Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan
University

Applying Genetic Algorithms to Ramsey Theory

David White
Wesleyan University

November 2, 2009

Outline

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University
(1) Basic Graph Theory and graph coloring

Outline

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan
University
(1) Basic Graph Theory and graph coloring
(2) Pigeonhole Principle

Outline

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan
University
(1) Basic Graph Theory and graph coloring
(2) Pigeonhole Principle
(3) Definition and examples of Ramsey Numbers

Outline

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University
© Basic Graph Theory and graph coloring
© Pigeonhole Principle

- Definition and examples of Ramsey Numbers
- Generalizing Ramsey numbers

Outline

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University
© Basic Graph Theory and graph coloring
© Pigeonhole Principle

- Definition and examples of Ramsey Numbers
- Generalizing Ramsey numbers
- Ramsey's Theorem

Outline

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

- Basic Graph Theory and graph coloring
© Pigeonhole Principle
- Definition and examples of Ramsey Numbers
- Generalizing Ramsey numbers
- Ramsey's Theorem
- Some bounds on Ramsey numbers

Outline

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

- Basic Graph Theory and graph coloring
© Pigeonhole Principle
- Definition and examples of Ramsey Numbers
- Generalizing Ramsey numbers
- Ramsey's Theorem
- Some bounds on Ramsey numbers
- One further generalization

Outline

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

- Basic Graph Theory and graph coloring
© Pigeonhole Principle
- Definition and examples of Ramsey Numbers
- Generalizing Ramsey numbers
- Ramsey's Theorem
- Some bounds on Ramsey numbers
- One further generalization
- Evolutionary Algorithms and Ramsey theory

Outline

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

- Basic Graph Theory and graph coloring
© Pigeonhole Principle
- Definition and examples of Ramsey Numbers
- Generalizing Ramsey numbers
- Ramsey's Theorem
- Some bounds on Ramsey numbers
- One further generalization
- Evolutionary Algorithms and Ramsey theory
- Crossover, mutation, selection

Outline

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan
University

- Basic Graph Theory and graph coloring
© Pigeonhole Principle
- Definition and examples of Ramsey Numbers
- Generalizing Ramsey numbers
- Ramsey's Theorem
- Some bounds on Ramsey numbers
- One further generalization
- Evolutionary Algorithms and Ramsey theory
- Crossover, mutation, selection
(10) Fitness function and code

Outline

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan
University

- Basic Graph Theory and graph coloring
© Pigeonhole Principle
- Definition and examples of Ramsey Numbers
- Generalizing Ramsey numbers
- Ramsey's Theorem
- Some bounds on Ramsey numbers
- One further generalization
- Evolutionary Algorithms and Ramsey theory
- Crossover, mutation, selection
(10) Fitness function and code
(1) Results

Outline

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan
University

- Basic Graph Theory and graph coloring
© Pigeonhole Principle
- Definition and examples of Ramsey Numbers
- Generalizing Ramsey numbers
- Ramsey's Theorem
- Some bounds on Ramsey numbers
- One further generalization
- Evolutionary Algorithms and Ramsey theory
- Crossover, mutation, selection
(10) Fitness function and code
(1) Results
(2. Other attacks plus further ways to push

Basic Graph Theory

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White Wesleyan University

Definition

A graph G is a pair (V, E) where V is a set of vertices, and E is a set of pairs of points $\left(v_{i}, v_{j}\right)$ called edges.

Basic Graph Theory

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White Wesleyan University

Definition

A graph G is a pair (V, E) where V is a set of vertices, and E is a set of pairs of points $\left(v_{i}, v_{j}\right)$ called edges.

For us $|V|$ will always be finite.

Basic Graph Theory

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

Definition

A graph G is a pair (V, E) where V is a set of vertices, and E is a set of pairs of points $\left(v_{i}, v_{j}\right)$ called edges.

For us $|V|$ will always be finite.

Figure: A graph

Complete Graphs

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White Wesleyan University

The complete graph on n vertices has n vertices and edges between all pairs of vertices.

Complete Graphs

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

The complete graph on n vertices has n vertices and edges between all pairs of vertices.

K_{5}

Cycle Graphs

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White Wesleyan University

An n-cycle C_{n} has n vertices forming a regular n-gon and edges around the perimeter.

Cycle Graphs

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

An n-cycle C_{n} has n vertices forming a regular n-gon and edges around the perimeter.

C_{5}
C_{6}

Graph Colorings

Applying Genetic
Algorithms
to Ramsey
Theory

David
White Wesleyan University

Definition

A coloring of a graph is an assignment of colors from a finite set $\left\{c_{1}, \ldots, c_{r}\right\}$ to the edges of the graph.

Graph Colorings

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan
University

Definition

A coloring of a graph is an assignment of colors from a finite set $\left\{c_{1}, \ldots, c_{r}\right\}$ to the edges of the graph.

Figure: A 2-colored graph

Graph Colorings

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

Definition

A coloring of a graph is an assignment of colors from a finite set $\left\{c_{1}, \ldots, c_{r}\right\}$ to the edges of the graph.

Figure: A 2-colored graph

We will be interested in colorings which avoid monochromatic subgraphs.

Graph Colorings

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

Definition

A coloring of a graph is an assignment of colors from a finite set $\left\{c_{1}, \ldots, c_{r}\right\}$ to the edges of the graph.

Figure: A 2-colored graph

We will be interested in colorings which avoid monochromatic subgraphs. This has no red triangle and no blue triangle,

Graph Colorings

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

Definition

A coloring of a graph is an assignment of colors from a finite set $\left\{c_{1}, \ldots, c_{r}\right\}$ to the edges of the graph.

Figure: A 2-colored graph

We will be interested in colorings which avoid monochromatic subgraphs. This has no red triangle and no blue triangle, but last edge will force a monochromatic triangle.

Pigeonhole Principle

Applying Genetic
Algorithms
to Ramsey
Theory
David
White Wesleyan University

Proposition (Pigeonhole Principle)

(1) If you are placing $n+1$ pigeons into n holes, then some hole will end up containing at least two pigeons.

Pigeonhole Principle

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

Proposition (Pigeonhole Principle)

(1) If you are placing $n+1$ pigeons into n holes, then some hole will end up containing at least two pigeons.
(2) If you are placing $2 n-1$ pigeons into 2 holes then some hole will end up containing at least n pigeons.

Pigeonhole Principle

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

Proposition (Pigeonhole Principle)

(1) If you are placing $n+1$ pigeons into n holes, then some hole will end up containing at least two pigeons.
(2) If you are placing $2 n-1$ pigeons into 2 holes then some hole will end up containing at least n pigeons.

If you have $2 n-1$ people at a party then at least n are of the same gender.

Pigeonhole Principle

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

Proposition (Pigeonhole Principle)

(1) If you are placing $n+1$ pigeons into n holes, then some hole will end up containing at least two pigeons.
(2) If you are placing $2 n-1$ pigeons into 2 holes then some hole will end up containing at least n pigeons.

If you have $2 n-1$ people at a party then at least n are of the same gender.

The notion of placing pigeons into 2 holes is exactly the same as 2-coloring the pigeons.

Ramsey Theory

Applying Genetic Algorithms to Ramsey Theory

David
White
Wesleyan
University

Ramsey Theory generalizes the Pigeonhole Principle：

Ramsey Theory

Applying Genetic Algorithms to Ramsey Theory

David
White
Wesleyan University

Ramsey Theory generalizes the Pigeonhole Principle:

What is the minimum number of guests that must be invited so that at least n will know each other?

Ramsey Theory

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan
University

Ramsey Theory generalizes the Pigeonhole Principle:

What is the minimum number of guests that must be invited so that at least n will know each other?

Definition

$R(n)$ is the smallest integer m such that in any 2-coloring of K_{m} there is a monochromatic K_{n}.

Ramsey Theory

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

Ramsey Theory generalizes the Pigeonhole Principle:

What is the minimum number of guests that must be invited so that at least n will know each other?

Definition

$R(n)$ is the smallest integer m such that in any 2-coloring of K_{m} there is a monochromatic K_{n}.
$R(1)=1$ and $R(2)=2:$ an edge is a monochromatic edge.

Ramsey Theory

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan
University

Ramsey Theory generalizes the Pigeonhole Principle:

What is the minimum number of guests that must be invited so that at least n will know each other?

Definition

$R(n)$ is the smallest integer m such that in any 2-coloring of K_{m} there is a monochromatic K_{n}.
$R(1)=1$ and $R(2)=2$: an edge is a monochromatic edge.
Generally: what is the smallest model guaranteed to contain the submodel I desire?

Theorem on Friends and Strangers

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

Theorem (Theorem on Friends and Strangers)
At any party with at least six people either three pairwise know each other or three are pairwise strangers.

Theorem on Friends and Strangers

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

Theorem (Theorem on Friends and Strangers)
At any party with at least six people either three pairwise know each other or three are pairwise strangers. Equivalently: $R(3)=6$

Theorem on Friends and Strangers

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan
University

Theorem (Theorem on Friends and Strangers)

At any party with at least six people either three pairwise know each other or three are pairwise strangers. Equivalently: $R(3)=6$

Proof.

Here is a 2-coloring of K_{5} with no monochromatic triangle.

Theorem on Friends and Strangers

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

Theorem (Theorem on Friends and Strangers)

At any party with at least six people either three pairwise know each other or three are pairwise strangers.
Equivalently: $R(3)=6$

Proof.

Here is a 2-coloring of K_{5} with no monochromatic triangle.

- Is the 3rd
Ramsey
number 5?

Figure: $R(3) \geq 6$

Theorem on Friends and Strangers

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

- Is the 3rd Ramsey number 5?

No

- Is the 3rd Ramsey number 6?

Yes

Figure: $R(3) \leq 6$

Proof.

A vertex has 5 edges touching it, so three of them are the same color, say green.

Theorem on Friends and Strangers

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

- Is the 3rd Ramsey number 5 ?

No

- Is the 3rd Ramsey number 6?

Yes

$$
\text { Figure: } R(3) \leq 6
$$

Proof.

A vertex has 5 edges touching it, so three of them are the same color, say green.
Consider the three vertices those edges connect to.

Theorem on Friends and Strangers

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

- Is the 3rd Ramsey number 5 ?

No

- Is the 3rd Ramsey number 6?

$$
\text { Figure: } R(3) \leq 6
$$

Proof.

A vertex has 5 edges touching it, so three of them are the same color, say green.
Consider the three vertices those edges connect to. If any edge is green then we have a green triangle.

Theorem on Friends and Strangers

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

- Is the 3rd Ramsey number 5?

No

- Is the 3rd Ramsey number 6?

$$
\text { Figure: } R(3) \leq 6
$$

Proof.

A vertex has 5 edges touching it, so three of them are the same color, say green.
Consider the three vertices those edges connect to. If any edge is green then we have a green triangle. So all of these edges must be red, giving a red triangle.

Known and Unknown Ramsey Numbers

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

$$
R(3)=6
$$

Known and Unknown Ramsey Numbers

Applying Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

$$
R(3)=6 . \quad R(4)=18
$$

Known and Unknown Ramsey Numbers

Applying Genetic Algorithms to Ramsey
Theory
David
White
Wesleyan
University
$R(3)=6 . \quad R(4)=18$. To show $R(4)>17$:

Known and Unknown Ramsey Numbers

Applying
Genetic
Algorithms
to Ramsey
Theory
David White Wesleyan University
$R(3)=6 . R(4)=18$. To show $R(4)>17$:

Find a 2-coloring of a K_{17} without mono K_{4}.

Known and Unknown Ramsey Numbers

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

$$
R(3)=6 . \quad R(4)=18 \text {. To show } R(4)>17 \text { : }
$$

Find a 2-coloring of a K_{17} without mono K_{4}. Try coloring (i, j) red if $i-j$ is a square modulo 17 and blue otherwise.

Known and Unknown Ramsey Numbers

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University
$R(3)=6 . R(4)=18$. To show $R(4)>17$:

Find a 2-coloring of a K_{17} without mono K_{4}. Try coloring (i, j) red if $i-j$ is a square modulo 17 and blue otherwise.
$K_{4} \leq 18$: Any 2-coloring of K_{18} has a mono K_{4}.

Known and Unknown Ramsey Numbers

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University
$R(3)=6 . R(4)=18$. To show $R(4)>17$:

Find a 2-coloring of a K_{17} without mono K_{4}. Try coloring (i, j) red if $i-j$ is a square modulo 17 and blue otherwise.
$K_{4} \leq 18$: Any 2-coloring of K_{18} has a mono K_{4}.
$43 \leq R(5) \leq 49$ and $102 \leq R(6) \leq 165$ best bounds.

