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Abstract. In this paper we investigate the algebraic structure of digroups. We
find a Lagrange-style correspondence between digroups and subdigroups. We
also show how to construct a digroup containing any given number of identities
whose order is any multiple of that number. Then, all digroups with inverse sets
of prime order are classified. Additionally, the terms subdigroup, commutant,
trivial digroup, idempotency class, are defined with basic results proven with
regard to each term. Finally, various structural propositions are proven which
may be useful in future digroup research.

1. Introduction

Since 2004, the notion of a digroup has been considered by Felipe [3], Kinyon [4],
Phillips [12], Crompton and Scalici [2], and Liu [6]. Digroups were introduced to
provide a partial solution to the Coquecigrue problem of generalizing Lie’s Third
Theorem for Leibniz Algebras, originally proposed in [7]. Kinyon’s [4] definition of
a digroup is as follows:

Definition 1.1. A digroup is a set G with two binary operations, ` and a, a
unary operation −1 and a nullary operation 1, which satisfies:

G1. (G, `) and (G, a) are both semigroups
G2. (x ` y) a z = x ` (y a z)
G3. x a (y ` z) = x a (y a z)
G4. (x a y) ` z = (x ` y) ` z
G5. 1 ` x = x = x a 1
G6. x ` x−1 = 1 = x−1 a x

Phillips [12] proved that G2, G3, and G4 could be replaced with G2∗:

G2∗.x ` (x a z) = (x ` x) a z

The axiomatization was then shown to be equivalent to the following by Cromp-
ton and Scalici [2]:

G1∗ (G, `) and (G, a) are both semi-Moufang, or
x ` ((y ` z) ` x) = (x ` y) ` (z ` x) and
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x a ((y a z) a x) = (x a y) a (z a x)
G2. (x ` y) a z = x ` (y a z)
G5. 1 ` x = x = x a 1
G6. x ` x−1 = 1 = x−1 a x

It is possible that this axiomatization can still be simplified. For instance, Phillips
[12] did not use G1 to prove G2 from G2∗, G5, and G6. Thus, Crompton could have
replaced G2 by G2∗ and still have derived G1 from G1∗, making the axiomatization
G1∗, G2∗, G5, G6 equivalent to Kinyon’s [4]. The software program PROVER9 [9]
was used to prove that the following two relations are equivalent to semi-Moufang
in the axiomatization of digroups:

Semi-Extra: x ` (y ` (z ` x)) = ((x ` y) ` z) ` x and
x a (y a (z a x)) = ((x a y) a z) a x

Semi-Bol: x ` ((y ` z) ` x) = (x ` y) ` (z ` x),
x a ((y a z) a x) = (x a y) a (z a x),
((z ` x) ` y) ` x = z ` ((x ` y) ` x), and
((z a x) a y) a x = z a ((x a y) a x)

However, replacing G1 with either of these would be even more unwieldly, and we
only present them as an example of other directions to go with the axiomatization.
For our purposes in this paper, we shall use Phillips’ definition. Namely,

Definition 1.2. A digroup is a set G with two binary operations, ` and a, a
unary operation −1 and a nullary operation 1, which satisfies:
G1. (G, `) and (G, a) are both semigroups
G2* x ` (x a z) = (x ` x) a z
G5. 1 ` x = x = x a 1
G6. x ` x−1 = 1 = x−1 a x

In the digroup, 1 is called a bar unit and x−1 is the inverse of x with respect
to 1. It must be noted that a digroup can have multiple elements that act as bar
units, but must always have at least one. An identity is an element e ∈ G such
that e ` x = x = x a e and x ` x−1

` = e = x−1
a a x for all x ∈ G but x−1

` is not
necessarily equal to x−1

a . If they are equal for all x ∈ G, e is a bar unit. We shall
call x−1

` the right inverse of x and x−1
a the left inverse of x.

It should be noted that Liu [6] uses a slightly different definition of digroup, in
which none of the identities is necessarily a bar unit. Liu’s G6 is as follows:

G6L: for all x ∈ G, there exists x−1
` , x−1

a ∈ G such that x−1
a a x = 1 = x ` x−1

` .

For an example of a Cayley table that is a digroup under Lius definition, but not
for Definition 1.2, see http://persweb.wabash.edu/facstaff/phillipj/research.html.

Next we define a trivial digroup as one which is composed entirely of identities:
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` 0 1 2 ... n
0 0 1 2 ... n
1 0 1 2 ... n
2 0 1 2 ... n
... ... ... ... ... ...
n 0 1 2 ... n

a 0 1 2 ... n
0 0 0 0 ... 0
1 1 1 1 ... 1
2 2 2 2 ... 2
... ... ... ... ... ...
n n n n ... n

We note that there is one such digroup of each order n ∈ N, and that every element
of a trivial digroup acts as a bar unit.

The next lemma requires a definition of right and left group. Given a semigroup
(G,`), we say (G,`) is a right group if G contains a left identity e ∈ G and a right
inverse x−1 for each x ∈ G. Left group is defined in a similar fashion. If (G,`,a)
forms a digroup, then (G,`) forms a right group and (G,a) forms a left group.

Lemma 1.3. Let (G,`) be a right group. We define the set of identities E = {e ∈
G|e ` x = x for all x ∈ G} and the set of inverses J = {x−1|x ∈ G} with respect to
any bar unit. It has been proven (e.g. [4]) that

(1) J is a group

(2) G = J ` E ∼= (J × E,`)

(3) A digroup is a group ⇔ `= a⇔ the bar unit is the only identity.

