are the C-local objects. Furthermore, $L_C(M)$ satisfies the universal property that, for any any left Quillen functor of semi-model categories $F : M \to N$ taking C into the weak equivalences of N, then F is a left Quillen functor when viewed as $F : L_C(M) \to N$.

Quillen for semi means *U* preserves (trivial) fibrations, and *F* preserves (trivial) cofibrations (between cofibrant objects).

David White

Applications of localization w.o. left properness

- Voevodsky's radditive functors ($L_C \mathcal{M}$ only a semi).
- Inverting operations in operads and rings.
- Parameterized spectra; C^* -algebras; Richter $C(ch^{\Sigma})$
- Localizing O-alg: GH, HZ, B
- Bacard lax diagrams and enrichment.
- Toen dgCat(k) and derived algebraic geometry
- Ostello-Gwilliam prefactorization algebras.
- Functor calculus, esp. for Cat and Graph (Vicinsky).
- Left localization after right localization; E₂-model str

More? David White

Localization for k-operads

Theorem (Batanin-W.)

If $\ensuremath{\mathbb{V}}$ is a symmetric monoidal combinatorial model category and

- (P, A) encodes k-operads or $SO(\mathbb{V})$ or $BO(\mathbb{V})$, then
 - The projective semi-model structure on $Alg_P(\mathbb{V})$ exists;
 - For any proper fundamental localizer the local semi-model model structure Alg^W_P(V) exists and its fibrant objects are exactly W-locally constant P-algebras;
 - The local model structure Alg^W_P(V) coincides with the transferred semi-model structure from U : Alg_P(V) → [Q^{op}_k, V]^W_{proj}.

 W_{∞} -locally constant *k*-operads are higher braided operads. We lift old Batanin results from homotopy level to model.

Plan for proving Baez-Dolan Stabilization

Have: $U: Op_k(\mathbb{V}) \to [Q_k^{op}, \mathbb{V}]$ and left adjoint *F*.

First: Transfer model structures, letting $\mathbb{V} = \Theta_n(Sp_0)$

Next: prove Quillen equivalences. We have (for $0 \le n \le \infty$):

David White

Beck-Chevalley and Quillen equivalences

A square of right adjoints and a natural transformation

is called **Beck-Chevalley** if the natural transformation

bc :
$$\phi_!\beta^* \to \alpha^*\psi_!$$

is an isomorphism. Upshot: if (ϕ_1, ϕ^*) is an adjoint equivalence and β^*, α^* reflect isos then (ϕ_1, ϕ^*) is adjoint equivalence.

Denison University

The square above is homotopy Beck-Chevalley if

 $\mathbb{L}\phi_!\mathbb{R}\beta^*(-) \to \mathbb{R}\alpha^*\mathbb{L}\psi_!(-)$ is an isomorphism in Ho(\mathbb{D}). This occurs if α^* preserves weak equivalences and β^* preserves cofibrant objects.

Upshot: if $(\phi_!, \phi^*)$ is a Quillen equivalence and β^*, α^* reflect weak equivalences between fibrant objects, then $(\phi_!, \phi^*)$ is a Quillen equivalence.

Application: Quillen equivalences of categories of algebras over substitudes. Given $(f,g): (P,A) \rightarrow (Q,B)$, if $(g_!,g^*)$ is Q.E. then so is $(f_!, f^*)$.

Lift Q.E.
$$[A, \mathbb{V}]_{proj}^{W} \Leftrightarrow [B, \mathbb{V}]_{proj}^{W}$$
 to $\operatorname{Alg}_{P}^{W}(\mathbb{V}) \Leftrightarrow \operatorname{Alg}_{Q}^{W}(\mathbb{V})$.

Stabilization for locally constant k-operads

Let $\ensuremath{\mathbb{V}}$ be a combinatorial symmetric monoidal model category with cofibrant unit.

Theorem (Batanin-W.)

For $k \ge 3$ and $2 \le n + 1 \le k$, the symmetrisation functor $sym_k : Op_k^{W_n}(\mathbb{V}) \to SO(\mathbb{V})$ and the suspension functor $\Sigma_! : Op_k^{W_n}(\mathbb{V}) \to Op_m^{W_n}(\mathbb{V})$ (for $k < m \le \infty$) are left Quillen equivalences. For k = 2, use braided operads $BO(\mathbb{V})$, and for $1 \le n \le \infty$

 $bsym_2: Op_2^{W_n}(\mathbb{V}) \to BO(\mathbb{V})$ is a left Quillen equivalence.

