Talk 2: Model Categories

Motivation: Given \mathcal{C} & $\mathcal{W} \subseteq \text{Mor}(\mathcal{C})$, I want to send those maps to isomorphisms.

Define $\mathcal{C}^{\mathcal{W}^{-1}}(A, B) = \frac{\mathcal{W}}{A \rightarrow B}$.

But need to identify & group with idempotents & composites.

Problem: $\mathcal{C}^{\mathcal{W}^{-1}}(A, B)$ is not a set, so can't mod out by equivalences rel. Can pass to larger Grothendieck universe, but still have little control over the maps.

It works for $\mathcal{C} = \text{Top}$ & $\mathcal{W} = \{ f \mid \pi_0 f \text{ is iso} \}$.

Get $(\mathcal{C}^{\mathcal{W}^{-1}}) = \text{HoC}$. Same obj as Top, but morphisms are homotopy classes of maps.

Reasons why it works: Top has Whitehead Thm, CW path obj, cylinders. So can define homotopies nicely & lift ho-equiv. And nice projections (fibrations).

Quillen 1967 figured out the properties to generalize.

\mathcal{C} is a model category if it has (w, c, R), complete, \mathcal{W} 2/3, all closed under retractions, functorial factorization and lifting.

Term: "Trivial" \mathcal{W}, "acyclic" \mathcal{W}.

Covering homotopy prop, homotopy extension prop.

Any 2 of the 3 classes determine the third.

And: $\text{Ex}: \text{Top}, s\text{Set}, \text{Ch}(R), \text{S-mod}, \text{SymmCAlg}$, Motiv, Equiv, Morita's fields, retracts. Consider any morphism f of schemes over X, g on Set.
Constructing the Ho-Cat of a model Cat

\[a_f : B \rightarrow X \]
A cylinder obj for \(B \) is \(B \times B / \sim \)

A path obj for \(X \) is \(\xrightarrow{\Delta} X \times X \)

A left homotopy is \(H : B \rightarrow X \) \(w / H_0 = f, H_1 = g \)
A right homotopy is \(H : B \rightarrow X' \) \(w / H_0 = f, H_1 = g \)

In gen these need not agree, but key idea is that it's ok to work up to homotopy. So replace \(B \) by cofib obj \((\emptyset \rightarrow AB \rightarrow B) \)
replace \(X \) by fibrant \((X \rightarrow RAX \rightarrow X) \)

Now it's an equiv. relation on \(C_{\infty} \) & \(f \sim g \Leftrightarrow f \cdot g \)

\(C(QRX, ORY) / \sim \cong HoC(XX, X'Y) \cong C(RAX, RAY) / \sim \)

Thus: \(HoC \cong C_{\infty} / / \) as categories

\(f \) is we in \(C_{\infty} \) iff \(F \cdot f \mid F \) is HoEquiv.

How To Build Them

In \(Top \), \(W \) weak hom equiv, \(F \) Serre fibrations i.e.

\[\xrightarrow{D^n} E \]
\[B \times I \rightarrow B \]

So somehow \(D^n \rightarrow D^n \times I \) generates \(QM^W \)

Also all \(Q \) gen by \(S^m \rightarrow D^n \times I \) 'build cells'

\(M \) is cofibrantly generated i f \(\exists \) sets of maps \(J, J, s \)

\[F = J - \text{im} = RLP(J), W \mid F = I - \text{im} \]
\(dom(\text{I}) \) small rel I-cell,
\(dom(J) \) small rel J-cell

\(A \) is \((J) \) small rel class of maps \(D \rightarrow F \) (A -) conn w/ \(X \rightarrow X_0 \rightarrow X_1 \)

Where maps in \(D \) rel I-cells, transf comp of pushd maps in I
Talk 2 (cont.)

Defn of cof gen is exactly to make the small obj arg work. This is a transfinite construction of a functional factorization. You use that to build M from JFP. You also use it to construct $Bous. Loc$ (basically).