(4) x ` 1 = (x−1)−1 for all x ∈ G

(5) ((x−1)−1)−1 = x−1 for all x ∈ G

(6) (x ` y)−1 = y−1 ` x−1 for all x, y ∈ G

(7) x ` 1 = x if and only if G is a group.

Corollary 1.4. |G| = |J | · |E|

Proof. Follows directly from (2). �

Corollary 1.5. Let G be a digroup. If |G| = p where p prime, then G is either the
cyclic group Zp or a trivial digroup.

Proof. By 1.4 |E|
∣∣∣ |G|. Since |G| is prime |E| = |G| or |E| = 1. If |E| = 1 we know

from 1.3 that G is a group. Since |G| is prime, this means that G is a cyclic group.
If |E| = |G|, then G is the trivial digroup of order |G| by definition. �

In Section 3, statements corresponding to (1),(4),(5),(6), and (7) are proven to
hold with respect to any identity in G.

Definition 1.6. We call a subset H of a digroup G a subdigroup if H has the
structure of a digroup under the operations of G.
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This definition varies slightly from the one given in [3] in that it removes the
condition that the bar unit of H must be the same bar unit in G. Thus, Felipe’s
subdigroup test needs to be modified appropriately:

Theorem 1.7. H is a subdigroup of G if and only if H contains a bar unit e, and
for all f , g, l, m, n ∈ H the elements f ` e, g−1 ` l, and m a n−1 are in H.

Proof. By adding the condition that H must contain a bar unit, the proof follows
from Theorem 3.3 found in [3]. �

Felipe’s definition of subdigroups and his test for subdigroups are such that ev-
erything Felipe proves to be a subdigroup is also a subdigroup under definition 1.6.
We will, however, use Felipes definition of normal subdigroup (assuming subdigroup
is defined according to definition 1.6):

Definition 1.8. A subdigroup, H of digroup G is called a normal subdigroup if
and only if a−1 ` x a a ∈ H for all a ∈ G and any x ∈ H.

2. Commutant

In [3], Felipe defined the commutant, or center, of a digroup as Z(G) = {x ∈
G|g ` x = x a g for all g ∈ G} and proved it was a subdigroup. However, there are
other possible definitions for a commutant that can be considered:

C1 = {x ∈ G|g ` x = x ` g for all g ∈ G}
C2 = {x ∈ G|g a x = x a g for all g ∈ G}
C3 = {x ∈ G|g a x = x ` g for all g ∈ G}
C4 = {x ∈ G|g ` x = x a g for all g ∈ G} = Z(G)

Problem 2.1. It is still open to define the centralizer of an element in a digroup
and prove it is a subdigroup.

C1 and C2 are only subdigroups when G is a group because 1 ∈ C1 if and only if
1 ` x = x ` 1 = x, thus by Lemma 1.3 (7), G must be a group. A similar argument
can be made for C2. Also, any union or intersection of C1 and C2 is insufficient as
they only form subdigroups when G is a group. Thus, C1 and C2 do not represent
proper generalizations of the center of a group as they do not necessarily form sub-
digroups of G.

Thus, we are left to consider C3. Using PROVER9 [9], it was proven that:

Proposition 2.2. C3 is a normal subdigroup of digroup G, where 1 is a bar unit
of G. We must show that:

(1) C3 contains a bar unit.

(2) x ∈ C3 ⇒ x−1 ∈ C3.
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(3) x ∈ C3 ⇒ x ` 1 ∈ C3.

(4) x, y ∈ C3 ⇒ x−1 ` y ∈ C3.

(5) x, y ∈ C3 ⇒ x a y−1 ∈ C3.

(6) x ∈ C3 ⇒ ((g−1 ` x) a g) ∈ C3 for all g ∈ G.

Proof. In this proof we shall also make use of the fact that if 1 is a bar unit, then
1 ∈ C4; proven in [3]. Let x ∈ C3.

(1) 1 ` x = x = x a 1 ⇒ 1 ∈ C3.

(2) Since x ∈ C3, x ` y = y a x for all y ∈ G ⇒ x ` (a a b)
(C3)
= (a a b) a x

(G1)
=

a a (b a x)
(C3)
= a a (x ` b) for all a, b ∈ G. If we let b = x−1, this equation

becomes a = x ` (a a x−1).

We know from Lemma 1.3 that (c−1)−1 = c ` 1 ⇒ c−1 ` (c ` 1) = 1 by the

definition of inverse. Therefore c−1 ` ((c ` 1) ` d)
(G1)
= (c−1 ` (c ` 1)) ` d =

1 ` d = d for all c, d ∈ G.

Since a = x ` (a a x−1), x−1 ` a = x−1 ` (x ` (a a x−1)) = a a x−1 by the
above equation with c = x and d = a a x−1. This proves x−1 ∈ C3.

(3) Since x ∈ C3, (x ` 1) ` g
(G1)
= x ` (1 ` g) = x ` g

(C3)
= g a x = (g a 1) a

x
(G1)
= g a (1 a x)

(C3)
= g a (x ` 1). Therefore, x ` 1 ∈ C3.

(4) Let A, B ∈ C3. Then A ` x = x a A and B ` x = x a B for all x ∈ G. Note
that by (2) above, A−1 ` x = x a A−1 and B−1 ` x = x a B−1 for all x ∈ G.

(A−1 ` B) ` x
(G1)
= A−1 ` (B ` x)

(C3)
= (B ` x) a A−1 (C3)

= (x a B) a
A−1 (G1)

= x a (B a A−1)
(C3)
= x a (A−1 ` B) which proves (A−1 ` B) ∈ C3.

