INVARIANT THEORY OF FINITE GROUPS

DAVID WHITE

Let k have characteristic zero and let $G \leq \mathrm{GL}(n, k)$ be finite. We'll use the following notation:
$\left(x_{1}, \ldots, x_{n}\right)=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$ and $k\left[f_{1}, \ldots, f_{n}\right]$ is the ring of polynomial expressions in f_{1}, \ldots, f_{m} with coefficients in k. It's a subring of $k\left[x_{1}, \ldots, x_{n}\right]$.

1. Basic Definitions and Questions

Definition 1. $f(\mathbf{x}) \in k[\underline{x}]$ is invariant under G if $f(\mathbf{x})=f(A \cdot \mathbf{x})$ for all $A \in G$. The ring of invariants is the subring $k[\underline{x}]^{G}$ of such polynomials.
Lemma 1. If $G=\left\langle A_{1}, \ldots, A_{m}\right\rangle$ then $f \in k[\underline{x}]^{G}$ iff $f(\mathbf{x})=f\left(A_{1} \cdot \mathbf{x}\right)=\cdots=f\left(A_{m} \cdot \mathbf{x}\right)$
Proof. Straight-forward induction on m.
As an example, let's compute the ring of invariants for a the Klein four-group

$$
V_{4}=\left\{\left(\begin{array}{cc}
\pm 1 & 0 \\
0 & \pm 1
\end{array}\right)\right\}=\left\langle A=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), B=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right\rangle
$$

The previous lemma tells us that a polynomial $f \in k[x, y]$ is invariant under V_{4} if and only if

$$
\begin{gathered}
f(x, y)=f\left(\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=f(-x, y) \text { and } f(x, y)=f\left(\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=f(x,-y) . \\
f(x, y)=f(-x, y) \Leftrightarrow \sum_{i j} a_{i j} x^{i} y^{j}=\sum_{i j} a_{i j}(-x)^{i} y^{j}=\sum_{i j}(-1)^{i} a_{i j} x^{i} y^{j}
\end{gathered}
$$

This occurs iff i is even. Similarly $f(x, y)=f(x,-y)$ iff j is even. So $f(x, y)=g\left(x^{2}, y^{2}\right)$, i.e. $k[x, y]^{V_{4}}=k\left[x^{2}, y^{2}\right]$.
Another example is $k[\underline{x}]^{S_{n}}$ which is the ring of symmetric functions (i.e. f s.t. $f\left(x_{i_{1}}, \ldots, x_{i_{n}}\right)=$ $f\left(x_{1}, \ldots, x_{n}\right)$ for all permutations i_{1}, \ldots, i_{n} of $\left.1, \ldots, n\right)$
Two fundamental questions: Finite Generation and Uniqueness

2. Finite Generation

Definition 2. The Reynolds operator of G is the map $R_{G}: k[\underline{x}] \rightarrow k[\underline{x}]$ defined by the formula

$$
R_{G}(f(\mathbf{x}))=R_{G}(f)(\mathbf{x})=\frac{1}{|G|} \sum_{A \in G} f(A \cdot \mathbf{x})
$$

We can think of $R_{G}(f)$ as measuring the average effect of the group G on a polynomial f.

Proposition 1. If $f \in k[\underline{x}]$, then $R_{G}(f) \in k[\underline{x}]^{G}$.

Proof. Show that $R_{G}(f)(B \cdot \mathbf{x})=R_{G}(f)(x)$ for all $B \in G$. Because G is a group, $\{A \in G\}=\{A B$: $A \in G\}$, so

$$
\sum_{A \in G} f(A \cdot \mathbf{x})=\sum_{A B \in G} f(A B \cdot \mathbf{x})
$$

Proposition 2. $f \in k[\underline{x}]^{G} \Rightarrow R_{G}(f)=f$. Also, R_{G} acts k-linearly

This is clear from the definition $(f(A \mathbf{x})=f(\mathbf{x})$ for all $A \in G)$.
The Reynolds operator gives us a way to compute invariants.

$$
\begin{gathered}
R_{V_{4}}(f(x, y))=\frac{1}{4}(f(x, y)+f(-x, y)+f(x,-y)+f(-x,-y)) \\
R_{V_{4}}\left(x^{2}\right)=\frac{1}{4}\left(x^{2}+(-x)^{2}+x^{2}+(-x)^{2}\right)=\frac{1}{4}\left(4 x^{2}\right)=x^{2} \\
R_{V_{4}}\left(x^{2} y^{3}\right)=\frac{1}{4}\left(x^{2} y^{3}+(-x)^{2} y^{3}+x^{2}(-y)^{3}+(-x)^{2}(-y)^{3}\right)=\frac{1}{4}\left(2 x^{2} y^{3}-2 x^{2} y^{3}\right)=0 \in k[x, y]^{V_{4}}
\end{gathered}
$$

Theorem 1. $k[\underline{x}]^{G}=k\left[R_{G}\left(\mathbf{x}^{\beta}\right):|\beta| \leq|G|\right]$.
This theorem implies $k[\underline{x}]^{G}$ is generated over k by finitely many homogeneous invariants.

