INVARIANT THEORY OF FINITE GROUPS

DAVID WHITE

Let k have characteristic zero and let G < GL(n, k) be finite. We’ll use the following notation:

1

(x1,...,xy) = | * | and k[f1,..., fn] is the ring of polynomial expressions in fi,..., f,, with
Tn

coefficients in k. It’s a subring of k[z1,...,z,].

1. BASIC DEFINITIONS AND QUESTIONS

Definition 1. f(x) € k[z] is invariant under G if f(x) = f(A-x) for all A € G. The
ring of invariants is the subring k[z]% of such polynomials.

Lemma 1. If G = (Ay,..., Ay) then f € k[z]® iff f(x) = f(A1-x)=--- = f(Am -X)
Proof. Straight-forward induction on m. O

As an example, let’s compute the ring of invariants for a the Klein four-group

A (- (D6 8)

The previous lemma tells us that a polynomial f € k[x,y] is invariant under Vj if and only if

ran=1(3 1) [5]) = e ama s =1(fg 4| [2]) = st w0

f(x7y) - f(—a?,y) g Zaijxiyj = Zaij<_x)iyj = Z(—l)iaijxiyj
i i

ij

This occurs iff i is even. Similarly f(z,y) = f(z,—y) iff j is even. So f(z,y) = g(22,4?), i.e
klo,y)" = k[a?,y°].

Another example is k[z]* which is the ring of symmetric functions (i.e. f s.t. f(zi,,..., ;) =
f(x1,...,x,) for all permutations i, ...,i, of 1,...,n)

Two fundamental questions: Finite Generation and Uniqueness
2. FINITE GENERATION

Definition 2. The Reynolds operator of G is the map Rq : k[z] — k[z] defined by the formula

Ra(f(x)) = Ra(f \G\ZfAX

AeG

We can think of Rg(f) as measuring the average effect of the group G on a polynomial f.
1
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Proposition 1. If f € k[z], then Rg(f) € k[z]®
Proof. Show that Ra(f)(B-x) = Ra(f)(x) for all B € G. Because G is a group, {A € G} = {AB:

A e G}, so
Y fA-x)= > f(AB-x)

AeG ABeG

Proposition 2. f € k[z]” = Ra(f) = f. Also, Rg acts k-linearly
This is clear from the definition (f(Ax) = f(x) for all A € G).
The Reynolds operator gives us a way to compute invariants.
1
2 L 9 2, .2 2 L o 9 2

Ry, (z%) = Z(w + (—z)" + 2+ (—x)°) = 1(43} Y=

1 1
(2%° + (=%’ + 2%(—9)° + (—0)*(=p)*) = (2% — 20°y") = 0 € [z, y]"

4
Theorem 1. k[z]® = k[Rg(x") : |8] < |G]].

RV4( 2 3)

This theorem implies k[@]G is generated over k by finitely many homogeneous invariants.

Proof. Every invariant f = Rq(f) = Ra(>_, cax®) = >, caRc(2?) so only consider monomials.
A; is the i-th row of A € G and a = (a1, ..., ). Define (A-x)* = (A1 -x)* --- (4, - x)*"

Define S), = Z (u1 Ay -x+ -+ upAy - x)k = Z bo R (z®)u®
AeG la|=F

where the u; are new variables we introduce to prevent cancellation. These S}, are symmetric.

Define y; = u1 Ay - x + -+ + up Ay, - x where ¢ runs from 1 to |G|. By the Theorem of Gauss on

elementary symmetric functions, Sy = F(y1,...,9|g|) for some polynomial F' with coeffs in k.
Therefore Z bo R (z%)u® = Z bgRa(x Z bgRa(x )
|a|=F 1Bl=1 181=IG]
Expand the right side to get b,Rg(2z%)u® as a polynomial in the Rg(z?). O

This answers Finite Generation. But it can be hard to compute the Reynolds operator for so many
polynomials
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3. FINDING THE GENERATORS

From hereonlet F' = (f1,..., fm)and Jp = (fi—vy1, s fmn—Ym) C k[T1, -, Tny Y1y -« s YU
How we can check if f € k[z] is in k[z]¥ and how to write f in terms of fi,..., fi.

Fix a monomial order in k[x1,...,Zn,y1,...,Ymn] where any monomial involving an x; is greater
than all monomials in k[y].

Proposition 3. Let B be a Grébner basis for Jp and let g = f mod B. Then f € k[fi1,..., fn] if
and only if g € kly]. Furthermore, if this is the case f = g(fi,..., fm).