(5) A, B ∈ C3 ⇒ A ` x = x a A and B ` x = x a B for all x ∈ G.

(A a B−1) ` x
(G4)
= A ` B−1 ` x

(C3)
= A ` (x a B−1)

(G2)
= (A ` x) a B−1 (C3)

=

(x a A) a B−1 (G1)
= x a (A a B−1) proving A a B−1 ∈ C3.

(6) A ∈ C3 ⇒ A ` x = x a A.

Suppose not, i.e. b a ((a−1 ` A) a a) 6= ((a−1 ` A) a a) ` b. Note that

((a−1 ` A) a a) ` b
(G4)
= (a−1 ` A) ` (a ` b)

(G1)
= a−1 ` (A ` (a ` b))

(C3)
=

a−1 ` ((a ` b) a A)
(G2)
= (a−1 ` (a ` b)) a A

(C3)
= A ` (a−1 ` (a ` b))

(G1)
=

(A ` a−1) ` (a ` b)
(G1)
= A ` (a−1 ` (a ` b))

(G5)
= A ` (a−1 ` (a ` (1 `
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b)))
(G1)
= A ` ((a−1 ` (a ` 1)) ` b) = A ` (1 ` b)

(G5)
= A ` b by Lemma 1.3

and b a ((a−1 ` A) a a)
(G2)
= b a ((a−1 ` A) ` a)

(G1)
= b a (a−1 ` (A ` a))

(G3)
=

b a a−1 a (A ` a)
(C3)
= b a (a−1 a (a a A))

(G1)
= b a ((a−1 a a) a A)

(C3)
= b a

(A ` (a−1 a a))
(G3)
= b a A a (a−1 a a)

(G1)
= (b a A) a a−1 a a

(C3)
= (A ` b) a

a−1 a a
(G2)
= A ` (b a a−1 a a)

(G3)
= A ` (b a (a−1 ` a))

(G5)
= A ` ((b a 1) a

(a−1 ` a))
(G1)
= A ` (b a (1 a (a−1 ` a)))

(C4)
= A ` (b a ((a−1 ` a) ` 1))

(G1)
=

A ` (b a (a−1 ` (a ` 1)))
(C4)
= A ` (b a (a−1 ` (1 a a)))

(G2)
= A ` (b a ((a−1 `

1) a a))
(C4)
= A ` (b a ((1 a a−1) a a))

(G1)
= A ` (b a (1 a (a−1 a a)))

(G6)
= A `

(b a 1 a 1)
(G5)
= A ` b, a contradiction!

Therefore, ((a−1 ` A) a a) ` b = b a ((a−1 ` A) a a).

�

Since C3 and C4 are normal subdigroups and are non-equivalent (for a digroup in
which C3 6= C4, see D2(6, Z2) in Section 6), both are candidates for the commutant
of a digroup.

Felipe [3] defines an abelian digroup G as one in which x a y = y ` x for all
x, y ∈ G. Note that in any abelian digroup G, C3 = C4 = G. Also, E ⊆ C3.

Many open problems still exist with regard to this aspect of digroups, and some
are listed below.

Problem 2.3. Find a correspondence for the class equation from group theory.

Problem 2.4. Define Nilpotency for digroups by taking the quotient structure of a
digroup with C3 or C4 using the method from [3].

Problem 2.5. Do a comparative analysis of the two commutant definitions and
find out which is better. Or, alternately, find a new definition based on C3 and C4
that encapsulates the best qualities of both.

3. Subdigroups

In previous literature (e.g. [3], [4]), the set of inverses, J , was specifically the set
of inverses with respect to the defined bar unit, 1. The following results rely upon
the set of inverses with respect to any identity, e. We define J`

e = {h−1
` |h ` h−1

` =
e}, where h ∈ G, e ∈ E, and G is a digroup. The notation, h−1

` denotes the inverse
of h under ` with respect to e. We will use similar notation for a. It is important to
note that the identity h−1

` is taken with respect to is not specified in the notation,
but should be clear in the given context. Also, h−1

` does not necessarily equal h−1
a ,

or in other words, an element of a digroup can have a different inverse under each
operation with respect to the same identity. However, if the identity is also a bar
unit, then h−1

` = h−1
a and J`

e = Ja
e .
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The following Lemma shows that many of the results of Lemma 1.3 hold with
respect to any arbitrary identity.

Lemma 3.1. Let (G,`) be a right group. Let J`
e be defined as above with e ∈ E.

Let x, y ∈ G. Assume all inverses are with respect to e.

(1) for every x ∈ G, there exists an x−1
`

(2) x ` e = (x−1
` )−1

`

(3) (x ` y)−1
` = y−1

` ` x−1
`

(4) ((x−1
` )−1

` )−1
` = x−1

`

(5) x ` e = x if and only if G is a group

(6) J`
e = J ` e = {a ` e | a ∈ J}

(7) J`
e
∼= J , as groups under `

(8) The sets J`
e for all e ∈ E partition G

Proof. (1) Since G = J ` E, let x = a ` e′, for some a ∈ J and e′ ∈ E. Then,
(a ` e′) ` (a−1 ` e) = a ` (e′ ` a−1) ` e = (a ` a−1) ` e = 1 ` e = e.
Therefore, a−1 ` e = x−1

` .

(2) x ` e = x ` (x−1
` ` (x−1

` )−1
` ) = e ` (x−1

` )−1
` = (x−1

` )−1
` .

(3) Note that (x ` y) ` y−1
` ` x−1

` = e, thus y−1
` ` x−1

` = (x ` y)−1
` .

(4) ((x−1
` )−1

` )−1
` = (x ` e)−1

` = e ` x−1
` = x−1

` , by (1) and (2).