Known and Unknown Ramsey Numbers

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University
$R(3)=6 . R(4)=18$. To show $R(4)>17$:
Find a 2-coloring of a K_{17} without mono K_{4}. Try coloring (i, j) red if $i-j$ is a square modulo 17 and blue otherwise.
$K_{4} \leq 18$: Any 2-coloring of K_{18} has a mono K_{4}.
$43 \leq R(5) \leq 49$ and $102 \leq R(6) \leq 165$ best bounds.
To prove $R(5) \neq 43$ need to consider all 2-colorings of K_{43}.

Known and Unknown Ramsey Numbers

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University
$R(3)=6 . R(4)=18$. To show $R(4)>17$:
Find a 2-coloring of a K_{17} without mono K_{4}. Try coloring (i, j) red if $i-j$ is a square modulo 17 and blue otherwise.
$K_{4} \leq 18$: Any 2-coloring of K_{18} has a mono K_{4}.
$43 \leq R(5) \leq 49$ and $102 \leq R(6) \leq 165$ best bounds.
To prove $R(5) \neq 43$ need to consider all 2-colorings of K_{43}.
There are $\binom{43}{2}$ edges and each has two choices,

Known and Unknown Ramsey Numbers

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University
$R(3)=6 . R(4)=18$. To show $R(4)>17$:
Find a 2-coloring of a K_{17} without mono K_{4}. Try coloring (i, j) red if $i-j$ is a square modulo 17 and blue otherwise.
$K_{4} \leq 18$: Any 2-coloring of K_{18} has a mono K_{4}.
$43 \leq R(5) \leq 49$ and $102 \leq R(6) \leq 165$ best bounds.
To prove $R(5) \neq 43$ need to consider all 2-colorings of K_{43}.
There are $\binom{43}{2}$ edges and each has two choices, so number of colorings is $2\binom{43}{2}$

Known and Unknown Ramsey Numbers

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University
$R(3)=6 . R(4)=18$. To show $R(4)>17$:
Find a 2-coloring of a K_{17} without mono K_{4}. Try coloring (i, j) red if $i-j$ is a square modulo 17 and blue otherwise.
$K_{4} \leq 18$: Any 2-coloring of K_{18} has a mono K_{4}.
$43 \leq R(5) \leq 49$ and $102 \leq R(6) \leq 165$ best bounds.
To prove $R(5) \neq 43$ need to consider all 2-colorings of K_{43}.
There are $\binom{43}{2}$ edges and each has two choices, so number of colorings is $2\binom{(43}{2} \approx 2^{1000}$.

Known and Unknown Ramsey Numbers

Applying
Genetic
Algorithms to Ramsey

Theory
David
White
Wesleyan University
$R(3)=6 . R(4)=18$. To show $R(4)>17$:
Find a 2-coloring of a K_{17} without mono K_{4}. Try coloring (i, j) red if $i-j$ is a square modulo 17 and blue otherwise.
$K_{4} \leq 18$: Any 2-coloring of K_{18} has a mono K_{4}.
$43 \leq R(5) \leq 49$ and $102 \leq R(6) \leq 165$ best bounds.
To prove $R(5) \neq 43$ need to consider all 2-colorings of K_{43}.
There are $\binom{43}{2}$ edges and each has two choices, so number of colorings is $2\binom{43}{2} \approx 2^{1000}$. This is a HARD problem.

Lower Bound on $R(n)$

Applying Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

Proposition

$(n-1)^{2}<R(n)$

Lower Bound on $R(n)$

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

Proposition

$(n-1)^{2}<R(n)$
Need to show there exists a coloring of $K_{(n-1)^{2}}$ without a monochromatic K_{n}. Have $4<R(3)$ and $9<R(4)$.

Lower Bound on $R(n)$

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

Proposition

$(n-1)^{2}<R(n)$
Need to show there exists a coloring of $K_{(n-1)^{2}}$ without a monochromatic K_{n}. Have $4<R(3)$ and $9<R(4)$.

Partition $K_{(n-1)^{2}}$ into $n-1$ disjoint red K_{n-1} 's.

Lower Bound on $R(n)$

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

Proposition

$(n-1)^{2}<R(n)$
Need to show there exists a coloring of $K_{(n-1)^{2}}$ without a monochromatic K_{n}. Have $4<R(3)$ and $9<R(4)$.

Partition $K_{(n-1)^{2}}$ into $n-1$ disjoint red K_{n-1} 's. Color all remaining edges blue.

Lower Bound on $R(n)$

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

Proposition

$(n-1)^{2}<R(n)$
Need to show there exists a coloring of $K_{(n-1)^{2}}$ without a monochromatic K_{n}. Have $4<R(3)$ and $9<R(4)$.

Partition $K_{(n-1)^{2}}$ into $n-1$ disjoint red K_{n-1} 's. Color all remaining edges blue. Clearly no red K_{n}.

Lower Bound on $R(n)$

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

Proposition

$(n-1)^{2}<R(n)$
Need to show there exists a coloring of $K_{(n-1)^{2}}$ without a monochromatic K_{n}. Have $4<R(3)$ and $9<R(4)$.

Partition $K_{(n-1)^{2}}$ into $n-1$ disjoint red K_{n-1} 's. Color all remaining edges blue. Clearly no red K_{n}. A blue K_{n} would have n vertices in $n-1$ groups

Lower Bound on $R(n)$

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

Proposition

$$
(n-1)^{2}<R(n)
$$

Need to show there exists a coloring of $K_{(n-1)^{2}}$ without a monochromatic K_{n}. Have $4<R(3)$ and $9<R(4)$.

Partition $K_{(n-1)^{2}}$ into $n-1$ disjoint red K_{n-1} 's. Color all remaining edges blue. Clearly no red K_{n}. A blue K_{n} would have n vertices in $n-1$ groups so it needs 2 vertices in the same red group (Pigeonhole Principle),

Lower Bound on $R(n)$

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

Proposition

$$
(n-1)^{2}<R(n)
$$

Need to show there exists a coloring of $K_{(n-1)^{2}}$ without a monochromatic K_{n}. Have $4<R(3)$ and $9<R(4)$.

Partition $K_{(n-1)^{2}}$ into $n-1$ disjoint red K_{n-1} 's. Color all remaining edges blue. Clearly no red K_{n}. A blue K_{n} would have n vertices in $n-1$ groups so it needs 2 vertices in the same red group (Pigeonhole Principle), so edge between them is red not blue!

Lower Bound on $R(n)$

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

Proposition

$$
(n-1)^{2}<R(n)
$$

Need to show there exists a coloring of $K_{(n-1)^{2}}$ without a monochromatic K_{n}. Have $4<R(3)$ and $9<R(4)$.

Partition $K_{(n-1)^{2}}$ into $n-1$ disjoint red K_{n-1} 's. Color all remaining edges blue. Clearly no red K_{n}. A blue K_{n} would have n vertices in $n-1$ groups so it needs 2 vertices in the same red group (Pigeonhole Principle), so edge between them is red not blue!

Constructive methods like this can give polynomial lower bounds of any fixed degree, but nothing reaching c^{n}.

Upper Bound on $R(n)$

Applying Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan
University

Proposition

$R(n) \leq 4^{n}$

Upper Bound on $R(n)$

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

Proposition

$R(n) \leq 4^{n}$
Need to show that in ANY 2-coloring of $K_{4^{n}}$ there is a monochromatic K_{n}.

Upper Bound on $R(n)$

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

Proposition

$R(n) \leq 4^{n}$
Need to show that in ANY 2-coloring of $K_{4^{n}}$ there is a monochromatic K_{n}.

This requires a proof, not an example.

Upper Bound on $R(n)$

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan
University

Proposition

$R(n) \leq 4^{n}$
Need to show that in ANY 2-coloring of $K_{4^{n}}$ there is a monochromatic K_{n}.

This requires a proof, not an example. There are MUCH better bounds and they use sophisticated mathematics.

Upper Bound on $R(n)$

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan
University

Proposition

$R(n) \leq 4^{n}$
Need to show that in ANY 2-coloring of $K_{4^{n}}$ there is a monochromatic K_{n}.

This requires a proof, not an example. There are MUCH better bounds and they use sophisticated mathematics.

There are automated theorem provers, but Ramsey Theory proofs need tricks not logic.

Upper Bound on $R(n)$

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

Proposition

$R(n) \leq 4^{n}$
Need to show that in ANY 2-coloring of $K_{4^{n}}$ there is a monochromatic K_{n}.

This requires a proof, not an example. There are MUCH better bounds and they use sophisticated mathematics.

There are automated theorem provers, but Ramsey Theory proofs need tricks not logic. Computer science will likely not give better upper bounds than mathematics.

Upper Bound on $R(n)$

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

Proposition

$R(n) \leq 4^{n}$
Need to show that in ANY 2-coloring of $K_{4^{n}}$ there is a monochromatic K_{n}.

This requires a proof, not an example. There are MUCH better bounds and they use sophisticated mathematics.

There are automated theorem provers, but Ramsey Theory proofs need tricks not logic. Computer science will likely not give better upper bounds than mathematics.

We will focus on constructing lower bound examples.

Generalizing Ramsey numbers

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White Wesleyan University

Definition (Off-Diagonal Ramsey Numbers)

$R(s, t)=$ minimal m such that for any 2 -coloring of the edges of K_{m}

Generalizing Ramsey numbers

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

Definition (Off-Diagonal Ramsey Numbers)

$R(s, t)=$ minimal m such that for any 2 -coloring of the edges of K_{m} there is a red K_{s} or a blue K_{t}.

Generalizing Ramsey numbers

Applying
Genetic
Algorithms
to Ramsey
Theory
David White Wesleyan University

Definition (Off-Diagonal Ramsey Numbers)

$R(s, t)=$ minimal m such that for any 2 -coloring of the edges of K_{m} there is a red K_{s} or a blue $K_{t} . R(n)=R(n, n)$

Generalizing Ramsey numbers

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

Definition (Off-Diagonal Ramsey Numbers)

$R(s, t)=$ minimal m such that for any 2 -coloring of the edges of K_{m} there is a red K_{s} or a blue $K_{t} . R(n)=R(n, n)$
$R(2, s)=s$ for all $s \geq 2:$

Generalizing Ramsey numbers

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

Definition (Off-Diagonal Ramsey Numbers)

$R(s, t)=$ minimal m such that for any 2-coloring of the edges of K_{m} there is a red K_{s} or a blue $K_{t} . R(n)=R(n, n)$
$R(2, s)=s$ for all $s \geq 2$: either blue K_{s} or red edge

Generalizing Ramsey numbers

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

Definition (Off-Diagonal Ramsey Numbers)

$R(s, t)=$ minimal m such that for any 2-coloring of the edges of K_{m} there is a red K_{s} or a blue $K_{t} . R(n)=R(n, n)$
$R(2, s)=s$ for all $s \geq 2$: either blue K_{s} or red edge $R(3,4) \leq 9:$ any K_{9} has red K_{3} or blue K_{4}.

Generalizing Ramsey numbers

Applying
Genetic Algorithms to Ramsey

Theory
David
White
Wesleyan University

Definition (Off-Diagonal Ramsey Numbers)

$R(s, t)=$ minimal m such that for any 2-coloring of the edges of K_{m} there is a red K_{s} or a blue $K_{t} . R(n)=R(n, n)$
$R(2, s)=s$ for all $s \geq 2$: either blue K_{s} or red edge
$R(3,4) \leq 9$: any K_{9} has red K_{3} or blue $K_{4} . R(3,4)>8$:

A Useful Proposition

Applying Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

Proposition

$R(s, t) \leq R(s-1, t)+R(s, t-1)$,

A Useful Proposition

Applying Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

Proposition

$R(s, t) \leq R(s-1, t)+R(s, t-1)$, so Ramsey numbers exist

A Useful Proposition

Applying Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

Proposition

$$
R(s, t) \leq R(s-1, t)+R(s, t-1), \text { so Ramsey numbers exist }
$$

$$
R(s, t)=R(t, s) .
$$

A Useful Proposition

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White Wesleyan University

Proposition

$R(s, t) \leq R(s-1, t)+R(s, t-1)$, so Ramsey numbers exist

$$
\begin{aligned}
& R(s, t)=R(t, s) . n_{1}=R(s-1, t), n_{2}=R(s, t-1), \\
& n=n_{1}+n_{2}
\end{aligned}
$$

A Useful Proposition

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White Wesleyan University

Proposition

$R(s, t) \leq R(s-1, t)+R(s, t-1)$, so Ramsey numbers exist
$R(s, t)=R(t, s) . n_{1}=R(s-1, t), n_{2}=R(s, t-1)$, $n=n_{1}+n_{2}$. Any vertex x in any 2 -coloring of K_{n} has degree $n-1=n_{1}+n_{2}-1$.