Proof. Every invariant $f=R_{G}(f)=R_{G}\left(\sum_{a} c_{a} x^{a}\right)=\sum_{a} c_{a} R_{G}\left(x^{a}\right)$ so only consider monomials. A_{i} is the i-th row of $A \in G$ and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. Define $(A \cdot \mathbf{x})^{\alpha}=\left(A_{1} \cdot \mathbf{x}\right)^{\alpha_{1}} \cdots\left(A_{n} \cdot \mathbf{x}\right)^{\alpha_{n}}$

$$
\text { Define } S_{k}=\sum_{A \in G}\left(u_{1} A_{1} \cdot \mathbf{x}+\cdots+u_{n} A_{n} \cdot \mathbf{x}\right)^{k}=\sum_{|a|=k} b_{a} R_{G}\left(x^{a}\right) u^{a}
$$

where the u_{i} are new variables we introduce to prevent cancellation. These S_{k} are symmetric.
Define $y_{i}=u_{1} A_{1} \cdot \mathbf{x}+\cdots+u_{n} A_{n} \cdot \mathbf{x}$ where i runs from 1 to $|G|$. By the Theorem of Gauss on elementary symmetric functions, $S_{k}=F\left(y_{1}, \ldots, y_{|G|}\right)$ for some polynomial F with coeffs in k.

$$
\text { Therefore } \sum_{|a|=k} b_{a} R_{G}\left(x^{a}\right) u^{a}=F\left(\sum_{|\beta|=1} b_{\beta} R_{G}\left(x^{\beta}\right) u^{\beta}, \ldots, \sum_{|\beta|=|G|} b_{\beta} R_{G}\left(x^{\beta}\right) u^{\beta}\right) \text {. }
$$

Expand the right side to get $b_{a} R_{G}\left(x^{a}\right) u^{a}$ as a polynomial in the $R_{G}\left(x^{\beta}\right)$.

This answers Finite Generation. But it can be hard to compute the Reynolds operator for so many polynomials

3. Finding the generators

From here on let $F=\left(f_{1}, \ldots, f_{m}\right)$ and $J_{F}=\left\langle f_{1}-y_{1}, \cdots, f_{m}-y_{m}\right\rangle \subset k\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]$
How we can check if $f \in k[\underline{x}]$ is in $k[\underline{x}]^{G}$ and how to write f in terms of f_{1}, \ldots, f_{m}.
Fix a monomial order in $k\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]$ where any monomial involving an x_{i} is greater than all monomials in $k[y]$.
Proposition 3. Let B be a Gröbner basis for J_{F} and let $g=f \bmod B$. Then $f \in k\left[f_{1}, \ldots, f_{n}\right]$ if and only if $g \in k[\underline{y}]$. Furthermore, if this is the case $f=g\left(f_{1}, \ldots, f_{m}\right)$.

Proof. Let $B=\left\{g_{1}, \ldots, g_{\ell}\right\}$. Then $f=A_{1} g_{1}+\cdots+A_{\ell} g_{\ell}+g$ for some $A_{i}, g \in k\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]$.
$(\Leftarrow):$ Given $g \in k[\underline{y}]$, note that substituting f_{i} for y_{i} in the above formula does not affect f but sends every polynomial in J to zero, including g_{1}, \ldots, g_{ℓ}. This leaves us with $f=g$, showing $f \in k\left[f_{1}, \ldots, f_{n}\right]$. This substitution proves the remark.
(\Rightarrow) : Given $f=h\left(f_{1}, \ldots, f_{m}\right)$ for some $h \in k[\underline{y}]$, note that we can write $f=h\left(f_{1}, \ldots, f_{m}\right)=$ $h\left(y_{1}, \ldots, y_{m}\right)+D_{1}\left(f_{1}-y_{1}\right)+\cdots+D_{m}\left(f_{m}-y_{m}\right)$ after some algebraic manipulations.
Let $B^{\prime}=B \cap k[y]=\left\{g_{1}, \ldots, g_{k}\right\}$ for $k \leq \ell$ after relabeling. Let $h^{\prime}=h \bmod B^{\prime}$. Then $f=$ $h^{\prime}\left(y_{1}, \ldots, y_{m}\right)+\overline{D_{1}^{\prime}}\left(f_{1}-y_{1}\right)+\cdots+D_{m}^{\prime}\left(f_{m}-y_{m}\right)$ and no term of h^{\prime} is divisible by an element of $\mathrm{LT}(B)$. This proves that $h^{\prime}=g$ so $g \in k[\underline{y}]$.