(5) (⇒) Assume e1 ∈ G, and let x = e1, then e1 = e. Therefore, e is the only
identity in G, thus e must be a bar unit, and then by Lemma 1.3 (3), G is
a group. (⇐) Trivial.

(6) Let a ` e ∈ J ` e. Since a ∈ J , and J is a group under `, there ex-
ists a b ∈ J such that b ` a = 1. Thus, b ` (a ` e) = (b ` a) ` e
= 1 ` e = e. This means that a ` e = b−1

` ∈ J`
e . Now, let x ∈ J−1

e .
Thus, there exists a y ∈ G such that y ` x = e. Since G = J ` E,
y = a′ ` e′ and x = a′′ ` e′′, for some a′,a′′ ∈ J and e′,e′′ ∈ E. So,
e = y ` x = (a′ ` e′) ` (a′′ ` e′′) = a′ ` (e′ ` a′′) ` e′′ = (a′ ` a′′) ` e′′.
Since e = 1 ` e, a′ ` a′′ = 1 and e′′ = e. Thus, x = a′′ ` e ∈ J ` e.

(7) Consider φ : J`
e → J defined by φ(a ` e) = a, for every a ∈ J . Clearly, φ is

bijective. To show that φ is a group homomorphism, consider φ((a1 ` e) `
(a2 ` e)) = φ((a1 ` a2) ` e) = a1 ` a2 = φ(a1 ` e) ` φ(a2 ` e).
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(8) This follows from the observation that G = J ` E is partitioned into J `
e = J`

e , for all e ∈ E.
�

Lemma 3.2. Let (G,`,a) be a digroup, then g ` J`
e = J`

e for all g ∈ G and for
all e ∈ E.

Proof. (⊆) Take a ∈ J and g = a′ ` e′ ∈ G. Then, g ` (a ` e) = (a′ ` a) ` e ∈ J `
e. (⊇) Take a ` e ∈ J ` e and g = a′ ` e′ ∈ G. Then, g ` (((a′)−1 ` a) ` e) = (a′ `
((a′)−1 ` a)) ` e = 1 ` (a ` e) = a ` e.

�

This result also holds for the corresponding a statement: J−1
a a g = J−1

a .

Lemma 3.3. Given a digroup G, all nonempty subsets of E form a subdigroup.

Proof. A subset of G composed entirely of identities forms a trivial subdigroup in
which all elements act as bar units. �

Theorem 3.4. Let (G,`,a) be a digroup. Consider any nonempty subset S of E
such that S = {e1, e2, ..., en}, and there exists an ej ∈ S that is a bar unit. Let H
= J`

e1
∪ J`

e2
∪ ... ∪ J`

en
, then H forms a subdigroup of G if J`

e1
∪ J`

e2
∪ ... ∪ J`

en
=

Ja
e1
∪ Ja

e2
∪ ... ∪ Ja

en
.

Proof. According to Theorem 1.7, we must show there exists a bar unit e ∈ H and
that for all f , g, l, m, n ∈ H, the elements f ` e, g−1 ` l, and m a n−1 are
contained in H. Clearly, ej ∈ H. Now we must show that for each x ∈ H, x−1 with
respect to ei is also in H. By Lemma 3.2, we know x ` J`

ei
= J`

ei
. Since ei ∈ J`

ei
,

then x−1 ∈ J`
ei
⊆ H. Now we consider closure: f ` ei ∈ f ` J`

ei
= J`

ei
; we know

l ∈ J`
ek

for some k such that 1 ≤ k ≤ n, thus g−1 ` l ∈ J`
ek
⊆ H; and similarly, we

know m ∈ Ja
er

for some r such that 1 ≤ r ≤ n, thus m a n−1 ∈ Ja
er
⊆ H. Thus, H

is a subdigroup of G. �

Corollary 3.5. The subset, K, of G defined as K = Je1 ∪ Je2 ∪ ... ∪ Jem where
ej ∈ S is a bar unit for all j, 1 ≤ j ≤ m, forms a subdigroup of G.

Proof. By definition of bar unit, J`
ej

= Ja
ej

for all t such that 1 ≤ j ≤ m. Thus, K
= H as defined in Theorem 3.4 for some S, making K a subdigroup of G. �

According to Corollary 3.5, we can form
∑m

j=1

(
m
j

)
subdigroups of G where m

is the number of bar units in G, simply by finding the union of the inverse sets with
respect to any number of the bar units. However, Theorem 3.4 indicates that there
are more subdigroups that can be formed from identities that are not necessarily
bar units, provided they satisfy the additional property given to H. Additionally,
by Lemma 3.2, 2n − 1 trivial subdigroups can be formed where n is the number of
identities in G.

An observation that can be made from Theorem 3.4, is that the inverse sets
determine, to a large extent, what subdigroups can be found in a given digroup. In
sections 5 and 6, it is demonstrated that the structure of any given digroup can be
understood by examining the structure of its set of inverses with respect to a bar
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unit. This is helpful because the set of inverses with respect to a bar unit forms a
group.

We now prove a generalization of Lagrange’s Theorem.