A Useful Proposition

Applying
Genetic
Algorithms to Ramsey

Theory
David
White
Wesleyan University

Proposition

$R(s, t) \leq R(s-1, t)+R(s, t-1)$, so Ramsey numbers exist
$R(s, t)=R(t, s) . n_{1}=R(s-1, t), n_{2}=R(s, t-1)$,
$n=n_{1}+n_{2}$. Any vertex x in any 2 -coloring of K_{n} has degree $n-1=n_{1}+n_{2}-1$. There are either n_{1} red or n_{2} blue edges coming out of x (pigeonhole principle), switching red and blue if necessary.

A Useful Proposition

Applying
Genetic
Algorithms to Ramsey

Theory
David
White
Wesleyan University

Proposition

$$
R(s, t) \leq R(s-1, t)+R(s, t-1), \text { so Ramsey numbers exist }
$$

$R(s, t)=R(t, s) . n_{1}=R(s-1, t), n_{2}=R(s, t-1)$, $n=n_{1}+n_{2}$. Any vertex x in any 2 -coloring of K_{n} has degree $n-1=n_{1}+n_{2}-1$. There are either n_{1} red or n_{2} blue edges coming out of x (pigeonhole principle), switching red and blue if necessary. Assume the first case.

A Useful Proposition

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

Proposition

$R(s, t) \leq R(s-1, t)+R(s, t-1)$, so Ramsey numbers exist
$R(s, t)=R(t, s) . n_{1}=R(s-1, t), n_{2}=R(s, t-1)$,
$n=n_{1}+n_{2}$. Any vertex x in any 2 -coloring of K_{n} has degree $n-1=n_{1}+n_{2}-1$. There are either n_{1} red or n_{2} blue edges coming out of x (pigeonhole principle), switching red and blue if necessary. Assume the first case.

Red neighbors form a $K_{n_{1}}$, so this graph either has blue K_{t} or red K_{s-1}.

A Useful Proposition

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

Proposition

$$
R(s, t) \leq R(s-1, t)+R(s, t-1), \text { so Ramsey numbers exist }
$$

$R(s, t)=R(t, s) . n_{1}=R(s-1, t), n_{2}=R(s, t-1)$,
$n=n_{1}+n_{2}$. Any vertex x in any 2 -coloring of K_{n} has degree $n-1=n_{1}+n_{2}-1$. There are either n_{1} red or n_{2} blue edges coming out of x (pigeonhole principle), switching red and blue if necessary. Assume the first case.

Red neighbors form a $K_{n_{1}}$, so this graph either has blue K_{t} or red K_{s-1}. With x this makes a red K_{s}.

A Useful Proposition

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

Proposition

$$
R(s, t) \leq R(s-1, t)+R(s, t-1), \text { so Ramsey numbers exist }
$$

$R(s, t)=R(t, s) . n_{1}=R(s-1, t), n_{2}=R(s, t-1)$,
$n=n_{1}+n_{2}$. Any vertex x in any 2 -coloring of K_{n} has degree $n-1=n_{1}+n_{2}-1$. There are either n_{1} red or n_{2} blue edges coming out of x (pigeonhole principle), switching red and blue if necessary. Assume the first case.

Red neighbors form a $K_{n_{1}}$, so this graph either has blue K_{t} or red K_{s-1}. With x this makes a red K_{s}. 2nd case similar.

A Useful Proposition

Applying

Genetic
Algorithms to Ramsey

Theory
David
White
Wesleyan University

Proposition

$$
R(s, t) \leq R(s-1, t)+R(s, t-1), \text { so Ramsey numbers exist }
$$

$R(s, t)=R(t, s) . n_{1}=R(s-1, t), n_{2}=R(s, t-1)$,
$n=n_{1}+n_{2}$. Any vertex x in any 2 -coloring of K_{n} has degree $n-1=n_{1}+n_{2}-1$. There are either n_{1} red or n_{2} blue edges coming out of x (pigeonhole principle), switching red and blue if necessary. Assume the first case.

Red neighbors form a $K_{n_{1}}$, so this graph either has blue K_{t} or red K_{s-1}. With x this makes a red K_{s}. 2nd case similar.

$$
R(4,4) \leq R(3,4)+R(4,3)=9+9=18 . \text { Sharp }
$$

A Useful Proposition

Applying

Genetic
Algorithms to Ramsey

Theory
David
White
Wesleyan University

Proposition

$R(s, t) \leq R(s-1, t)+R(s, t-1)$, so Ramsey numbers exist
$R(s, t)=R(t, s) . n_{1}=R(s-1, t), n_{2}=R(s, t-1)$,
$n=n_{1}+n_{2}$. Any vertex x in any 2 -coloring of K_{n} has
degree $n-1=n_{1}+n_{2}-1$. There are either n_{1} red or n_{2} blue edges coming out of x (pigeonhole principle), switching red and blue if necessary. Assume the first case.

Red neighbors form a $K_{n_{1}}$, so this graph either has blue K_{t} or red K_{s-1}. With x this makes a red K_{s}. 2nd case similar.

$$
\begin{aligned}
& R(4,4) \leq R(3,4)+R(4,3)=9+9=18 . \text { Sharp } \\
& R(3,5) \leq R(2,5)+R(3,4)=5+9=14 . \text { Sharp }
\end{aligned}
$$

A Useful Proposition

Applying
Genetic
Algorithms to Ramsey

Theory

Proposition

$R(s, t) \leq R(s-1, t)+R(s, t-1)$, so Ramsey numbers exist
$R(s, t)=R(t, s) . n_{1}=R(s-1, t), n_{2}=R(s, t-1)$,
$n=n_{1}+n_{2}$. Any vertex x in any 2 -coloring of K_{n} has
degree $n-1=n_{1}+n_{2}-1$. There are either n_{1} red or n_{2} blue edges coming out of x (pigeonhole principle), switching red and blue if necessary. Assume the first case.

Red neighbors form a $K_{n_{1}}$, so this graph either has blue K_{t} or red K_{s-1}. With x this makes a red K_{s}. 2nd case similar.
$R(4,4) \leq R(3,4)+R(4,3)=9+9=18$. Sharp
$R(3,5) \leq R(2,5)+R(3,4)=5+9=14$. Sharp
$R(3,4) \leq R(3,3)+R(2,4)=10$.

A Useful Proposition

Applying
Genetic
Algorithms to Ramsey

Theory

Proposition

$R(s, t) \leq R(s-1, t)+R(s, t-1)$, so Ramsey numbers exist
David
White
Wesleyan University
$R(s, t)=R(t, s) . n_{1}=R(s-1, t), n_{2}=R(s, t-1)$,
$n=n_{1}+n_{2}$. Any vertex x in any 2 -coloring of K_{n} has degree $n-1=n_{1}+n_{2}-1$. There are either n_{1} red or n_{2} blue edges coming out of x (pigeonhole principle), switching red and blue if necessary. Assume the first case.

Red neighbors form a $K_{n_{1}}$, so this graph either has blue K_{t} or red K_{s-1}. With x this makes a red K_{s}. 2nd case similar.
$R(4,4) \leq R(3,4)+R(4,3)=9+9=18$. Sharp
$R(3,5) \leq R(2,5)+R(3,4)=5+9=14$. Sharp
$R(3,4) \leq R(3,3)+R(2,4)=10$. NOT sharp!

Generalizing Ramsey numbers

Applying Genetic Algorithms to Ramsey

Theory
David
White Wesleyan University

Theorem (Ramsey's Theorem)

Given integers n_{1}, \ldots, n_{r} there is a number $m=R\left(n_{1}, \ldots, n_{r}\right)$ such that for any r-coloring of the edges of K_{m}

Generalizing Ramsey numbers

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

Theorem (Ramsey's Theorem)

Given integers n_{1}, \ldots, n_{r} there is a number $m=R\left(n_{1}, \ldots, n_{r}\right)$ such that for any r-coloring of the edges of K_{m} for some i there is a $K_{n_{i}}$ monochromatic in color i.

Generalizing Ramsey numbers

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

Theorem (Ramsey's Theorem)

Given integers n_{1}, \ldots, n_{r} there is a number $m=R\left(n_{1}, \ldots, n_{r}\right)$ such that for any r-coloring of the edges of K_{m} for some i there is a $K_{n_{i}}$ monochromatic in color i.

Induction proof:
$R\left(n_{1}, \ldots, n_{r}\right) \leq R\left(n_{1}, \ldots, n_{r-2}, R\left(n_{r-1}, n_{r}\right)\right)$

Generalizing Ramsey numbers

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

Theorem (Ramsey's Theorem)

Given integers n_{1}, \ldots, n_{r} there is a number $m=R\left(n_{1}, \ldots, n_{r}\right)$ such that for any r-coloring of the edges of K_{m} for some i there is a $K_{n_{i}}$ monochromatic in color i.

Induction proof:
$R\left(n_{1}, \ldots, n_{r}\right) \leq R\left(n_{1}, \ldots, n_{r-2}, R\left(n_{r-1}, n_{r}\right)\right)$
$R(3,3,3)=17$.

Generalizing Ramsey numbers

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

Theorem (Ramsey's Theorem)

Given integers n_{1}, \ldots, n_{r} there is a number $m=R\left(n_{1}, \ldots, n_{r}\right)$ such that for any r-coloring of the edges of K_{m} for some i there is a $K_{n_{i}}$ monochromatic in color i.

Induction proof:
$R\left(n_{1}, \ldots, n_{r}\right) \leq R\left(n_{1}, \ldots, n_{r-2}, R\left(n_{r-1}, n_{r}\right)\right)$
$R(3,3,3)=17$. Only non-trivial $R\left(n_{1}, \ldots, n_{r}\right)$ known.

Generalizing Ramsey numbers

Applying

Genetic
Algorithms to Ramsey

Theory
David
White
Wesleyan University

Theorem (Ramsey's Theorem)

Given integers n_{1}, \ldots, n_{r} there is a number $m=R\left(n_{1}, \ldots, n_{r}\right)$ such that for any r-coloring of the edges of K_{m} for some i there is a $K_{n_{i}}$ monochromatic in color i.

Induction proof:
$R\left(n_{1}, \ldots, n_{r}\right) \leq R\left(n_{1}, \ldots, n_{r-2}, R\left(n_{r-1}, n_{r}\right)\right)$
$R(3,3,3)=17$. Only non-trivial $R\left(n_{1}, \ldots, n_{r}\right)$ known.
$R(s, t, 2)=R(s, t)$ because need to avoid green edge.

Generalizing Ramsey numbers

Applying

Genetic
Algorithms to Ramsey

Theory
David
White
Wesleyan University

Theorem (Ramsey's Theorem)

Given integers n_{1}, \ldots, n_{r} there is a number $m=R\left(n_{1}, \ldots, n_{r}\right)$ such that for any r-coloring of the edges of K_{m} for some i there is a $K_{n_{i}}$ monochromatic in color i.

Induction proof:
$R\left(n_{1}, \ldots, n_{r}\right) \leq R\left(n_{1}, \ldots, n_{r-2}, R\left(n_{r-1}, n_{r}\right)\right)$
$R(3,3,3)=17$. Only non-trivial $R\left(n_{1}, \ldots, n_{r}\right)$ known.
$R(s, t, 2)=R(s, t)$ because need to avoid green edge.
$30 \leq R(3,3,4) \leq 31$ is next closest to being finished

Generalizing Ramsey numbers

Applying

Genetic
Algorithms to Ramsey

Theory
David
White
Wesleyan University

Theorem (Ramsey's Theorem)

Given integers n_{1}, \ldots, n_{r} there is a number $m=R\left(n_{1}, \ldots, n_{r}\right)$ such that for any r-coloring of the edges of K_{m} for some i there is a $K_{n_{i}}$ monochromatic in color i.