Proof. Let B={g1,...,9¢}. Then f = Ajg1+- - -+ Apge+g for some A;, g € k[x1,...,Zn, Y1, -, Ym]-
(<) : Given g € k[y], note that substituting f; for y; in the above formula does not affect f but

sends every polynomial in J to zero, including g¢i,...,gs. This leaves us with f = g, showing
f € k[f1,..., fn]. This substitution proves the remark.

(=): Given f = h(fi,..., fm) for some h € k[y], note that we can write f = h(f1,..., fm) =

h(y1, - ym) + D1(f1 —y1) + -+ + D (fim — ym) after some algebraic manipulations.
Let B = BNnkly] = {g1,...,9x} for k < ¢ after relabeling. Let i’ = h mod B’. Then f =

R (Y1, ym) + Dy(fi — 1) + -+ + Do, (fm — ym) and no term of A’ is divisible by an element of
LT(B). This proves that b’ = g so g € k[y]. O

4. UNIQUENESS

Uniqueness fails iff g1(f1,..., fm) = g2(f1,..., fm) for gi1,92 € k[y] iff A(f1,..., fr) = 0 where
h=g1 — ga

Define the ideal of relations as Ir = {h € kly] : h(f1,...,fm) = 0in k[z]}, where F =

(f1,---, fm). It’s prime because char(k) = 0. It captures all algebraic relations among the f;.

Proposition 4. Suppose f = g(f1,..., fm) € k[z] is one representation of f. Then all such
representations are given by f = g(fi,..., fm)+ h(f1,..., fm), as h varies over Ip.

Corollary 1. A given element f € k[z]® can be written uniquely in terms of f1,..., fm iff Ir = {0}

Proposition 5. Ir = JpNkly] and if B is a Grébner basis of Jp then BN k[y] is a Grébner basis
for Ip.

Proof. The proof of (1) is similar to the our earlier proof. Then (2) is elimination theory. O

Fixing a Grobner basis gives us a unique remainder, so even if Ir # {0} we can find a unique
representative mod G for each f; and so get an essentially unique generating set.

5. GEOMETRIC APPLICATIONS

Define Vp = V(Ip) C A}'. Then Vr is a variety because Ir is prime. Also, Ir = I(VF).
Proposition 6. k[Vy] = k[y]/Ir = k[z]®

Proof. The first isomorphism is true because Ir = I(Vr).

The second can be defined by a map ¢ : k[y|/Ir — k[z]% s.t. ¢([g]) = g(f1,-.. fm). It’s a surjective
ring homomorphism, so use the First Isomorphism Theorem. U
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Corollary 2. Suppose that k[z]% = k[f1,..., fa] = k[f],..., f,]. Then V& C k™ and Vi C k™
are isomorphic.

So VF is unique up to isomorphism.
Proof. This follows from applying the above twice and by transitivity of isomorphism. O

Suppose now that k is algebraically closed and k[z]% = k[f1,..., fal.

Theorem 2. (1) The map F : k™ — Vi defined by F(a) = (fi(a),..., fm(a)) is surjective.
Geometrically this means that the parametrization y; = fi(x1,...,x,) covers all of V.

(2) The map sending the G-orbit G - a C k™ to the point F(a) € Vg induces a one-to-one
correspondence A" /G = V.
Proof. Part (1) will follow from elimination theory and two lemmata:
(1) There are invariants g1, ..., g|q| € k[z]“ such that fIG! 4 gy fIC1=1 4. 4 9| = 0.
This is proven by multiplying out [],.» X — f(A - x) and factoring.
(2) For each i there is a p; € Jp Nk[z1,...,Zn, Y1, .., Ym] such that p; = xLGLi— terms in which
z; has degree < |G].
This is proven inductively.
For part (2) define F : k"/G — Vp s.t. G -a— F(a). Prove it’s well-defined (easy) and 1-1...
Take G -a and G - b and construct invariant g s.t. g(a) # g(b).

0 A-a#a
h(A-a):{ h(a)#0 A-a=a

Set g = Rg(h) and note that h(A-b) = 0. Then g(b) = 0 and g(a) = %f(a) # 0. Here M is
the number of elements A € G such that A-a = a and s.t. g takes different values on each of the
starting orbits. O

Summary: We solved the finite generation and uniqueness problems. We moved into geometry and
established the ring isomorphism between k[Vr| and k[z]®. Finally, A"/G = V. The next step is
to take other interesting objects (not just G-orbits) and give them the structure of affine varieties
in a similar way.
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