Theorem 3.6. Let G be a digroup, and H ⊆ G a subdigroup of G. Define JH as
the set of inverses in H with respect to a bar unit in H, and EH and EG as the
set of identities in H and G, respectively. Let JG be the set of inverses in G with

respect to the same bar unit as JH . If |EH |
∣∣∣|EG| then |H|

∣∣∣|G|.
Proof. Since JH ⊆ JG, and JH and JG form groups, then by Lagrange’s Theorem

for groups, |JH |
∣∣∣|JG|. By Corollary 1.4, |G| = |JG| · |EG| = n · m · |JH | · |EH | =

n ·m · |H|, where n, m ∈ N. Thus, |H|
∣∣∣|G|. �

In the case that H is a group, then |EH | = 1 by Lemma 1.3 (3), thus by Theorem

3.6, |H|
∣∣∣|G|. This shows that Theorem 3.6 provides an appropriate generalization

of Lagrange’s Theorem for groups. It is not the case, however, that the order of
any given subdigroup will necessarily divide the order of the parent digroup.

Problem 3.7. It is still open to find a correspondence for the Cauchy Theorem
from group theory. The next step after this would be to consider correspondences
for the Sylow Theorems.

4. Order and Idempotency

In [6], finding a generalization for the order of an element in a digroup is left as
an open problem. We provide a definition here:

Definition 4.1. Let G be a digroup. If n is the order of an element x ∈ G, then
n is the least possible number of times x occurs in the expansion x ` x ` x ` ... `
x = xn

` = e for some e ∈ E.

If order is defined according to a, this definition would be identical to 4.1. The
problem with this definition is that the order of all elements will be bounded by
|JG| for reasons that will become clear in Section ??, rather than ranging through
the possible divisors of |G| as is the case in group theory. A generalization of order,
which holds for every element is Idempotency:

Definition 4.2. The Idempotency class (I-class) of an element x is the natural
number n such that xn = xn

a = xn
` = x and xi 6= x for all 1 < i < n. The I-class of

any identity element is 2. Let o(x) be the order of x, and I(x) be the I-class of x.

Proposition 4.3. Let x be an arbitrary element in G where |G| = n.

(1) Every element on the diagonal is 1 ⇒ I(x) = 3 for all x 6= 1.
(2) xk

` = 1 ⇒ xk
a = 1 for all k ≤ n.

(3) The maximum order of an element is n.
(4) The maximum I-class of an element is n + 1.
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(5) I(x)− 1 = o(x) ⇔ G is a finite group.

Proof. Let x be an arbitrary element in G where |G| = n.

(1) If every element on the diagonal is 1, x ` x = 1 for all x which implies that
x ` x ` x = 1 ` x = x, so that I(x) = 3 for all x 6= 1.

(2) a ` xn−1 = 1 ⇔ xn−1 a x = 1.
(3) Suppose not. Then x2 6= 1, x3 6= 1, ..., xn+1 6= 1. By the Pigeonhole Prin-

ciple, xl = xm for some l,m < n + 1, which implies a cycle exists in which
none of the powers is 1. This implies that the order is infinite.

(4) This is a corollary of (3)
(5) (⇐) G is finite, so all elements have finite order, so xn = 1 ⇒ xn+1 = x

trivially.
(⇒) xn+1 = x and xn = 1, so we know that xn+1 ` x−1 = x ` x−1 = 1 =
xn = xn ` 1. Therefore, since ` is associative, x ` 1 = 1, which tells us G is
a group by Remark 3.2 from [3].

�

In group theory, the order of an element x ∈ G divides |G|. The following theorem
is the generalization of this concept to digroups with Idempotency.

Theorem 4.4. For any element x of digroup G, I(x)− 1
∣∣∣|G|.

The proof of this theorem is delayed until the concepts it relies on are introduced
in Section 5.

Problem 4.5. With this concept of order, the next step is to consider the structure
of cyclic digroups and theorems related to them.

Problem 4.6. It is also still open to define orbits and stabilizers in digroups and
prove a correspondence of the Orbit-Stabilizer Theorem.

5. Classification of (G,`)

Theorem 5.1. For any group H of order n, and for any m ∈ N there exists a
digroup G such that the order of G is m ·n and the inverse set J of G is isomorphic
to H.

Proof. Let H = {1, 2, ..., n}, with binary operation ◦ and identity 1. Let E = {1 =
e1, e2, ..., em}. Let G = H × E. Clearly, G has m · n elements. Let `: G × G → G
be defined by (i1, ej1) ` (i2, ej2) = (i1 ◦ i2, ej2). Let a: G × G → G be defined by
(i1, ej1) a (i2, ej2) = (i1◦ i2, ej1). First, we will show that G satisfies the four digroup
axioms.

(1) Every element has an inverse with respect to (1, e1) :
(i, ej) ` (i−1, e1) = (i ◦ i−1, e1) = (1, e1) = (i−1 ◦ i, e1) = (i−1, e1) a (i, ej)
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(2) (1, e1) is a bar unit:

(1, e1) ` (i, ej) = (1 ◦ i, ej) = (i, ej) = (i ◦ 1, ej) = (i, ej) a (1, e1)

(3) Associativity:

[(i1, ej1) ` (i2, ej2)] ` (i3, ej3) = (i1 ◦ i2, ej2) ` (i3, ej3) = ((i1 ◦ i2) ◦ i3, ej3) =
(i1 ◦ (i2 ◦ i3), ej3) = (i1, ej1) ` (i2 ◦ i3, ej3) = (i1, ej1) ` [(i2, ej2) ` (i3, ej3)]

[(i1, ej1) a (i2, ej2)] a (i3, ej3) = (i1 ◦ i2, ej1) a (i3, ej3) = ((i1 ◦ i2) ◦ i3, ej1) =
(i1 ◦ (i2 ◦ i3), ej1) = (i1, ej1) a (i2 ◦ i3, ej2) = (i1, ej1) a [(i2, ej2) a (i3, ej3)]

(4) Axiom G2∗ :

[(i1, ej1) ` (i1, ej1)] a (i2, ej2) = (i1 ◦ i1, ej1) a (i2, ej2) = ((i1 ◦ i1) ◦ i2, ej1) =
(i1 ◦ (i1 ◦ i2), ej1) = (i1, ej1) ` (i1 ◦ i2, ej1) = (i1, ej1) ` [(i1, ej1) a (i2, ej2)]

Next, we will show that J ∼= H.