Induction proof:
$R\left(n_{1}, \ldots, n_{r}\right) \leq R\left(n_{1}, \ldots, n_{r-2}, R\left(n_{r-1}, n_{r}\right)\right)$
$R(3,3,3)=17$. Only non-trivial $R\left(n_{1}, \ldots, n_{r}\right)$ known.
$R(s, t, 2)=R(s, t)$ because need to avoid green edge.
$30 \leq R(3,3,4) \leq 31$ is next closest to being finished
$55 \leq R(3,4,4) \leq 79$

One further generalization

Applying Genetic Algorithms to Ramsey

Theory

David
White
Wesleyan
University

Definition

$R\left(G_{1}, \ldots, G_{r}\right)$ is the smallest m such that for any r-coloring of the edges of K_{m}

One further generalization

Applying Genetic
Algorithms
to Ramsey
Theory
David
White Wesleyan University

Definition

$R\left(G_{1}, \ldots, G_{r}\right)$ is the smallest m such that for any r-coloring of the edges of K_{m} for some i there is a monochromatic G_{i} in color i.

One further generalization

Applying Genetic
Algorithms to Ramsey

Theory

David
White
Wesleyan University

Definition

$R\left(G_{1}, \ldots, G_{r}\right)$ is the smallest m such that for any r-coloring of the edges of K_{m} for some i there is a monochromatic G_{i} in color i.

$$
R\left(K_{3}, K_{3}\right)=R(3)=6
$$

One further generalization

Applying Genetic Algorithms to Ramsey
Theory
David
White
Wesleyan University

Definition

$R\left(G_{1}, \ldots, G_{r}\right)$ is the smallest m such that for any r-coloring of the edges of K_{m} for some i there is a monochromatic G_{i} in color i.

$$
R\left(K_{3}, K_{3}\right)=R(3)=6 \text { and } R\left(K_{3}, K_{4}\right)=R(3,4)=9
$$

One further generalization

Applying
Genetic
Algorithms to Ramsey

Theory
David
White
Wesleyan University

Definition

$R\left(G_{1}, \ldots, G_{r}\right)$ is the smallest m such that for any r-coloring of the edges of K_{m} for some i there is a monochromatic G_{i} in color i.

$$
\begin{aligned}
& R\left(K_{3}, K_{3}\right)=R(3)=6 \text { and } R\left(K_{3}, K_{4}\right)=R(3,4)=9 \\
& R\left(C_{4}, C_{4}, C_{4}\right)=11,
\end{aligned}
$$

One further generalization

Applying Genetic Algorithms to Ramsey Theory

David
White Wesleyan University

Definition

$R\left(G_{1}, \ldots, G_{r}\right)$ is the smallest m such that for any r-coloring of the edges of K_{m} for some i there is a monochromatic G_{i} in color i.

$$
\begin{aligned}
& R\left(K_{3}, K_{3}\right)=R(3)=6 \text { and } R\left(K_{3}, K_{4}\right)=R(3,4)=9 \\
& R\left(C_{4}, C_{4}, C_{4}\right)=11, R\left(C_{4}, C_{4}, K_{3}\right)=12,
\end{aligned}
$$

One further generalization

Applying
Genetic
Algorithms to Ramsey

Theory

David
White
Wesleyan University

Definition

$R\left(G_{1}, \ldots, G_{r}\right)$ is the smallest m such that for any r-coloring of the edges of K_{m} for some i there is a monochromatic G_{i} in color i.

$$
\begin{aligned}
& R\left(K_{3}, K_{3}\right)=R(3)=6 \text { and } R\left(K_{3}, K_{4}\right)=R(3,4)=9 \\
& R\left(C_{4}, C_{4}, C_{4}\right)=11, R\left(C_{4}, C_{4}, K_{3}\right)=12, R\left(C_{5}, C_{5}, C_{5}\right)=17
\end{aligned}
$$

One further generalization

Applying
Genetic
Algorithms to Ramsey

Theory

David
White
Wesleyan University

Definition

$R\left(G_{1}, \ldots, G_{r}\right)$ is the smallest m such that for any r-coloring of the edges of K_{m} for some i there is a monochromatic G_{i} in color i.

$$
\begin{aligned}
& R\left(K_{3}, K_{3}\right)=R(3)=6 \text { and } R\left(K_{3}, K_{4}\right)=R(3,4)=9 \\
& R\left(C_{4}, C_{4}, C_{4}\right)=11, R\left(C_{4}, C_{4}, K_{3}\right)=12, R\left(C_{5}, C_{5}, C_{5}\right)=17
\end{aligned}
$$

Our K_{8} coloring had a yellow C_{4}.

One further generalization

Applying
Genetic
Algorithms to Ramsey

Theory

David
White
Wesleyan University

Definition

$R\left(G_{1}, \ldots, G_{r}\right)$ is the smallest m such that for any r-coloring of the edges of K_{m} for some i there is a monochromatic G_{i} in color i.

$$
\begin{aligned}
& R\left(K_{3}, K_{3}\right)=R(3)=6 \text { and } R\left(K_{3}, K_{4}\right)=R(3,4)=9 \\
& R\left(C_{4}, C_{4}, C_{4}\right)=11, R\left(C_{4}, C_{4}, K_{3}\right)=12, R\left(C_{5}, C_{5}, C_{5}\right)=17
\end{aligned}
$$

Our K_{8} coloring had a yellow C_{4}.
$R(G, H) \geq(\chi(G)-1)(c(H)-1)+1$ for $\chi=$ chromatic number, $c=$ size of largest connected component

One further generalization

Applying

Definition

$R\left(G_{1}, \ldots, G_{r}\right)$ is the smallest m such that for any r-coloring of the edges of K_{m} for some i there is a monochromatic G_{i} in color i.

$$
\begin{aligned}
& R\left(K_{3}, K_{3}\right)=R(3)=6 \text { and } R\left(K_{3}, K_{4}\right)=R(3,4)=9 \\
& R\left(C_{4}, C_{4}, C_{4}\right)=11, R\left(C_{4}, C_{4}, K_{3}\right)=12, R\left(C_{5}, C_{5}, C_{5}\right)=17
\end{aligned}
$$

Our K_{8} coloring had a yellow C_{4}.
$R(G, H) \geq(\chi(G)-1)(c(H)-1)+1$ for $\chi=$ chromatic number, $c=$ size of largest connected component

$$
R\left(T_{m}, K_{n}\right)=(m-1)(n-1)+1 \text { for any tree } T_{m}
$$

Examples

Applying Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

Early K_{5} coloring shows $R\left(C_{4}, C_{4}\right)>5$.

Examples

Applying Genetic Algorithms to Ramsey

Theory
David
White Wesleyan University

Early K_{5} coloring shows $R\left(C_{4}, C_{4}\right)>5 . R\left(K_{3}, C_{4}\right)>6$:

Examples

Applying
Genetic
Algorithms to Ramsey

Theory

David
White
Wesleyan
University

Early K_{5} coloring shows $R\left(C_{4}, C_{4}\right)>5 . R\left(K_{3}, C_{4}\right)>6$:

Examples

Applying
Genetic
Algorithms to Ramsey Theory

David White Wesleyan University

Early K_{5} coloring shows $R\left(C_{4}, C_{4}\right)>5 . R\left(K_{3}, C_{4}\right)>6$:

$\left[\begin{array}{llllll} & y & y & b & b & b \\ y & & y & b & b & b \\ y & y & & b & b & b \\ b & b & b & & y & y \\ b & b & b & y & & y \\ b & b & b & y & y & \end{array}\right]$

EC Encoding

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

The adjacency matrix is symmetric,

EC Encoding

Applying
Genetic Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

The adjacency matrix is symmetric, so we only need to store lower triangle

EC Encoding

Applying Genetic Algorithms to Ramsey

Theory

David
White
Wesleyan
University

The adjacency matrix is symmetric, so we only need to store lower triangle and can use a single dimensional array.

EC Encoding

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan
University

The adjacency matrix is symmetric, so we only need to store lower triangle and can use a single dimensional array.

Shardul Rao's thesis (1997) attempted to use EC to construct lower bounds.

EC Encoding

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

The adjacency matrix is symmetric, so we only need to store lower triangle and can use a single dimensional array.

Shardul Rao's thesis (1997) attempted to use EC to construct lower bounds. His encoding uses the above encoding as well as a permutation to represent the order in which edges are colored.

EC Encoding

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

The adjacency matrix is symmetric, so we only need to store lower triangle and can use a single dimensional array.

Shardul Rao's thesis (1997) attempted to use EC to construct lower bounds. His encoding uses the above encoding as well as a permutation to represent the order in which edges are colored. Contains more information, but is it useful?

EC Encoding

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

The adjacency matrix is symmetric, so we only need to store lower triangle and can use a single dimensional array.

Shardul Rao's thesis (1997) attempted to use EC to construct lower bounds. His encoding uses the above encoding as well as a permutation to represent the order in which edges are colored. Contains more information, but is it useful? Coloring order doesn't matter.

EC Encoding

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

The adjacency matrix is symmetric, so we only need to store lower triangle and can use a single dimensional array.

Shardul Rao's thesis (1997) attempted to use EC to construct lower bounds. His encoding uses the above encoding as well as a permutation to represent the order in which edges are colored. Contains more information, but is it useful? Coloring order doesn't matter.
For this permutation encoding we need an order-based GA.

EC Encoding

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

The adjacency matrix is symmetric, so we only need to store lower triangle and can use a single dimensional array.

Shardul Rao's thesis (1997) attempted to use EC to construct lower bounds. His encoding uses the above encoding as well as a permutation to represent the order in which edges are colored. Contains more information, but is it useful? Coloring order doesn't matter.
For this permutation encoding we need an order-based GA. Rao experimented with three crossovers:

EC Encoding

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

The adjacency matrix is symmetric, so we only need to store lower triangle and can use a single dimensional array.

Shardul Rao's thesis (1997) attempted to use EC to construct lower bounds. His encoding uses the above encoding as well as a permutation to represent the order in which edges are colored. Contains more information, but is it useful? Coloring order doesn't matter.
For this permutation encoding we need an order-based GA. Rao experimented with three crossovers:

- Partially matched cross-over

EC Encoding

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

The adjacency matrix is symmetric, so we only need to store lower triangle and can use a single dimensional array.

Shardul Rao's thesis (1997) attempted to use EC to construct lower bounds. His encoding uses the above encoding as well as a permutation to represent the order in which edges are colored. Contains more information, but is it useful? Coloring order doesn't matter.
For this permutation encoding we need an order-based GA. Rao experimented with three crossovers:

- Partially matched cross-over
- Order cross-over

EC Encoding

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

The adjacency matrix is symmetric, so we only need to store lower triangle and can use a single dimensional array.

Shardul Rao's thesis (1997) attempted to use EC to construct lower bounds. His encoding uses the above encoding as well as a permutation to represent the order in which edges are colored. Contains more information, but is it useful? Coloring order doesn't matter.
For this permutation encoding we need an order-based GA. Rao experimented with three crossovers:

- Partially matched cross-over
- Order cross-over
- Cycle cross-over

EC Encoding

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

The adjacency matrix is symmetric, so we only need to store lower triangle and can use a single dimensional array.

Shardul Rao's thesis (1997) attempted to use EC to construct lower bounds. His encoding uses the above encoding as well as a permutation to represent the order in which edges are colored. Contains more information, but is it useful? Coloring order doesn't matter.
For this permutation encoding we need an order-based GA.
Rao experimented with three crossovers:

- Partially matched cross-over
- Order cross-over
- Cycle cross-over

A lookup table is used to get values of i and j from given edge $e=(i, j)$.

Cycle Cross-over

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White Wesleyan University

Insists $c[i]=p_{1}[i]$ or $c[i]=p_{2}[i]$ for all i.

Cycle Cross-over

Applying Genetic Algorithms to Ramsey

Theory
David
White Wesleyan University

Insists $c[i]=p_{1}[i]$ or $c[i]=p_{2}[i]$ for all i.
Put $c[1]=p_{1}[1]$.

Cycle Cross-over

Applying Genetic Algorithms to Ramsey

Theory
David
White Wesleyan University

Insists $c[i]=p_{1}[i]$ or $c[i]=p_{2}[i]$ for all i.
Put $c[1]=p_{1}[1]$. Find where $p_{2}[1]$ appears in p_{1}.

Cycle Cross-over

Applying Genetic Algorithms to Ramsey

Theory

David
White Wesleyan University

Insists $c[i]=p_{1}[i]$ or $c[i]=p_{2}[i]$ for all i.
Put $c[1]=p_{1}[1]$. Find where $p_{2}[1]$ appears in p_{1}. Call this place i and put $c[i]=p_{1}[i]$.

Cycle Cross-over

Applying
Genetic
Algorithms
to Ramsey
Theory
David White Wesleyan University

Insists $c[i]=p_{1}[i]$ or $c[i]=p_{2}[i]$ for all i.
Put $c[1]=p_{1}[1]$. Find where $p_{2}[1]$ appears in p_{1}. Call this place i and put $c[i]=p_{1}[i]$. Find where $p_{2}[i]$ appears in p_{1}.