Ex: Top

Ex: Set

Ex: $\forall i,j \in \mathbb{N}, \Delta[i] \rightarrow \Delta[j] \& \Lambda[i] \rightarrow \Delta[i]$

J of Δ is Adymp. Extensions (non-red.)

Ex: $\Delta[n]$ is a closed star & \mathbb{R}

Omit interior of $\Delta[n]$ & \mathbb{R} dim face opp.

Ex: $\mathbb{C}h(R) = \text{unbounded chain complexes}$

$I = S^{n} \rightarrow \mathbb{R}^{n}$, $J = 0 \rightarrow \mathbb{R}^{n}$

$S^{n}(M)$ is $D^{n}/M.$

Model Struct: $W =$ homology iso's

$F =$ surjections

$(Q = \text{dim. wise split, mj w/ pos. part})$

Also have new W, W' & $Q =$ injections

Quillen Pair

Ex: Diagram Cat's w/ Rej Model Struct

$\mathbb{C} = \text{Quillen Pair}$

$F_{\mathbb{C}}$ pres $Q_{\mathbb{C}} \& ANW$

Quill. Equiv. $F_{\mathbb{C}}$ pass to equiv on Ho Cat's

Derived

$HoC \xrightarrow{RF} HoD$

LF is $HoC \xrightarrow{RF} HoL \xrightarrow{Q}$ HoD

Ex: $F = \text{id} \Rightarrow LF = Q(-)$, $RU = R(-)$
Monoidal Model Cts

Defn: Monoidal category which is model category plus coherence b/t:

1. **Product Axiom**
 - Let \(f : A \to B, g : X \to Y \)
 - \(A \otimes X \to A \otimes Y \)
 - If \(f, g \in Q \) then \(f \circ g \in Q \)
 - Further, if either for \(g \in W \) then \(f \circ g \in W \)

 (This guarantees \(\text{Hom} \) is monoidal, \([X \otimes Y] := [x] \otimes [y] \) well def)

2. **Unit Axiom**
 - Let \(S \) be unit, \(X \) cofibrant.
 - Then \(X \otimes QS \to X \otimes S = X \) is w.e.

 (This gets \([S] \) to be unit for \(\text{Ho} \text{M} \))

- **Monoidal Functor needs** \(F \otimes FY \to F(X \otimes Y) \) \& \(FS \to S \)
- **Monoidal Quillen needs** \(FQS \to QS \)
- It's "closed" if \(\text{internal hom objects} \) \(\text{Hom}(X, Y) \in M \) plus \(\text{Hom} \) adjoint.

Dual & Equiv. Condition: \(g : W \to X, p : Y \to Z \) give

\[\text{Hom}(X, Y) \to \text{Hom}(X, Z) \times \text{Hom}(W, Y) \]

is fibrant & triv. if either \(g \) or \(p \) is triv.

- **Ex.:** \((sSet, \times)\)
 - \((\text{Top}, \times)\) if we use compactly gen. spaces so that \(\text{Hom}(X, Y) \) gets compact-gen top

- **Ex.** \(\text{Ch}(\mathbb{R}) \) with \((X \otimes Y)_n = \bigoplus (X_k \otimes_k Y_{n-k}) \)

\[d(x \otimes y) = dx \otimes y + (-1)^k x \otimes dy \]

Closed Symmetric monoidal if \(\exists \text{ unital iso } \mathbb{2} (x \otimes y) \cong Y \otimes X \forall X, Y \)

- **Ex.** \(\text{Ch}(\mathbb{R}) \) has \(\mathbb{2}(x \otimes y) = (-1)^{|x|} y \otimes x \)

\[\text{Price to move } x \text{ past } y \text{ is } \text{track of } d \text{ by } x \]

(Analogy to \(\text{Sym} \text{Spectra} \) \& \(\mathbb{E}_n, x \otimes (-) \))

In monoidal cat can define monoids & comm. monoids, if you want model cat
of Comm. mon. use Shipley's Positive Sym. Spectra (but then \(S \) not cofib). E.g. Comm