(1) J = {(i, e1) | 1 ≤ i ≤ n}

(⊆) Assume (i′, ej) ` (i, ek) = (1, e1). Then, (i′ ◦ i, ek) = (1, e1), and ek =
e1.

(⊇) (i−1, ej) ` (i, e1) = (i−1 ◦ i, e1) = (1, e1)

(2) J ∼= H

Consider φ : J → H defined by φ((i, e1)) = i. Clearly, φ is bijective. To
show that φ preserves the groups’ operations:

φ((i1, e1) ` (i2, e1)) = φ((i1 ◦ i2, e1)) = i1 ◦ i2 = φ((i1, e1)) ◦ φ((i2, e1))

�

Definition 5.2. Two digroups G, with operations ` and a, and G′, with operations
`′ and a′, are (digroup) isomorphic if there exists a bijective function f : G → G′

that preserves the operations of G; that is, f(x ` y) = f(x)`′f(y) and f(x a y) =
f(x)a′f(y), for all x,y ∈ G. If only the first of these holds, G and G′ are said to be
`-isomorphic, and similarly for a-isomorphisms.

Theorem 5.3. Two digroups (G,`,a) and (G′,`′,a′) with non-isomorphic inverse
sets must be non-isomorphic.

Proof. Assume G ∼= G′. Let 1 be the bar unit of G. Let φ be a digroup isomorphism
from G onto G′. For any x ∈ G, 1 ` x = x = x a 1 and φ(1 ` x) = φ(x) = φ(x a 1).
So, φ(1)`′φ(x) = φ(x) = φ(x)a′φ(1). Similarly, φ(x ` x−1) = φ(1) = φ(x−1 a x)
and φ(x)`′φ(x−1) = φ(1) = φ(x−1)a′φ(x). Thus, φ(1) is the bar unit of G′. Let J
and J ′ be the inverse sets of G and G′, respectively. Now, we will show that φ
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restricted to J is a group isomorphism between J and J ′. Let a ∈ J. Then, there
exists an b ∈ G such that b ` a = 1. So, φ(b)`′φ(a) = φ(1). Thus, φ(a) ∈ J ′.
Similarly, if φ(a) ∈ J ′, then a ∈ J. This shows that φ restricted to J maps into J ′

and is bijective (since φ itself is injective). Since φ preserves the operation ` of G,
which is the group operation of J , it also preserves that operation for J. Therefore,
J ∼= J ′. �

Theorem 5.4. Two digroups of the same order with isomorphic inverse sets must
be `-isomorphic.

Proof. Let (G,`,a) and (G′,`′,a′) be digroups of the same order whose inverse
sets J and J ′, respectively, are isomorphic. Let φ : J → J ′ be an isomorphism.
Let E = {e1, e2, ..., en} and E ′ = {e1

′, e2
′, ..., en

′} be the sets of identities of G
and G′, respectively, with e1 and e1

′ as the bar units of those respective digroups.
Note that since the digoups have the same order and their inverse sets also have
the same order (since they are isomorphic), the sets of identities must have the
same order, which we assumed is n. Now, consider the function Φ : G → G′

defined by Φ(aj ` ei) = φ(aj)`′ei
′, where the elements of J are enumerated a1, a2,

..., am. Clearly, Φ is bijective. To show that Φ preserves the operation ` for G,
consider Φ((aj1 ` ei1) ` (aj2 ` ei2)) = Φ((aj1 ` aj2) ` ei2) = φ(aj1 ` aj2)`′ei2

′ =
(φ(aj1)`′ei1

′)`′(φ(aj2)`′ei2
′) = Φ(aj1 ` ei1)`′Φ(aj2 ` ei2). Therefore, G and G′ are

`-isomorphic. �

Theorem 5.5. The number of distinct `-structures of digroups of order n is Σi=Ig(mi),
where the mi are the factors of n, and g(m) is the number of groups of order m.

Proof. Consider all digroups of order n. It is known that all of those digroups’
inverse sets must be groups of orders that divide n. From Theorem 5.1, we know
that all such groups can be realized as the inverse set of some digroup of order
n. Then, from Theorem 5.3, we know that there are at least

∑
i=I g(mi) distinct

digroups of order n, corresponding to each possible group that could be an inverse
set. Finally, Theorem 5.4 insures this lower bound on the number of digroups of
order n is actually an equality, when considering the distinct `-structures. �

Of course, the question still remains of how many digroups of order n there are.
It is known how many distinct `-structures there can be of such digroups, but there
are examples of digroups that are `-isomorphic and a-isomorphic, but not digroup
isomorphic. In the next section, we examine this issue in further detail, and obtain
some preliminary results.