Cycle Cross-over

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

Insists $c[i]=p_{1}[i]$ or $c[i]=p_{2}[i]$ for all i.
Put $c[1]=p_{1}[1]$. Find where $p_{2}[1]$ appears in p_{1}. Call this place i and put $c[i]=p_{1}[i]$. Find where $p_{2}[i]$ appears in p_{1}. Call this place j and put $c[j]=p_{1}[j]$.

Cycle Cross-over

Applying
Genetic Algorithms to Ramsey

Theory
David
White
Wesleyan University

Insists $c[i]=p_{1}[i]$ or $c[i]=p_{2}[i]$ for all i.
Put $c[1]=p_{1}[1]$. Find where $p_{2}[1]$ appears in p_{1}. Call this place i and put $c[i]=p_{1}[i]$. Find where $p_{2}[i]$ appears in p_{1}. Call this place j and put $c[j]=p_{1}[j]$. Continue till $p_{2}[x]$ appears in the child,

Cycle Cross-over

Applying
Genetic Algorithms to Ramsey

Theory
David
White
Wesleyan University

Insists $c[i]=p_{1}[i]$ or $c[i]=p_{2}[i]$ for all i.
Put $c[1]=p_{1}[1]$. Find where $p_{2}[1]$ appears in p_{1}. Call this place i and put $c[i]=p_{1}[i]$. Find where $p_{2}[i]$ appears in p_{1}. Call this place j and put $c[j]=p_{1}[j]$. Continue till $p_{2}[x]$ appears in the child, i.e. when you've reached a cycle between the parents.

Cycle Cross-over

Applying
Genetic Algorithms to Ramsey

Theory
David
White
Wesleyan University

Insists $c[i]=p_{1}[i]$ or $c[i]=p_{2}[i]$ for all i.
Put $c[1]=p_{1}[1]$. Find where $p_{2}[1]$ appears in p_{1}. Call this place i and put $c[i]=p_{1}[i]$. Find where $p_{2}[i]$ appears in p_{1}. Call this place j and put $c[j]=p_{1}[j]$. Continue till $p_{2}[x]$ appears in the child, i.e. when you've reached a cycle between the parents. Put $c[a]=p_{2}[a]$ for all remaining a.

Cycle Cross-over

Applying
Genetic Algorithms to Ramsey

Theory
David
White
Wesleyan University

Insists $c[i]=p_{1}[i]$ or $c[i]=p_{2}[i]$ for all i.
Put $c[1]=p_{1}[1]$. Find where $p_{2}[1]$ appears in p_{1}. Call this place i and put $c[i]=p_{1}[i]$. Find where $p_{2}[i]$ appears in p_{1}. Call this place j and put $c[j]=p_{1}[j]$. Continue till $p_{2}[x]$ appears in the child, i.e. when you've reached a cycle between the parents. Put $c[a]=p_{2}[a]$ for all remaining a.

Example: $p_{1}=(23564178)$ and $p_{2}(14236587)$

Cycle Cross-over

Applying
Genetic Algorithms to Ramsey

Theory
David
White
Wesleyan University

Insists $c[i]=p_{1}[i]$ or $c[i]=p_{2}[i]$ for all i.
Put $c[1]=p_{1}[1]$. Find where $p_{2}[1]$ appears in p_{1}. Call this place i and put $c[i]=p_{1}[i]$. Find where $p_{2}[i]$ appears in p_{1}. Call this place j and put $c[j]=p_{1}[j]$. Continue till $p_{2}[x]$ appears in the child, i.e. when you've reached a cycle between the parents. Put $c[a]=p_{2}[a]$ for all remaining a.

Example: $p_{1}=(23564178)$ and $p_{2}(14236587)$ $c=(2 x x x x 1 x x)$

Cycle Cross-over

Applying
Genetic Algorithms to Ramsey

Theory
David
White
Wesleyan University

Insists $c[i]=p_{1}[i]$ or $c[i]=p_{2}[i]$ for all i.
Put $c[1]=p_{1}[1]$. Find where $p_{2}[1]$ appears in p_{1}. Call this place i and put $c[i]=p_{1}[i]$. Find where $p_{2}[i]$ appears in p_{1}. Call this place j and put $c[j]=p_{1}[j]$. Continue till $p_{2}[x]$ appears in the child, i.e. when you've reached a cycle between the parents. Put $c[a]=p_{2}[a]$ for all remaining a.

Example: $p_{1}=(23564178)$ and $p_{2}(14236587)$ $c=(2 x x x x 1 x x)=(2 x 5 x x 1 x x)$

Cycle Cross-over

Applying
Genetic Algorithms to Ramsey

Theory
David
White
Wesleyan University

Insists $c[i]=p_{1}[i]$ or $c[i]=p_{2}[i]$ for all i.
Put $c[1]=p_{1}[1]$. Find where $p_{2}[1]$ appears in p_{1}. Call this place i and put $c[i]=p_{1}[i]$. Find where $p_{2}[i]$ appears in p_{1}. Call this place j and put $c[j]=p_{1}[j]$. Continue till $p_{2}[x]$ appears in the child, i.e. when you've reached a cycle between the parents. Put $c[a]=p_{2}[a]$ for all remaining a.

Example: $p_{1}=(23564178)$ and $p_{2}(14236587)$ $c=(2 x x x x 1 x x)=(2 x 5 x x 1 x x)$ and $p_{1}[3]=5 \Rightarrow p_{2}[3]=2=p_{1}[1]$, giving a cycle:

Cycle Cross-over

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

Insists $c[i]=p_{1}[i]$ or $c[i]=p_{2}[i]$ for all i.
Put $c[1]=p_{1}[1]$. Find where $p_{2}[1]$ appears in p_{1}. Call this place i and put $c[i]=p_{1}[i]$. Find where $p_{2}[i]$ appears in p_{1}. Call this place j and put $c[j]=p_{1}[j]$. Continue till $p_{2}[x]$ appears in the child, i.e. when you've reached a cycle between the parents. Put $c[a]=p_{2}[a]$ for all remaining a.

Example: $p_{1}=(23564178)$ and $p_{2}(14236587)$
$c=(2 x x x x 1 x x)=(2 x 5 x x 1 x x)$ and $p_{1}[3]=5 \Rightarrow p_{2}[3]=2=p_{1}[1]$, giving a cycle:
$c=(24536178)$
Example: $p_{1}=(123456789)$ and $p_{2}=(412876935)$

Cycle Cross-over

Applying Genetic Algorithms to Ramsey

Theory
David
White
Wesleyan University

Insists $c[i]=p_{1}[i]$ or $c[i]=p_{2}[i]$ for all i.
Put $c[1]=p_{1}[1]$. Find where $p_{2}[1]$ appears in p_{1}. Call this place i and put $c[i]=p_{1}[i]$. Find where $p_{2}[i]$ appears in p_{1}. Call this place j and put $c[j]=p_{1}[j]$. Continue till $p_{2}[x]$ appears in the child, i.e. when you've reached a cycle between the parents. Put $c[a]=p_{2}[a]$ for all remaining a.

Example: $p_{1}=(23564178)$ and $p_{2}(14236587)$
$c=(2 x x x x 1 x x)=(2 x 5 x x 1 x x)$ and $p_{1}[3]=5 \Rightarrow p_{2}[3]=2=p_{1}[1]$, giving a cycle:
$c=(24536178)$
Example: $p_{1}=(123456789)$ and $p_{2}=(412876935)$ $c=(1 x x 4 x x x x x)$

Cycle Cross-over

Applying Genetic Algorithms to Ramsey

Theory
David
White
Wesleyan University

Insists $c[i]=p_{1}[i]$ or $c[i]=p_{2}[i]$ for all i.
Put $c[1]=p_{1}[1]$. Find where $p_{2}[1]$ appears in p_{1}. Call this place i and put $c[i]=p_{1}[i]$. Find where $p_{2}[i]$ appears in p_{1}. Call this place j and put $c[j]=p_{1}[j]$. Continue till $p_{2}[x]$ appears in the child, i.e. when you've reached a cycle between the parents. Put $c[a]=p_{2}[a]$ for all remaining a.

Example: $p_{1}=(23564178)$ and $p_{2}(14236587)$
$c=(2 x x x x 1 x x)=(2 x 5 x x 1 x x)$ and $p_{1}[3]=5 \Rightarrow p_{2}[3]=2=p_{1}[1]$, giving a cycle:
$c=(24536178)$
Example: $p_{1}=(123456789)$ and $p_{2}=(412876935)$
$c=(1 x x 4 x x x x x)=(1 x 34 x x x 8 x)$

Cycle Cross-over

Applying Genetic Algorithms to Ramsey

Theory
David
White
Wesleyan University

Insists $c[i]=p_{1}[i]$ or $c[i]=p_{2}[i]$ for all i.
Put $c[1]=p_{1}[1]$. Find where $p_{2}[1]$ appears in p_{1}. Call this place i and put $c[i]=p_{1}[i]$. Find where $p_{2}[i]$ appears in p_{1}. Call this place j and put $c[j]=p_{1}[j]$. Continue till $p_{2}[x]$ appears in the child, i.e. when you've reached a cycle between the parents. Put $c[a]=p_{2}[a]$ for all remaining a.

Example: $p_{1}=(23564178)$ and $p_{2}(14236587)$
$c=(2 x x x x 1 x x)=(2 x 5 x x 1 x x)$ and $p_{1}[3]=5 \Rightarrow p_{2}[3]=2=p_{1}[1]$, giving a cycle: $c=(24536178)$

Example: $p_{1}=(123456789)$ and $p_{2}=(412876935)$
$c=(1 x x 4 x x x x x)=(1 x 34 x x x 8 x)$
$=(1234 x x x 8 x)$

Cycle Cross-over

Applying Genetic Algorithms to Ramsey

Theory
David
White
Wesleyan University

Insists $c[i]=p_{1}[i]$ or $c[i]=p_{2}[i]$ for all i.
Put $c[1]=p_{1}[1]$. Find where $p_{2}[1]$ appears in p_{1}. Call this place i and put $c[i]=p_{1}[i]$. Find where $p_{2}[i]$ appears in p_{1}. Call this place j and put $c[j]=p_{1}[j]$. Continue till $p_{2}[x]$ appears in the child, i.e. when you've reached a cycle between the parents. Put $c[a]=p_{2}[a]$ for all remaining a.

Example: $p_{1}=(23564178)$ and $p_{2}(14236587)$
$c=(2 x x x x 1 x x)=(2 x 5 x x 1 x x)$ and $p_{1}[3]=5 \Rightarrow p_{2}[3]=2=p_{1}[1]$, giving a cycle:
$c=(24536178)$
Example: $p_{1}=(123456789)$ and $p_{2}=(412876935)$
$c=(1 x x 4 x x x x x)=(1 x 34 x x x 8 x)$
$=(1234 x x x 8 x)$ and $p_{1}[2]=2 \Rightarrow p_{2}[2]=1=p_{1}[1]$,
giving a cycle:

Cycle Cross-over

Applying Genetic Algorithms to Ramsey

Theory
David
White
Wesleyan University

Insists $c[i]=p_{1}[i]$ or $c[i]=p_{2}[i]$ for all i.
Put $c[1]=p_{1}[1]$. Find where $p_{2}[1]$ appears in p_{1}. Call this place i and put $c[i]=p_{1}[i]$. Find where $p_{2}[i]$ appears in p_{1}. Call this place j and put $c[j]=p_{1}[j]$. Continue till $p_{2}[x]$ appears in the child, i.e. when you've reached a cycle between the parents. Put $c[a]=p_{2}[a]$ for all remaining a.

Example: $p_{1}=(23564178)$ and $p_{2}(14236587)$
$c=(2 x x x x 1 x x)=(2 x 5 x x 1 x x)$ and $p_{1}[3]=5 \Rightarrow p_{2}[3]=2=p_{1}[1]$, giving a cycle:
$c=(24536178)$
Example: $p_{1}=(123456789)$ and $p_{2}=(412876935)$
$c=(1 x x 4 x x x x x)=(1 x 34 x x x 8 x)$
$=(1234 x x x 8 x)$ and $p_{1}[2]=2 \Rightarrow p_{2}[2]=1=p_{1}[1]$,
giving a cycle: $c=(123476985)$

Selection and Mutation

Applying Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

Tournament Selection:

Selection and Mutation

Applying Genetic Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

Tournament Selection: run two tournaments and record winners and losers.

