
LECTURE NOTES

DAVID WHITE

1. Motivation for Spectra 1

It is VERY hard to compute homotopy groups. We want to put as much algebraic structure as
possible in order to make computation easier. You can’t add maps in HoTop but you can in Spectra
(i.e. Spectra is an Ab-category). The motivation to go to S−Alg = HoS then becomes that you
want an abelian category

We want to study the ring-like objects that arise in this category. “Ring-like” means ring-object,
i.e. using the lens of category theory. They have no points, so you can’t do traditional algebra. To
measure complexity of these we’ll use dimension.

2. Algebraic Motivation: why we care about dimension

Moral: Algebra ⊆ Homological Algebra ⊆ Stable Homotopy Theory

The simplest rings are fields, which clearly have Krull dim zero because no ideals. Dimension is
telling us about complexity. For us, Krull dim fails because no points or ideals.

Note: Krull dim is the max length of a chain of prime ideals P0 ⊂ P1 ⊂ . . . . Zero ideal not
prime.

Dimension gives amazing theorems in algebra:

R is semisimple iff all modules over R are projective iff R is a direct sum of simple submodules.
My favorite way to define such a ring as one with global dimension zero

Semisimple implies Artinian and Noetherian.

Theorem 1 (Artin-Wedderburn Theorem). R is semisimple iff R = R1 × · · · × Rn where Ri =
Mn(D) for D a division algebra

Maschke’s Theorem says k[G] is semisimple, so it sufficies to study irreducible representations

Theorem 2 (Serre’s Theorem). If commutative R has finite global dimension then R is regular,
i.e. for all prime P, the min number of generators for M⊂ RP is Krull dim(RP).

Cool fact: Commutative Noetherian local R is a regular local iff gl.dim(R) =Krull dim(R) <
∞.
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3. Global Dimension

We say module P is projective if:

P

��∃~~|
|

|
|

M // N // 0

A module M is flat if the functor −⊗RM is exact.

A projective resolution of M is · · · → Pn → · · · → P2 → P1 → P0 → M → 0, with all the Pi’s
projective.

Definition 1. Projective dimension = pd(M) = min. length of a projective resolution.

Ex: If P is projective, pd(P ) = 0 since · · · → 0→ 0→ P → P → 0 is a projective resolution.

Ex: For R = Z, pd(Z/n) = 1 since · · · → 0→ Z→ Z→ Z/n→ 0 is minimal projective resolution,
where the first map is mult by n and the second is quotient. THIS SHOWS pd(Z/n) ≤ 1. TO
SHOW IT’S NOT 0, NOTE THAT IT CAN’T BE A SUMMAND OF A FREE MODULE.

Definition 2 (Right Global Dimension). r.gl.dim(R) = sup{pd(M) |M ∈ R−mod}

Ex: r.gl.dim(k[x1, . . . , xn]) = n because of the module (x1, . . . , xn)

Ex: r.gl.dim(k[x]/(x2)) =∞ because k is an R-module and the minimal projective resolution is an
infinite chain · · · → k[x]/(x2)→ k[x]/(x2)→ k → 0, where each map takes x→ 0 and 1→ x.

Definition 3 (Weak Dimension). r.w.dim(R) = sup{fd(M) |M ∈ R−mod}

Projective ⇒ Flat, so r.w.dim(R) ≤ r.gl.dim(R). If R is Noetherian then w.dim(R) = r.gl.dim(R)
because fd(M) = pd(M) for all M .

R is Von Neumann Regular iff w.dim(R) = 0 iff all modules over R are flat.

R =
∏∞
i=0 F2 is Von Neumann Regular but not Semisimple.

r.gl.dim(R) = 1 implies submodules of projective modules are projective. This is the next simplest
ring after a semisimple ring. Ex: all PIDs.

w.dim(R) = 1 implies submodules of flat modules are flat.

4. Definitions

Definition 4 (Spectrum). A spectrum X is a sequence (Xi) of topological spaces (path conn. CW-
complexes) with maps from ΣXi → Xi+1 where Σ is reduced suspension. ΣX is shift.

Example: For any space X, Z = Σ∞X is the spectrum with Zi = ΣiX, and εi homeomorphism for
all i. So we recover SPACES INSIDE RING SPECTRA

Example: the sphere spectrum S = (Sn) = Σ∞S0. NOTE: We’ve erased dimension, but we have
no points.

For spectrum X, X∗ = π∗(X) = [Σ∗S,X]. S∗ is homotopy groups of spheres.
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ΣXi
//

��

Xi+1

��

S ∧Xn
//

��

Xn+1

��
ΣYi // Yi+1 S ∧ Yn // Yn+1

i.e. maps in the category f must play nicely with εn and S ∧ −.