Now, consider any digroup G of order mn that has J = {a1, a2, ..., an} as its
inverse set and E = {e1, ..., em} has its set of identities. Rearrange the rows and
columns of the Cayley table of ` for G in such a way that the first row and the
first column (that is, the row and column that list the multiplicands) are in the
following order: a1 ` e1, a2 ` e1, ..., an ` e1, a1 ` e2, a2 ` e2, ..., an ` e2, ..., a1 `
em, a2 ` em, ..., an ` em. (see the following table).
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` a1 ` e1 a2 ` e1 · · · an ` e1 · · · a1 ` em a2 ` em · · · an ` em

a1 ` e1

a2 ` e1

... (J ` J) ` e1 (J ` J) ` em

an ` e1
...

a1 ` em

a2 ` em

... (J ` J) ` e1 (J ` J) ` em

an ` em

The columns are grouped according to their inverse sets and the first n rows
are all distinct, with the next n rows repeating the first, in exact order, and so
on, until the last n rows, which are the first n repeated in exact order. Thus,
once the first n rows are determined, the entire Cayley table will be determined by
just rewriting the first n rows m − 1 more times. The first n rows and columns
correspond to J (since they form the inverse set of e1, which is the actual inverse
set of G). Thus, the top-left n × n square of the Cayley table is just the Cayley
table for J . Since (ai1 ` e1) ` (ai2 ` ej) = (ai1 ` ai2) ` ej, the next n × n square
(since we are now only considering the first n rows) is just (J ` J) ` e2, and so on,
until the last n× n sqaure is just (J ` J) ` em, where (J ` J) ` ei means that the
element in the k1-th row and k2-th column of (J ` J) ` ei is (ak1 ` ak2) ` ei. This
means that since the first row is just the identity row, however the elements of J
are permuted in each new row is exactly how the elements of every n × n square
will be permuted. Thus, from J alone, the entire Cayley table is determined up
to isomorphism. This construction is the main idea behind the proof of Theorem
5.4. As noted above, while a similar construction can be done with the a Cayley
table of a digroup of order mn, so that two such digroups with J as their inverse
sets will be both `-isomorphic and a-isomorphic, there is no guarantee that the
digroups will be digroup isomorphic. This problem arises because the partitioning
of the digroups into J ` E and E a J may not yield the same partitions since the
identities are not necessarily bar units.

As an example of the above construction, consider the following ` Cayley table of
a digroup of order 6 :
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` 0 1 2 3 4 5
0 1 0 3 2 5 4
1 0 1 2 3 4 5
2 1 0 3 2 5 4
3 0 1 2 3 4 5
4 1 0 3 2 5 4
5 0 1 2 3 4 5

Now consider the Cayley tables of the partitions {0, 1},{2, 3},{4, 5}:

` 0 1
0 1 0
1 0 1

` 2 3
2 3 2
3 2 3

` 4 5
4 5 4
5 4 5

Notice how these tables correspond to Z2. Every digroup generated using MACE4
has a ` -structure that can be arranged in this form. The digroup whose a Cayley
table can be arranged in the same way with the same partitions we call the Prin-
cipal Digroup. The above example with the same a Cayley table would be called
the principal digroup of order 6 based upon Z2. The notation Di(n, J) can be used
to represent digroups where i = 1 corresponds to the principal digroup, n = |G|,
and J corresponds to the basis group, or the set of inverses. The above example
would be represented D1(6,Z2). The following table generated by MACE4 [9] shows
this classification for all the digroups up to order 15. The ISOFILTER function
ensured that only non-isomorphic structures were considered.
Note that with this notion of digroups based upon groups we can prove Theorem
4.4:

Proof. We know

(1) I(x)− 1 = o(x) ⇔H is a finite group from (5) above.

(2) o(x)
∣∣∣|H| for all x ∈ H.

(3) |H|
∣∣∣|G|.

From these, we can see that o(x)
∣∣∣H ⇒ (I(x)− 1)

∣∣∣H ⇒ (I(x)− 1)
∣∣∣|G|.

�
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Table 1: Digroups up to order 15
Order |J| Name

2 2 Z2

1 trivial
3 3 Z3

1 trivial
4 4 Z4, Z2 × Z2

2 D1(4, Z2)
1 trivial

5 5 Z5

1 trivial
6 6 Z6, D3

3 D1(6, Z3)
2 D1(6, Z2), D2(6, Z2)
1 trivial

7 7 Z7

1 trivial
8 8 Z8, Z4 × Z2, Z2 × Z2 × Z2, D4, Q

4 D1(8, Z4), D1(8, Z2 × Z2)
2 D1(8, Z2), D2(8, Z2)
1 trivial

9 9 Z9, Z3 × Z3

3 D1(9, Z3)
1 trivial

10 10 Z10, D5

5 D1(10, Z5)
2 D1(10, Z2), D2(10, Z2), D3(10, Z2)
1 trivial

11 11 Z11

1 trivial
12 12 Z12, Z2 × Z6, A4, D6, T

6 D1(12, Z6), D1(12, D3)
4 D1(12, Z4), D1(12, Z2 × Z2), D2(12, Z4), D2(12, Z2 × Z2)
3 D1(12, Z3), D2(12, Z3)
2 D1(12, Z2), D2(12, Z2), D3(12, Z2)
1 trivial

13 13 Z13

1 trivial
14 14 Z14, D7

7 D1(14, Z7)
2 D1(14, Z2), D2(14, Z2), D3(14, Z2), D4(14, Z2)
1 trivial

15 15 Z15

5 D1(15, Z5)
3 D1(15, Z3), D2(15, Z3)
1 trivial
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6. The classification of Di(n, J)

There are some digroups, however, which do not qualify as Principal Digroups
because the partitioning of the a Cayley table for those digroups do not correspond
to the ` partitions. However, since every structural property of the ` Cayley table
holds for the a Cayley table and since the inverse sets for the two tables must be
isomorphic, the entire a Cayley table is uniquely determined by how the digroup
partitions into its inverse sets for all of its identities. Therefore, determining which
permutations of the partitions of a yield distinct digroup structures completes the
classification of Di(n,J) for all i.