Selection and Mutation

Applying Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan
University

Tournament Selection: run two tournaments and record winners and losers. Tournament is filled randomly and all individuals are compared to get best and worst.

Selection and Mutation

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

Tournament Selection: run two tournaments and record winners and losers. Tournament is filled randomly and all individuals are compared to get best and worst.

Children of winners replace the losers.

Selection and Mutation

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

Tournament Selection: run two tournaments and record winners and losers. Tournament is filled randomly and all individuals are compared to get best and worst.

Children of winners replace the losers. Each generation only replaces the worst pair

Selection and Mutation

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

Tournament Selection: run two tournaments and record winners and losers. Tournament is filled randomly and all individuals are compared to get best and worst.

Children of winners replace the losers. Each generation only replaces the worst pair (steady state).

Selection and Mutation

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan
University

Tournament Selection: run two tournaments and record winners and losers. Tournament is filled randomly and all individuals are compared to get best and worst.

Children of winners replace the losers. Each generation only replaces the worst pair (steady state).

Pros: slow convergence,

Selection and Mutation

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

Tournament Selection: run two tournaments and record winners and losers. Tournament is filled randomly and all individuals are compared to get best and worst.

Children of winners replace the losers. Each generation only replaces the worst pair (steady state).

Pros: slow convergence, cheap to evaluate new fitness.

Selection and Mutation

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

Tournament Selection: run two tournaments and record winners and losers. Tournament is filled randomly and all individuals are compared to get best and worst.

Children of winners replace the losers. Each generation only replaces the worst pair (steady state).

Pros: slow convergence, cheap to evaluate new fitness. Cons: very little exploration,

Selection and Mutation

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

Tournament Selection: run two tournaments and record winners and losers. Tournament is filled randomly and all individuals are compared to get best and worst.

Children of winners replace the losers. Each generation only replaces the worst pair (steady state).

Pros: slow convergence, cheap to evaluate new fitness. Cons: very little exploration, VERY slow convergence,

Selection and Mutation

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

Tournament Selection: run two tournaments and record winners and losers. Tournament is filled randomly and all individuals are compared to get best and worst.

Children of winners replace the losers. Each generation only replaces the worst pair (steady state).

Pros: slow convergence, cheap to evaluate new fitness. Cons: very little exploration, VERY slow convergence, new parameter of tournament size

Selection and Mutation

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan
University

Tournament Selection: run two tournaments and record winners and losers. Tournament is filled randomly and all individuals are compared to get best and worst.

Children of winners replace the losers. Each generation only replaces the worst pair (steady state).

Pros: slow convergence, cheap to evaluate new fitness. Cons: very little exploration, VERY slow convergence, new parameter of tournament size

Mutation is not explicitly described in the thesis.

Selection and Mutation

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan
University

Tournament Selection: run two tournaments and record winners and losers. Tournament is filled randomly and all individuals are compared to get best and worst.

Children of winners replace the losers. Each generation only replaces the worst pair (steady state).

Pros: slow convergence, cheap to evaluate new fitness. Cons: very little exploration, VERY slow convergence, new parameter of tournament size

Mutation is not explicitly described in the thesis. We can assume it makes a small random change, say swapping an edge color.

Selection and Mutation

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan
University

Tournament Selection: run two tournaments and record winners and losers. Tournament is filled randomly and all individuals are compared to get best and worst.

Children of winners replace the losers. Each generation only replaces the worst pair (steady state).

Pros: slow convergence, cheap to evaluate new fitness. Cons: very little exploration, VERY slow convergence, new parameter of tournament size

Mutation is not explicitly described in the thesis. We can assume it makes a small random change, say swapping an edge color. Changing the order doesn't matter.

Selection Code

Applying

Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

Selection Code

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University
best_fitness $=-9999$
worst_fitness $=9999$

Selection Code

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University
best_fitness $=-9999$
worst_fitness $=9999$
for $i=0$ to tournament_size- 1 do get a random j (no repeats allowed)

Selection Code

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University
best_fitness $=-9999$
worst_fitness $=9999$
for $i=0$ to tournament_size- 1 do get a random j (no repeats allowed) if fitness[j] > best_fitness then best_fitness $=$ fitness [j] winner $=\mathrm{j}$ endif

Selection Code

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

```
best_fitness = -9999
worst_fitness = 9999
for i=0 to tournament_size-1 do
    get a random j (no repeats allowed)
    if fitness[j] > best_fitness then
            best_fitness = fitness[j]
            winner = j endif
    if fitness[j] < worst_fitness then
        worst_fitness = fitness[j]
        loser = j endif
end
```


Selection Code

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

```
best_fitness = -9999
worst_fitness =9999
for i=0 to tournament_size-1 do
    get a random j (no repeats allowed)
    if fitness[j] > best_fitness then
            best_fitness = fitness[j]
            winner = j endif
    if fitness[j] < worst_fitness then
        worst_fitness = fitness[j]
        loser = j endif
end
```

Note the random filling of the tournament.

Selection Code

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University

```
best_fitness = -9999
worst_fitness = 9999
for i=0 to tournament_size-1 do
    get a random j (no repeats allowed)
        if fitness[j] > best_fitness then
            best_fitness = fitness[j]
            winner = j endif
    if fitness[j] < worst_fitness then
            worst_fitness = fitness[j]
            loser = j endif
end
```

Note the random filling of the tournament. Might be better to bias this towards getting some of the highest and some of the lowest fitness individuals.

Fitness Function

Applying Genetic Algorithms to Ramsey

Theory
David
White Wesleyan University

We wish to find coloring which has no monochromatic G_{i} in color i,

Fitness Function

Applying Genetic Algorithms to Ramsey

Theory

David
White
Wesleyan University

We wish to find coloring which has no monochromatic G_{i} in color i, so we should lower the fitness by 1 each time there is a mono G_{i} in color i.

Fitness Function

Applying Genetic Algorithms to Ramsey

Theory
David
White
Wesleyan University

We wish to find coloring which has no monochromatic G_{i} in color i, so we should lower the fitness by 1 each time there is a mono G_{i} in color i.

We should also lower the fitness by 1 if more colors are used than some fixed user parameter no_of_colors.

Fitness Function

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

We wish to find coloring which has no monochromatic G_{i} in color i, so we should lower the fitness by 1 each time there is a mono G_{i} in color i.

We should also lower the fitness by 1 if more colors are used than some fixed user parameter no_of_colors. This is all Rao's fitness function does.

Fitness Function

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

We wish to find coloring which has no monochromatic G_{i} in color i, so we should lower the fitness by 1 each time there is a mono G_{i} in color i.

We should also lower the fitness by 1 if more colors are used than some fixed user parameter no_of_colors. This is all Rao's fitness function does.
(1) hero is a function which gets the individual with best fitness when called.

Fitness Function

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

We wish to find coloring which has no monochromatic G_{i} in color i, so we should lower the fitness by 1 each time there is a mono G_{i} in color i.

We should also lower the fitness by 1 if more colors are used than some fixed user parameter no_of_colors. This is all Rao's fitness function does.
(1) hero is a function which gets the individual with best fitness when called.
(2) The individual we're working with is $\mathrm{p}[\mathrm{who}]$, an array.

Fitness Function

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

We wish to find coloring which has no monochromatic G_{i} in color i, so we should lower the fitness by 1 each time there is a mono G_{i} in color i.

We should also lower the fitness by 1 if more colors are used than some fixed user parameter no_of_colors. This is all Rao's fitness function does.
(1) hero is a function which gets the individual with best fitness when called.
(2) The individual we're working with is $\mathrm{p}[\mathrm{who}]$, an array.

You could improve on Rao by making a smarter fitness function.

Fitness Function

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

We wish to find coloring which has no monochromatic G_{i} in color i, so we should lower the fitness by 1 each time there is a mono G_{i} in color i.

We should also lower the fitness by 1 if more colors are used than some fixed user parameter no_of_colors. This is all Rao's fitness function does.
(1) hero is a function which gets the individual with best fitness when called.
(2) The individual we're working with is $\mathrm{p}[\mathrm{who}]$, an array.

You could improve on Rao by making a smarter fitness function. His does not take into account how badly a graph fails,

Fitness Function

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

We wish to find coloring which has no monochromatic G_{i} in color i, so we should lower the fitness by 1 each time there is a mono G_{i} in color i.

We should also lower the fitness by 1 if more colors are used than some fixed user parameter no_of_colors. This is all Rao's fitness function does.
(1) hero is a function which gets the individual with best fitness when called.
(2) The individual we're working with is $\mathrm{p}[\mathrm{who}]$, an array.

You could improve on Rao by making a smarter fitness function. His does not take into account how badly a graph fails, and it only has the -1 rather than something more sophisticated.

Checking for mono G_{a}

Applying Genetic Algorithms to Ramsey

Theory
David
White Wesleyan University

How to check for a monochromatic triangle in color a :

Checking for mono G_{a}

Applying Genetic Algorithms to Ramsey

Theory
David
White
Wesleyan
University

How to check for a monochromatic triangle in color a : for $k=0$ to $N-1$ do

Checking for mono G_{a}

Applying Genetic Algorithms to Ramsey

Theory

David
White Wesleyan University

How to check for a monochromatic triangle in color a :
for $k=0$ to $N-1$ do
if i, j, k are distinct then

Checking for mono G_{a}

Applying Genetic Algorithms to Ramsey

Theory
David
White
Wesleyan University

How to check for a monochromatic triangle in color a :
for $k=0$ to $N-1$ do
if i, j, k are distinct then
if $a=\operatorname{color}(i, j)=\operatorname{color}(i, k)=\operatorname{color}(j, k)$ then

Checking for mono G_{a}

Applying Genetic Algorithms to Ramsey

Theory
David
White
Wesleyan University

How to check for a monochromatic triangle in color a :
for $k=0$ to $N-1$ do
if i, j, k are distinct then if $a=\operatorname{color}(i, j)=\operatorname{color}(i, k)=\operatorname{color}(j, k)$ then return false

Checking for mono G_{a}

Applying Genetic Algorithms to Ramsey

Theory

David
White
Wesleyan University

How to check for a monochromatic triangle in color a :
for $k=0$ to $N-1$ do
if i, j, k are distinct then
if $a=\operatorname{color}(i, j)=\operatorname{color}(i, k)=\operatorname{color}(j, k)$ then
return false
endif
endif

Checking for mono G_{a}

Applying Genetic Algorithms to Ramsey

Theory

David
White
Wesleyan University

How to check for a monochromatic triangle in color a :
for $k=0$ to $N-1$ do
if i, j, k are distinct then if $a=\operatorname{color}(i, j)=\operatorname{color}(i, k)=\operatorname{color}(j, k)$ then return false endif
endif
end
return true

Checking for mono G_{a}

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

How to check for a monochromatic triangle in color a :
for $k=0$ to $N-1$ do
if i, j, k are distinct then
if $a=\operatorname{color}(i, j)=\operatorname{color}(i, k)=\operatorname{color}(j, k)$ then
return false
endif
endif
end
return true

Checking for other G_{a} is similar and easy.