π∗ is a functor to the category of graded rings. Smash product because of Sn ∧ Sm ∼= Sn+m

Example: Singular cohomology theory Hn(−) is a spectrum. Hn(X; Λ) ∼= [X,K(Λ, n)]

πm(K(Λ, n)) =
{

Λ if m = n
0 otherwise

For all R, the Eilenberg-MacLane spectrum HR has (HR)n = K(R,n). Well-known: K(R,n−1) '→
ΩK(R,n). This gives ΣK(R,n− 1)→ K(R,n).

Example: Any cohomology theory is a ring spectrum, e.g. HQ.

(HR)∗ = [S,HR] ∼= R, so we recover RINGS INSIDE RING SPECTRA

For RINGS R with identity e and mult µ:

R×R×R
µ×1R

//

1R×µ
��

R×R
µ

��

(a, b, c) � µ //
_
µ

��

(ab, c)
_
µ

��
R×R

µ // R (a, bc) � µ // abc

{e} ×R � �

u×1
//

proj
%%KKKKKKKKKKK

R×R
µ

��

R× {e}? _

1×u
oo

proj
yysssssssssss

R

Definition 5 (Ring Spectrum). A ring spectrum E is a generalized cohomology theory with a
cup product that is associative up to infinitely coherent homotopy. E comes with ∧ : E × E → E
and u : S → E.

E × E × E ∧×1
//

1×∧
��

E × E
∧

��

S × E
u×1

//

proj
%%LLLLLLLLLLL E × E
∧

��

E × S
1×u

oo

proj
yytttttttttt

E × E ∧ // E E

An S-algebra E is an S-module because we have S ∧ E → E. In particular, Si ∧ (Sj ∧ E) ∼=
(Si ∧ Sj) ∧ E ∼= Si+j ∧ E.

KRULL DIM FAILS HERE BECAUSE NO POINTS. SO NEED HOMOLOGICAL DIM.

An E-module X has E ∧X → X satisfying the usual action rule.
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5. Derived Category

The correct category to study modules over an S-algebra E is D(E). Objects are E-modules, maps
from M1 to M2 are {S−algebra morphisms:M1 →M2}/ ∼ where f ∼ g if f = g ◦ s−1 and s∗ is an
isomorphism.

CORRECT CATEGORY because triangulated. It’s also compactly generated and has derived
tensor products and derived Hom objects.

Definition 6. A map f : X → Y in D(E) is ghost if f∗ = 0

Such maps CANNOT BE SEEN BY π∗

EXAMPLE: any map from HR → ΣkHR is ghost if k > 0 because πn(HR) = R iff n = 0, so
πn(ΣkHR) = πn−k(HR) = 0

We have a categorical equivalence: D(HR) ∼= D(R)

X ∈ D(E) is projective iff X∗ is a projective E∗-module. Define pd(X) = 1. Projective E∗-
modules are realizable.

Definition 7. pd(X) ≤ n + 1 iff Y → P → X̃ → ΣY with P projective, pd(Y ) ≤ n, and X a
retract of X̃.

6. Dimensions of Ring Spectra

Definition 8. pd(X) ≤ n+ 1 iff Y → P → X̃ → ΣY with P projective, pd(Y ) ≤ n, X a retract of
X̃

Definition 9. r.gl.dim(E) = sup{pd(X) | X ∈ D(E)}

Definition 10 (Ghost Dimension). gh.dim(E) = sup{pd(X) | X ∈ D(E) is compact}

Proposition 1. X ∈ D(E) is projective iff the natural map D(E)(X,Y ) → HomE∗(X∗, Y∗) is iso
for all Y

We use this in practice all the time, especially to show when ghosts are null.

Proposition 2. pd(X) ≤ n iff every composite of n+1 ghosts fn+1◦· · ·◦f1 is null where Dom(f1) =
X. This holds iff Es,t2 = Exts,tE∗

(X∗, Y∗)⇒ D(E)(X,Y )t−s has Es,∗∞ = 0 ∀ s > n

Here we have algebra on the E2 term converging to topology on the E∞ term.

EXAMPLE: gh.dim(S) =∞. Suppose it’s n <∞. Then you need an S-module X with pd(X) ≥
n+1, i.e. find a chain of n ghosts out of X which is non-null. Any spectrum is an S-module. Turns
out you can take X = Σ∞RP k for large k and use the Steenrod Squares, which are well-studied
maps that turn out to be ghost.

7. Analogy to Ring Theory Holds

Recall: depth(R) = length of the longest regular sequence ((x1, . . . , xn) s.t.
∑
xiR 6= R and xi

not a zero-divisor in R/(x1R+ · · ·+ xi−1R))

Theorem 3. If E is a commutative S-algebra then depth(E∗) ≤ gh.dim(E) ≤ min{w.dim(E∗),r.gl.dim(E) ≤
r.gl.dim(E∗)
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Fact: gh.dim(E) ≤ r.gl.dim(E)

Fact: r.gl.dim(E) =r.gl.dim(E∗). Also, gh.dim(E) =gh.dim(E∗).