Lemma 6.1. Consider an arbitrary digroup (G,`,a), with. Let ∼ indicate the
grouping of two elements within the same a partition. Notice that ∼ is an equiva-
lence relation. If x, c ∈ G and x ∼ c, then (x ` x) ∼ (x ` c).

Proof. Assume x ∼ c. Then, there exists some z ∈ G such that x a z = c. So,
x ` (x a z) = x ` c also, (x ` x) a z = x a c. Thus, by G2∗, (x ` x) ∼ (x ` c). �

Lemma 6.2. If |J | = p, and ai ` e ∼ e then the partition is equal to the set of
inverses J .

Proof. Let ai ` e ∼ e. ai ` e ∼ e ⇒ a2
i ` e ∼ ai ` e or a2

i ` e ∼ e. Therefore by
induction, assume ak

i ` e ∼ e. a ` e ∼ ak
i ` e ⇒ a2

i ` e ∼ ak+1
i ` e. Therefore

ak+1
i ∼ e.

�

Theorem 6.3. Consider a digroup (G,`,a) with |G | = n. The number of digroups
with |E | = n

p
is exactly ⌊ n

p
− 1

p

⌋
+ 1

Proof. Consider the digroup axiom x ` (x a z) = (x ` x) a z. Let J = Zp. Consider
ai ` ej1 ∼ e2. ai ` ej1 ∼ ej2 ⇒ (ai ` ai) ` ej1 ∼ ai ` ej2 ∼ (ai ◦ ai) ` ej1 ∼ a2

i ` ej1 ,
where ◦ indicates the binary operation of Zp.
We know that each partition should have order p therefore these two elements
must be with another element, one of which must be an identity. By Lemma 6.2
we know that it cannot be either ej1 or ej2 , therefore it must be ej3 . Therefore,
a2

i ` ej1 ∼ ai ` ej2 ⇒ a4
i ` ej1 ∼ a3

i ` ej2 , and ai ` ej2 ∼ ej3 ⇒ a2
i ` ej2 ∼ ai ` ej3 .

Creating a table the pattern becomes apparent.

Partition

1 ai ` e1 e2 ap−1
i ` e3 ap−2

i ` e4 · · · a2
i ` ep

2 a2
i ` e1 ai ` e2 e3 ap−1

i ` e4 · · · a3
i ` ep

3 a3
i ` e1 a2

i ` e2 ai ` e3 e4 · · · a4
i ` ep

4 a4
i ` e1 a3

i ` e2 a2
i ` e3 ai ` e4 · · · a5

i ` ep
...

...
...

...
...

. . .
...

p e1 ap−1
i ` e2 ap−2

i ` e3 ap−3
i ` e4 · · · ai ` ep
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Therefore every partition is linked p ways, and a permutation in the partitions
would have to have order p. This means the total number of permutations available
will correspond to the number of partitions, n

p
, minus 1 for the partition containing

the bar unit, divided by p for the p-wise linking:

|Di(G)| =
⌊ n

p
− 1

p

⌋
+ 1, where |J| = p

�

It is clear that it does not matter which p partitions are changed as long as p are
changed. Consider the previous table only with āi ` ēj, the grouping of p different
partitions together. Simply permute, or relabling these all of the elements in this
table by (āi ai)(ēj ej), this gives the first table, therefore the digroup structures
are isomorphic. Since we are only considering non-isomorphic structures we only
consider the first.
Note that Corollary 1.5 on digroups of prime order follows trivially from Theorem
6.3. It is natural to consider digroups of order p2 and p · q where p, q prime:

Corollary 6.4. There are only four digroups of order p2: the trivial digroup, D1(p
2,

Zp, and the groups Zp2 and Zp × Zp.

Proof. Let G be a digroup of order p2 and E its identity set. The only possible
decompositions of p2 are p2 · 1, p · p, and 1 · p2. Therefore, we only have to consider
the cases where |E| = 1, p, or p2.

(1) If |E| = 1, then the digroup is a group and it is known that it must be either
Zp2 or Zp × Zp.

(2) If |E| = p, then Theorem 6.3 tells us there is only

⌊
p2

p
−1

p

⌋
+1 =

⌊
p−1

p

⌋
+1 = 1

digroup of order p2. We label this digroup D1(p
2, Zp).

(3) If |E| = p2, then the digroup is trivial.

�

Corollary 6.5. Let G be a digroup. If |G| = p · q where p, q prime and p > q, then

there are only
⌊

q−1
p

⌋
+ 2 non-trivial non-group possibilities for G.

Proof. Let G be a digroup of order p · q and E its identity set. Let p > q without
loss of generality. The only possible decompositions of p · q are (p · q) · 1, p · q, q · p,
and 1 · (p · q). Therefore, we only have to consider the cases where |E| = 1, p, q, or
p · q.

(1) If |E| = 1, G is a group.

(2) If |E| = p, then Theorem 6.3 tells us there are only
⌊ p·q

q
−1

q

⌋
+1 =

⌊
p−1

q

⌋
+1 =

1 digroups of order p · q. In this case, G = D1(p · q, Zq).

(3) If |E| = q, then Theorem 6.3 tells us there is only
⌊ p·q

p
−1

p

⌋
+ 1 =

⌊
q−1

p

⌋
+ 1

digroups of order p · q.
(4) If |E| = p · q, G is trivial.
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�

7. Conclusion

While an analogue of Lie’s Third Theorem for Leibniz Algebra has yet to be
found it has been conjectured by some that the answer still lies within the structure
of digroups. Our hopes is that a more detailed structural analysis of digroups can
help to point out possibilities for finding that answer.
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