Implementation

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University
initialize population and set fitness $[i]=\mathrm{fv}(i)$ for all i trial $=0$

Implementation

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University
initialize population and set fitness $[i]=\mathrm{fv}(i)$ for all i trial $=0$
while true
trial++

Implementation

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan
University
initialize population and set fitness $[i]=\mathrm{fv}(i)$ for all i trial $=0$
while true
trial ++
if trial \geq LOOPS then break endif

Implementation

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University
initialize population and set fitness $[i]=\mathrm{fv}(i)$ for all i trial $=0$
while true
trial ++
if trial \geq LOOPS then break endif
tournament(t_size, p_{1}, c_{1})
tournament(t_size, p_{2}, c_{2})

Implementation

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University
initialize population and set fitness $[i]=\mathrm{fv}(i)$ for all i trial $=0$
while true
trial ++
if trial \geq LOOPS then break endif
tournament(t_size, p_{1}, c_{1})
tournament(t_size, p_{2}, c_{2})
make_children $\left(p_{1}, p_{2}, c_{1}, c_{2}\right)$

Implementation

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University
initialize population and set fitness $[i]=\mathrm{fv}(i)$ for all i trial $=0$
while true
trial++
if trial \geq LOOPS then break endif
tournament(t_size, p_{1}, c_{1})
tournament(t_size, p_{2}, c_{2})
make_children $\left(p_{1}, p_{2}, c_{1}, c_{2}\right)$
if MUT_RATE ≥ 0.0 then mutate $\left(c_{1}\right)$, mutate $\left(c_{2}\right)$ endif

Implementation

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University
initialize population and set fitness $[i]=\mathrm{fv}(i)$ for all i trial $=0$
while true
trial++
if trial \geq LOOPS then break endif
tournament(t_size, $\left.p_{1}, c_{1}\right)$
tournament(t_size, $\left.p_{2}, c_{2}\right)$
make_children $\left(p_{1}, p_{2}, c_{1}, c_{2}\right)$
if MUT_RATE ≥ 0.0 then mutate $\left(c_{1}\right)$, mutate $\left(c_{2}\right)$ endif fitness $\left[c_{1}\right]=\mathrm{fv}\left(c_{1}\right)$, fitness $\left[c_{2}\right]=\mathrm{fv}\left(c_{2}\right)$

Implementation

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University
initialize population and set fitness $[i]=\mathrm{fv}(i)$ for all i trial $=0$
while true
trial++
if trial \geq LOOPS then break endif
tournament(t_size, p_{1}, c_{1})
tournament(t_size, $\left.p_{2}, c_{2}\right)$
make_children $\left(p_{1}, p_{2}, c_{1}, c_{2}\right)$
if MUT_RATE ≥ 0.0 then mutate $\left(c_{1}\right)$, mutate $\left(c_{2}\right)$ endif
fitness $\left[c_{1}\right]=\mathrm{fv}\left(c_{1}\right)$, fitness $\left[c_{2}\right]=\mathrm{fv}\left(c_{2}\right)$
if hero \geq MAX_HERO then break endif end

Implementation

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University
initialize population and set fitness $[i]=\mathrm{fv}(i)$ for all i trial $=0$
while true
trial++
if trial \geq LOOPS then break endif
tournament(t_size, p_{1}, c_{1})
tournament(t_size, $\left.p_{2}, c_{2}\right)$
make_children $\left(p_{1}, p_{2}, c_{1}, c_{2}\right)$
if MUT_RATE ≥ 0.0 then mutate $\left(c_{1}\right)$, mutate $\left(c_{2}\right)$ endif
fitness $\left[c_{1}\right]=\mathrm{fv}\left(c_{1}\right)$, fitness $\left[c_{2}\right]=\mathrm{fv}\left(c_{2}\right)$
if hero \geq MAX_HERO then break endif end

The mutation code must be a typo because he later claims mutation rate did matter in experiments.

Implementation

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University
initialize population and set fitness $[i]=\mathrm{fv}(i)$ for all i trial $=0$
while true
trial++
if trial \geq LOOPS then break endif
tournament(t_size, p_{1}, c_{1})
tournament(t_size, $\left.p_{2}, c_{2}\right)$
make_children $\left(p_{1}, p_{2}, c_{1}, c_{2}\right)$
if MUT_RATE ≥ 0.0 then mutate $\left(c_{1}\right)$, mutate $\left(c_{2}\right)$ endif
fitness $\left[c_{1}\right]=\mathrm{fv}\left(c_{1}\right)$, fitness $\left[c_{2}\right]=\mathrm{fv}\left(c_{2}\right)$
if hero \geq MAX_HERO then break endif end

The mutation code must be a typo because he later claims mutation rate did matter in experiments. But he does not show us the data or statistics so we can't be sure.

Statistics

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White Wesleyan University

There are five parameters that affect performance:

Statistics

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White Wesleyan University

There are five parameters that affect performance:

- Population size

Statistics

Applying Genetic Algorithms to Ramsey

Theory
David
White Wesleyan University

There are five parameters that affect performance:

- Population size
- Mutation rate (unless there was no typo)

Statistics

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

There are five parameters that affect performance:

- Population size
- Mutation rate (unless there was no typo)
- Tournament size

Statistics

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

There are five parameters that affect performance:

- Population size
- Mutation rate (unless there was no typo)
- Tournament size
- Max number of loops allowed

Statistics

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

There are five parameters that affect performance:

- Population size
- Mutation rate (unless there was no typo)
- Tournament size
- Max number of loops allowed
- Seed, i.e. initial population

Statistics

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

There are five parameters that affect performance:

- Population size
- Mutation rate (unless there was no typo)
- Tournament size
- Max number of loops allowed
- Seed, i.e. initial population

Rao investigated these via 25 runs for each type of crossover and each seed value,

Statistics

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

There are five parameters that affect performance:

- Population size
- Mutation rate (unless there was no typo)
- Tournament size
- Max number of loops allowed
- Seed, i.e. initial population

Rao investigated these via 25 runs for each type of crossover and each seed value, but he shows no statistics whatsoever.

Statistics

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

There are five parameters that affect performance:

- Population size
- Mutation rate (unless there was no typo)
- Tournament size
- Max number of loops allowed
- Seed, i.e. initial population

Rao investigated these via 25 runs for each type of crossover and each seed value, but he shows no statistics whatsoever.

He couldn't see the effect of tournament size, population size, and mutation rate because the majority of solutions were found in the initial population,

Statistics

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

There are five parameters that affect performance:

- Population size
- Mutation rate (unless there was no typo)
- Tournament size
- Max number of loops allowed
- Seed, i.e. initial population

Rao investigated these via 25 runs for each type of crossover and each seed value, but he shows no statistics whatsoever.

He couldn't see the effect of tournament size, population size, and mutation rate because the majority of solutions were found in the initial population, BEFORE evolution!

Statistics

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

There are five parameters that affect performance:

- Population size
- Mutation rate (unless there was no typo)
- Tournament size
- Max number of loops allowed
- Seed, i.e. initial population

Rao investigated these via 25 runs for each type of crossover and each seed value, but he shows no statistics whatsoever.

He couldn't see the effect of tournament size, population size, and mutation rate because the majority of solutions were found in the initial population, BEFORE evolution! So this "EA" was really just brute force!

Results

Applying Genetic Algorithms to Ramsey

Theory

David
White
Wesleyan
University

Mutation rate on all good runs was 0.001,

Results

Applying Genetic Algorithms to Ramsey

Theory

David White Wesleyan University

Mutation rate on all good runs was 0.001 , the lowest possible.

Results

Applying Genetic Algorithms to Ramsey

Theory

David White Wesleyan University

Mutation rate on all good runs was 0.001 , the lowest possible. So again, algorithms is mostly exploitation.

Results

Applying Genetic Algorithms to Ramsey

Theory

David
White
Wesleyan University

Mutation rate on all good runs was 0.001 , the lowest possible. So again, algorithms is mostly exploitation.

Rao matched known bounds for $R\left(C_{4}, C_{4}, C_{4}\right)$, $R\left(C_{4}, C_{4}, K_{3}\right), R\left(C_{4}, K_{3}, K_{3}\right)$, and $R\left(C_{5}, C_{5}, C_{5}\right)$.

Results

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

Mutation rate on all good runs was 0.001 , the lowest possible. So again, algorithms is mostly exploitation.

Rao matched known bounds for $R\left(C_{4}, C_{4}, C_{4}\right)$, $R\left(C_{4}, C_{4}, K_{3}\right), R\left(C_{4}, K_{3}, K_{3}\right)$, and $R\left(C_{5}, C_{5}, C_{5}\right)$. He used special seed values for these based on prior results.

Results

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

Mutation rate on all good runs was 0.001 , the lowest possible. So again, algorithms is mostly exploitation.

Rao matched known bounds for $R\left(C_{4}, C_{4}, C_{4}\right)$, $R\left(C_{4}, C_{4}, K_{3}\right), R\left(C_{4}, K_{3}, K_{3}\right)$, and $R\left(C_{5}, C_{5}, C_{5}\right)$. He used special seed values for these based on prior results.

He found new bounds on never before investigated numbers: $R\left(C_{4}, C_{4}, K_{3}, K_{3}\right) \geq 25$ and $R\left(C_{5}, C_{4}, K_{3}\right) \geq 13$.

Results

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

Mutation rate on all good runs was 0.001 , the lowest possible. So again, algorithms is mostly exploitation.

Rao matched known bounds for $R\left(C_{4}, C_{4}, C_{4}\right)$, $R\left(C_{4}, C_{4}, K_{3}\right), R\left(C_{4}, K_{3}, K_{3}\right)$, and $R\left(C_{5}, C_{5}, C_{5}\right)$. He used special seed values for these based on prior results.

He found new bounds on never before investigated numbers: $R\left(C_{4}, C_{4}, K_{3}, K_{3}\right) \geq 25$ and $R\left(C_{5}, C_{4}, K_{3}\right) \geq 13$. How much does this matter?

Results

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

Mutation rate on all good runs was 0.001 , the lowest possible. So again, algorithms is mostly exploitation.

Rao matched known bounds for $R\left(C_{4}, C_{4}, C_{4}\right)$, $R\left(C_{4}, C_{4}, K_{3}\right), R\left(C_{4}, K_{3}, K_{3}\right)$, and $R\left(C_{5}, C_{5}, C_{5}\right)$. He used special seed values for these based on prior results.

He found new bounds on never before investigated numbers: $R\left(C_{4}, C_{4}, K_{3}, K_{3}\right) \geq 25$ and $R\left(C_{5}, C_{4}, K_{3}\right) \geq 13$. How much does this matter?

He found numerous different colorings to prove these,

Results

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

Mutation rate on all good runs was 0.001 , the lowest possible. So again, algorithms is mostly exploitation.

Rao matched known bounds for $R\left(C_{4}, C_{4}, C_{4}\right)$, $R\left(C_{4}, C_{4}, K_{3}\right), R\left(C_{4}, K_{3}, K_{3}\right)$, and $R\left(C_{5}, C_{5}, C_{5}\right)$. He used special seed values for these based on prior results.

He found new bounds on never before investigated numbers: $R\left(C_{4}, C_{4}, K_{3}, K_{3}\right) \geq 25$ and $R\left(C_{5}, C_{4}, K_{3}\right) \geq 13$. How much does this matter?

He found numerous different colorings to prove these, but one coloring suffices for a proof.

How to improve on this

Applying Genetic Algorithms to Ramsey
Theory
David
White Wesleyan University

Because there is so little exploration, the seed matters a TON.

How to improve on this

Applying Genetic Algorithms to Ramsey

Theory
David
White
Wesleyan University

Because there is so little exploration, the seed matters a TON. This is why the best solutions found were usually found so quickly.

How to improve on this

Applying Genetic Algorithms to Ramsey

Theory
David
White
Wesleyan University

Because there is so little exploration, the seed matters a TON. This is why the best solutions found were usually found so quickly. The evolution here does almost nothing.

How to improve on this

Applying Genetic Algorithms to Ramsey

Theory

David
White
Wesleyan University

Because there is so little exploration, the seed matters a TON. This is why the best solutions found were usually found so quickly. The evolution here does almost nothing.

To really test an EA on Ramsey Theory you need to ask a harder question.

How to improve on this

Applying Genetic Algorithms to Ramsey

Theory
David
White
Wesleyan University

Because there is so little exploration, the seed matters a TON. This is why the best solutions found were usually found so quickly. The evolution here does almost nothing.

To really test an EA on Ramsey Theory you need to ask a harder question. Other subgraphs than C_{n} 's and K_{n} 's?

How to improve on this

Applying Genetic Algorithms to Ramsey

Theory
David
White
Wesleyan University

Because there is so little exploration, the seed matters a TON. This is why the best solutions found were usually found so quickly. The evolution here does almost nothing.

To really test an EA on Ramsey Theory you need to ask a harder question. Other subgraphs than C_{n} 's and K_{n} 's? Classical $R(s, t)$ and $R(n)$ numbers?

How to improve on this

Applying Genetic Algorithms to Ramsey

Theory
David
White
Wesleyan University

Because there is so little exploration, the seed matters a TON. This is why the best solutions found were usually found so quickly. The evolution here does almost nothing.

To really test an EA on Ramsey Theory you need to ask a harder question. Other subgraphs than C_{n} 's and K_{n} 's? Classical $R(s, t)$ and $R(n)$ numbers? To make Rao's algorithm better, look into:

How to improve on this

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

Because there is so little exploration, the seed matters a TON. This is why the best solutions found were usually found so quickly. The evolution here does almost nothing.

To really test an EA on Ramsey Theory you need to ask a harder question. Other subgraphs than C_{n} 's and K_{n} 's?
Classical $R(s, t)$ and $R(n)$ numbers?
To make Rao's algorithm better, look into:

- Better way to fill the tournament

How to improve on this

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

Because there is so little exploration, the seed matters a TON. This is why the best solutions found were usually found so quickly. The evolution here does almost nothing.