Baez-Dolan stabilization follows from this, for $\Theta_n Sp_0$, $Seg^{n+k}(\mathcal{M})$, nQcat, $\Theta_n Sp$ -Segal Cat, $sPSh(\Delta \times \Theta_n)_{BR}$, or Tamsamani's $PC^n(\mathcal{M})$.

n-truncated model categories

Let \mathbb{V} be *n*-truncated i.e. all Map(X,Y) are W_n -local in sSet. Then $[A, \mathbb{V}]_{proj}^{W_r} \to [A, \mathbb{V}]_{proj}^{W_{\infty}}$ is a Q.E. for $r \ge n + 1$, and:

Corollary (Stabilization for Higher Braided Operads)

For $n \ge 0$ and $3 \le n + 2 \le k \le \infty$, the symmetrisation functor $sym_k : Op_k^{W_{\infty}}(\mathbb{V}) \to SO(\mathbb{V})$ and the suspension functor $\Sigma_1 : Op_k^{W_{\infty}}(\mathbb{V}) \to Op_m^{W_{\infty}}(\mathbb{V})$ (for $k < m \le \infty$) are left Quillen equivalences.

For k = 2, use braided operads $BO(\mathbb{V})$, and for $1 \le n \le \infty$ bsym₂ : $Op_2^{W_{\infty}}(\mathbb{V}) \to BO(\mathbb{V})$ is a left Quillen equivalence.

Note: $\Theta_n Sp_0$ is *n*-truncated. Or: truncate Tamsamani, Simpson, Ara, or Bergner-Rezk models via $\tau_{\leq n}$ localization. Truncate from (∞, n) -categories to weak *n*-cat.

David White

Baez-Dolan Stabilization; Batanin 2017

Let $G_k = \text{cof rep of } I \in Op_k$, and $B_k(\mathbb{V}) = G_k$ -alg. Note $i : \Sigma_1 G_k \to G_{k+1}$.

Theorem (Baez-Dolan Stabilization)

Let $0 \le n$ and \mathbb{V} a *n*-truncated monoidal combinatorial model category with cofibrant unit. Then $i_1 : B_k(\mathbb{V}) \to B_{k+1}(\mathbb{V})$ and $(j_k)_1 : B_k(\mathbb{V}) \to E_{\infty}(\mathbb{V})$ are left Quillen equivalences for $k \ge n + 2$.

Apply this with Rezk's $\mathbb{V} = \Theta_n Sp_m$, n + m-truncated model for (n + m, n)-categories, where Sp_m is *m*-truncation on sSet (local objects are *m*-types). Or: $\tau_n Seg^{n+k}(\mathcal{M}), \tau_k PC^n(\mathcal{M}), \tau_k nQcat, \tau_k \Theta_n Sp$ -Segal Cat (model on $[\Delta^{op}, \Theta_n Sp]$), or $\tau_k sPSh(\Delta \times \Theta_n)_{BR}$.

Baez-Dolan Stabilization

Corollary (Stabilisation for Rezk's (n + m, n)-categories)

The suspension functor induces the left Quillen equivalence

 $i_!: B_k(\Theta_n Sp_m) \to B_{k+1}(\Theta_n Sp_m)$

for $k \ge m + n + 2$ and, hence, an equivalence between homotopy categories of Rezk's k-tuply monoidal (n + m, n)-categories and Rezk's (k + 1)-tuply monoidal (n + m, n)-categories. Baez-Dolan stabilization also holds for Tamsamani, Simpson, Ara, and Bergner-Rezk models of weak n-categories, and will hold for other models (e.g., n-relative categories, n-fold Segal spaces) if suitable monoidal products are discovered.

References (a very incomplete list)

- Baez-Dolan: Higher-dimensional algebra and topological quantum field theory, Math. Phys, '95.
- Batanin: The symmetrisation of *n*-operads and compactification of real configuration spaces, Advances 2007.
- Batanin: Locally constant n-operads as higher braided operads, J. Noncomm. Geo. 2010.
- Batanin: An operadic proof of the Baez-Dolan stabilisation hypothesis, Proc. AMS, 2017.
- Batanin-Berger: Homotopy theory for algebras over polynomial monads, ACS 2017.
- Batanin-White: Baez-Dolan Stabilization via (semi-)model categories of operads, CRM Proceedings, Barcelona, 2015.
- Batanin-White: Bousfield Localization and Eilenberg-Moore Categories, HHA 2021
- Batanin-White: Left Bousfield localization without left properness, arXiv:2001.03764
- Batanin-White: Homotopy theory of algebras of substitudes and their localisation, arXiv:2001.05432, accepted to Transactions of the AMS
- White-Yau: Bousfield localization and algebras over colored operads, ACS.
- White-Yau: Homotopical Adjoint Lifting Theorem, ACS 2019
- Chorny-White: Homotopy theory of homotopy presheaves, arXiv:1805.05378.

David White