Fact: If E = HR then r.gl.dim(E) =r.gl.dim(R). Same for weak dim...Example of E of gl.dim n is
HR for R = k[x1, . . . , xn].

We have everything except the first inequality. It’s an induction on n. Given a regular sequence,
realizeR/(x1, . . . , xn), then use the Universal Coefficient Spectral Sequence and an Ext computation
to get some Es,t∞ 6= 0 for s = n, so gh.dim(E) ≥ n

E∗ semisimple ⇒ E semisimple. Converse fails because of a DGA with homology k[x]/(x2). DGA
is equiv to an HZ-algebra and these are types of spectra. HoDGA↔ D(HZ)

Theorem 4. If E is a commutative S-algebra and E∗ is Noetherian with gl.dim(E∗) < ∞ then
gh.dim(E) =r.gl.dim(E) = r.gl.dim(E∗)

Proof: depth = gl.dim so the chain of inequalities collapses to equalities. Let R = E∗. Then
gl.dim(R) < ∞ ⇒ R is regular (all localizations RP are regular local rings). For regular rings,
Krull dim = depth (Regular ⇒ Cohen-Macaulay) and Krull dim = gl.dim

We need to have the Noetherian condition on E∗ because without IDEALS we have no definition
for E to be Noetherian.

8. Analogy to Ring Theory Almost Holds

Theorem 5. A semisimple S-algebra E with E∗ commutative has E∗ ∼= R1 × · · · ×Rn where each
Ri is either a graded field k or an exterior algebra k[x]/(x2) over a graded field k

Corollary: r.gl.dim(E) = 0 ⇒ E∗ is quasi-Frobenius, hence 0-Gorenstein, i.e. R is commutative
Noetherian and has injective dimension 0 as an R-module.

Conjecture: r. gl. dim(E) = n⇒ E∗ is n-Gorenstein.

Theorem 6. Suppose E → F in S-alg gives F∗ free over E∗. Then gh. dim(E) ≤ gh.dim(F )

Proof: Because F∗ is flat over E∗ we have F∗ ⊗E∗ X∗ → (F ∧E X)∗ is an iso. Thus, F ∧E (−)
preserves ghosts. Let g be a composite of n ghosts. Because F∗ is free over E∗ we know F ∧E X is
a coproduct of copies of X as an E-module, so g is a restriction of F ∧E g. This means we can’t
have F ∧E g = 0 unless g 6= 0.

9. Analogy to Ring Theory Fails

KO is 2-local periodic real K-theory

KO∗ = Z(2)[η, w, v, v−1]/(η3, 2η, wη,w2 − 4v) where 〈η〉 = π1(KO), 〈w〉 = π4(KO), 〈v〉 = π8(KO).
Infinite global dim.

ko is 2-local connective real K-theory

KO = v−1ko, specifically it’s the direct limit of ko ·v→ Σ−8ko
·v→ . . .

ko∗ = Z(2)[η, w, v]/(η3, 2η, wη,w2 − 4v)

Theorem 7. 1 ≤ gl.dimKO ≤ 3 and 4 ≤ gl.dim ko ≤ 5
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Lower bound: Sq2Sq1Sq2Sq1 6= 0 for ko−module ko ∧A(1).

Upper bound: Follow Bousfield and view aKO−module as a CRT-module where CRT= {KO∗,K∗,KSC∗}
stands for complex, real, self-conjugate K-theory (KSC = KT )

Show that for any KO−module X, a composite of four ghosts out of X is null (uses fact that CRT-
module is “built from KO” via K = KO∧C(η) and KSC = KO∧C(ηn)). For any ko−module Z, a
composite of 6 ghosts out of Z is null because too high filtration in Es,t2 = Exts,tcrt(π

crt
∗ (X), πcrt∗ (Y ))⇒

D(ko)(X,Y )t−s

Thus, gl.dim E∗ =∞ means we cannot apply our theorems

More general “build from” statement does exist (here we built ku from ko ∧ C(η)):

Theorem 8. If E is an S-algebra and X is a spectrum s.t. r.gl.dim(E ∧X) = m, pd(X) = k, and
S can be built from X in ` steps then gl.dim(E) ≤ (k + 1)(`+ 1)(m+ 1)− 1

HF∗2(KO) = [KO,HF2]∗ = maps of spectra. This is an A−module but not a ring. It’s zero.

(HF2)∗(KO) = π∗(HF2 ∧KO) = [S0, HF2 ∧KO]. It’s zero.

Cor: r. gl.dim(E) = n 6⇒ E∗ is n-Gorenstein. A counterexample is KO because it’s not n-
Gorenstein for any n. We can see this because Gorenstein is a special case of Cohen-Macaulay,
and KO∗ is not Cohen-Macaulay: Krull dim = 1 (prime ideals are (η) and (η, 2, w)...maximal)
but Depth = 0 (no non-zero divisors in the maximal ideal, so if x is any non-unit then x is a zero
divisor, so no regular sequences at all).
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