To really test an EA on Ramsey Theory you need to ask a harder question. Other subgraphs than C_{n} 's and K_{n} 's?
Classical $R(s, t)$ and $R(n)$ numbers?
To make Rao's algorithm better, look into:

- Better way to fill the tournament
- Better selection method in general to encourage more exploration. Make it less steady-state.

How to improve on this

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

Because there is so little exploration, the seed matters a TON. This is why the best solutions found were usually found so quickly. The evolution here does almost nothing.

To really test an EA on Ramsey Theory you need to ask a harder question. Other subgraphs than C_{n} 's and K_{n} 's?
Classical $R(s, t)$ and $R(n)$ numbers?
To make Rao's algorithm better, look into:

- Better way to fill the tournament
- Better selection method in general to encourage more exploration. Make it less steady-state.
- Actually using mutation

How to improve on this

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

Because there is so little exploration, the seed matters a TON. This is why the best solutions found were usually found so quickly. The evolution here does almost nothing.

To really test an EA on Ramsey Theory you need to ask a harder question. Other subgraphs than C_{n} 's and K_{n} 's?
Classical $R(s, t)$ and $R(n)$ numbers?
To make Rao's algorithm better, look into:

- Better way to fill the tournament
- Better selection method in general to encourage more exploration. Make it less steady-state.
- Actually using mutation
- Make the fitness penalty smarter than just -1

How to improve on this

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

Because there is so little exploration, the seed matters a TON. This is why the best solutions found were usually found so quickly. The evolution here does almost nothing.

To really test an EA on Ramsey Theory you need to ask a harder question. Other subgraphs than C_{n} 's and K_{n} 's?
Classical $R(s, t)$ and $R(n)$ numbers?
To make Rao's algorithm better, look into:

- Better way to fill the tournament
- Better selection method in general to encourage more exploration. Make it less steady-state.
- Actually using mutation
- Make the fitness penalty smarter than just -1
- Smarter search space with fewer obvious bad colorings

How to improve on this

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

Because there is so little exploration, the seed matters a TON. This is why the best solutions found were usually found so quickly. The evolution here does almost nothing.

To really test an EA on Ramsey Theory you need to ask a harder question. Other subgraphs than C_{n} 's and K_{n} 's?
Classical $R(s, t)$ and $R(n)$ numbers?
To make Rao's algorithm better, look into:

- Better way to fill the tournament
- Better selection method in general to encourage more exploration. Make it less steady-state.
- Actually using mutation
- Make the fitness penalty smarter than just -1
- Smarter search space with fewer obvious bad colorings
- Ask about Ramsey numbers of directed graphs or hypergraphs.

Is there any hope?

Applying Genetic Algorithms to Ramsey

Theory
David
White Wesleyan University

Will EAs be able to make progress on finding lower bounds for Ramsey numbers?

Is there any hope?

Applying Genetic Algorithms to Ramsey

Theory

David
White
Wesleyan University

Will EAs be able to make progress on finding lower bounds for Ramsey numbers? Definitely not if they are basically doing brute force!

Is there any hope?

Applying Genetic Algorithms
to Ramsey
Theory

David
White
Wesleyan University

Will EAs be able to make progress on finding lower bounds for Ramsey numbers? Definitely not if they are basically doing brute force!

Currently, the best lower bounds mathematics has come up with are non-constructive.

Is there any hope?

Applying Genetic Algorithms
to Ramsey
Theory
David
White
Wesleyan University

Will EAs be able to make progress on finding lower bounds for Ramsey numbers? Definitely not if they are basically doing brute force!

Currently, the best lower bounds mathematics has come up with are non-constructive. They are proven to exist using probability theory.

Is there any hope?

Applying Genetic Algorithms to Ramsey Theory

David
White
Wesleyan University

Will EAs be able to make progress on finding lower bounds for Ramsey numbers? Definitely not if they are basically doing brute force!

Currently, the best lower bounds mathematics has come up with are non-constructive. They are proven to exist using probability theory. But just because humans can't find clever colorings doesn't mean computers can't.

Is there any hope?

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

Will EAs be able to make progress on finding lower bounds for Ramsey numbers? Definitely not if they are basically doing brute force!

Currently, the best lower bounds mathematics has come up with are non-constructive. They are proven to exist using probability theory. But just because humans can't find clever colorings doesn't mean computers can't.

If nothing else this is a good hard problem like TSP to test a new EA implementation on.

Is there any hope?

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

Will EAs be able to make progress on finding lower bounds for Ramsey numbers? Definitely not if they are basically doing brute force!

Currently, the best lower bounds mathematics has come up with are non-constructive. They are proven to exist using probability theory. But just because humans can't find clever colorings doesn't mean computers can't.

If nothing else this is a good hard problem like TSP to test a new EA implementation on. It's a great "Humies" problem because humans have basically given up on finding optimal colorings.

Is there any hope?

Applying
Genetic
Algorithms
to Ramsey
Theory
David
White
Wesleyan University

Will EAs be able to make progress on finding lower bounds for Ramsey numbers? Definitely not if they are basically doing brute force!

Currently, the best lower bounds mathematics has come up with are non-constructive. They are proven to exist using probability theory. But just because humans can't find clever colorings doesn't mean computers can't.

If nothing else this is a good hard problem like TSP to test a new EA implementation on. It's a great "Humies" problem because humans have basically given up on finding optimal colorings. Just waiting for a break-through.

Is there any hope?

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

Will EAs be able to make progress on finding lower bounds for Ramsey numbers? Definitely not if they are basically doing brute force!

Currently, the best lower bounds mathematics has come up with are non-constructive. They are proven to exist using probability theory. But just because humans can't find clever colorings doesn't mean computers can't.

If nothing else this is a good hard problem like TSP to test a new EA implementation on. It's a great "Humies" problem because humans have basically given up on finding optimal colorings. Just waiting for a break-through.

No one has attacked Ramsey theory using EAs in even a remotely clever way.

Is there any hope?

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

Will EAs be able to make progress on finding lower bounds for Ramsey numbers? Definitely not if they are basically doing brute force!

Currently, the best lower bounds mathematics has come up with are non-constructive. They are proven to exist using probability theory. But just because humans can't find clever colorings doesn't mean computers can't.

If nothing else this is a good hard problem like TSP to test a new EA implementation on. It's a great "Humies" problem because humans have basically given up on finding optimal colorings. Just waiting for a break-through.

No one has attacked Ramsey theory using EAs in even a remotely clever way. Plenty of room for improvement.

Is there any hope?

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

Will EAs be able to make progress on finding lower bounds for Ramsey numbers? Definitely not if they are basically doing brute force!

Currently, the best lower bounds mathematics has come up with are non-constructive. They are proven to exist using probability theory. But just because humans can't find clever colorings doesn't mean computers can't.

If nothing else this is a good hard problem like TSP to test a new EA implementation on. It's a great "Humies" problem because humans have basically given up on finding optimal colorings. Just waiting for a break-through.

No one has attacked Ramsey theory using EAs in even a remotely clever way. Plenty of room for improvement. We finish with some ideas for how to do this.

Other attacks

Applying Genetic Algorithms to Ramsey

Theory
David
White Wesleyan University

Geoffrey Exoo (1998) used simulated annealing.

Other attacks

Applying Genetic Algorithms
to Ramsey
Theory
David
White Wesleyan University

Geoffrey Exoo (1998) used simulated annealing. Went from random search to Tabu search.

Other attacks

Applying Genetic Algorithms
to Ramsey
Theory

David
White
Wesleyan
University

Geoffrey Exoo (1998) used simulated annealing. Went from random search to Tabu search. The annealing was very fast, and he didn't play with that parameter,

Other attacks

Applying Genetic Algorithms
to Ramsey
Theory

David
White
Wesleyan University

Geoffrey Exoo (1998) used simulated annealing. Went from random search to Tabu search. The annealing was very fast, and he didn't play with that parameter, so there is room for improvement.

Other attacks

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

Geoffrey Exoo (1998) used simulated annealing. Went from random search to Tabu search. The annealing was very fast, and he didn't play with that parameter, so there is room for improvement. But he improved bounds on $R(5, t)$ for $9 \leq t \leq 15$

Other attacks

Applying Genetic Algorithms to Ramsey

Theory

David
White
Wesleyan University

Geoffrey Exoo (1998) used simulated annealing. Went from random search to Tabu search. The annealing was very fast, and he didn't play with that parameter, so there is room for improvement. But he improved bounds on $R(5, t)$ for $9 \leq t \leq 15$

Try the "evolving non-determinism" algorithm from sorting networks.

Other attacks

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

Geoffrey Exoo (1998) used simulated annealing. Went from random search to Tabu search. The annealing was very fast, and he didn't play with that parameter, so there is room for improvement. But he improved bounds on $R(5, t)$ for $9 \leq t \leq 15$

Try the "evolving non-determinism" algorithm from sorting networks. This found solutions lacking symmetry which the best humans missed.

Other attacks

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

Geoffrey Exoo (1998) used simulated annealing. Went from random search to Tabu search. The annealing was very fast, and he didn't play with that parameter, so there is room for improvement. But he improved bounds on $R(5, t)$ for $9 \leq t \leq 15$

Try the "evolving non-determinism" algorithm from sorting networks. This found solutions lacking symmetry which the best humans missed.

Be greedy but smart:

Other attacks

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

Geoffrey Exoo (1998) used simulated annealing. Went from random search to Tabu search. The annealing was very fast, and he didn't play with that parameter, so there is room for improvement. But he improved bounds on $R(5, t)$ for $9 \leq t \leq 15$

Try the "evolving non-determinism" algorithm from sorting networks. This found solutions lacking symmetry which the best humans missed.

Be greedy but smart: fill in as many edges in color 1 as possible first without monochromatic G_{1}.

Other attacks

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

Geoffrey Exoo (1998) used simulated annealing. Went from random search to Tabu search. The annealing was very fast, and he didn't play with that parameter, so there is room for improvement. But he improved bounds on $R(5, t)$ for $9 \leq t \leq 15$

Try the "evolving non-determinism" algorithm from sorting networks. This found solutions lacking symmetry which the best humans missed.

Be greedy but smart: fill in as many edges in color 1 as possible first without monochromatic G_{1}. While doing so, try to space out your edges to break up uncolored K_{n} 's

Other attacks

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

Geoffrey Exoo (1998) used simulated annealing. Went from random search to Tabu search. The annealing was very fast, and he didn't play with that parameter, so there is room for improvement. But he improved bounds on $R(5, t)$ for $9 \leq t \leq 15$

Try the "evolving non-determinism" algorithm from sorting networks. This found solutions lacking symmetry which the best humans missed.

Be greedy but smart: fill in as many edges in color 1 as possible first without monochromatic G_{1}. While doing so, try to space out your edges to break up uncolored K_{n} 's

Use a hierarchical GA:

Other attacks

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

Geoffrey Exoo (1998) used simulated annealing. Went from random search to Tabu search. The annealing was very fast, and he didn't play with that parameter, so there is room for improvement. But he improved bounds on $R(5, t)$ for $9 \leq t \leq 15$

Try the "evolving non-determinism" algorithm from sorting networks. This found solutions lacking symmetry which the best humans missed.

Be greedy but smart: fill in as many edges in color 1 as possible first without monochromatic G_{1}. While doing so, try to space out your edges to break up uncolored K_{n} 's

Use a hierarchical GA: solve smaller instances of the problem and then combine solutions.

Other attacks

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

Geoffrey Exoo (1998) used simulated annealing. Went from random search to Tabu search. The annealing was very fast, and he didn't play with that parameter, so there is room for improvement. But he improved bounds on $R(5, t)$ for $9 \leq t \leq 15$

Try the "evolving non-determinism" algorithm from sorting networks. This found solutions lacking symmetry which the best humans missed.

Be greedy but smart: fill in as many edges in color 1 as possible first without monochromatic G_{1}. While doing so, try to space out your edges to break up uncolored K_{n} 's

Use a hierarchical GA: solve smaller instances of the problem and then combine solutions. If $R\left(G_{1}, G_{2}\right)=n$ avoid an uncolored K_{n} when you have only 2 colors left.

References

Applying
Genetic
Algorithms
to Ramsey
Theory

David
White
Wesleyan University

Images from:
(1) New Mexico Supercomputing Challenge: http://www.challenge.nm.org/archive/0607/finalreports/07/
(2) Wolfram: www.mathworld.wolfram.com
(3) Mathematica Player 7 program: 'GraphsAndTheirComplements'
(1) Professor Tibor Szabó: http://www.ti.inf.ethz.ch/ew/teaching/tspz-01.html