4. Uniqueness

Uniqueness fails iff $g_{1}\left(f_{1}, \ldots, f_{m}\right)=g_{2}\left(f_{1}, \ldots, f_{m}\right)$ for $g_{1}, g_{2} \in k[y]$ iff $h\left(f_{1}, \ldots, f_{m}\right)=0$ where $h=g_{1}-g_{2}$.
Define the ideal of relations as $I_{F}=\left\{h \in k[y]: h\left(f_{1}, \ldots, f_{m}\right)=0\right.$ in $\left.k[\underline{x}]\right\}$, where $F=$ $\left(f_{1}, \ldots, f_{m}\right)$. It's prime because $\operatorname{char}(k)=0$. It captures all algebraic relations among the f_{i}.
Proposition 4. Suppose $f=g\left(f_{1}, \ldots, f_{m}\right) \in k[\underline{x}]^{G}$ is one representation of f. Then all such representations are given by $f=g\left(f_{1}, \ldots, f_{m}\right)+h\left(f_{1}, \ldots, f_{m}\right)$, as h varies over I_{F}.
Corollary 1. A given element $f \in k[\underline{x}]^{G}$ can be written uniquely in terms of f_{1}, \ldots, f_{m} iff $I_{F}=\{0\}$
Proposition 5. $I_{F}=J_{F} \cap k[\underline{y}]$ and if B is a Gröbner basis of J_{F} then $B \cap k[\underline{y}]$ is a Gröbner basis for I_{F}.

Proof. The proof of (1) is similar to the our earlier proof. Then (2) is elimination theory.
Fixing a Gröbner basis gives us a unique remainder, so even if $I_{F} \neq\{0\}$ we can find a unique representative $\bmod G$ for each f_{i} and so get an essentially unique generating set.

5. Geometric Applications

Define $V_{F}=V\left(I_{F}\right) \subset \mathbb{A}_{k}^{m}$. Then V_{F} is a variety because I_{F} is prime. Also, $I_{F}=I\left(V_{F}\right)$.
Proposition 6. $k\left[V_{F}\right] \cong k[\underline{y}] / I_{F} \cong k[\underline{x}]^{G}$
Proof. The first isomorphism is true because $I_{F}=I\left(V_{F}\right)$.
The second can be defined by a $\operatorname{map} \phi: k[\underline{y}] / I_{F} \rightarrow k[\underline{x}]^{G}$ s.t. $\phi([g])=g\left(f_{1}, \ldots f_{m}\right)$. It's a surjective ring homomorphism, so use the First Isomorphism Theorem.

Corollary 2. Suppose that $k[\underline{x}]^{G}=k\left[f_{1}, \ldots, f_{n}\right]=k\left[f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right]$. Then $V_{F} \subset k^{m}$ and $V_{F^{\prime}} \subset k^{m^{\prime}}$ are isomorphic.

So V_{F} is unique up to isomorphism.
Proof. This follows from applying the above twice and by transitivity of isomorphism.
Suppose now that k is algebraically closed and $k[\underline{x}]^{G}=k\left[f_{1}, \ldots, f_{n}\right]$.
Theorem 2. (1) The map $F: k^{n} \rightarrow V_{F}$ defined by $F(\mathbf{a})=\left(f_{1}(\mathbf{a}), \ldots, f_{m}(\mathbf{a})\right)$ is surjective. Geometrically this means that the parametrization $y_{i}=f_{i}\left(x_{1}, \ldots, x_{n}\right)$ covers all of V_{F}.
(2) The map sending the G-orbit $G \cdot \mathbf{a} \subset k^{n}$ to the point $F(\mathbf{a}) \in V_{F}$ induces a one-to-one correspondence $\mathbb{A}^{n} / G \cong V_{F}$.

Proof. Part (1) will follow from elimination theory and two lemmata:
(1) There are invariants $g_{1}, \ldots, g_{|G|} \in k[\underline{x}]^{G}$ such that $f^{|G|}+g_{1} f^{|G|-1}+\cdots+g_{|G|}=0$. This is proven by multiplying out $\prod_{A \in G} X-f(A \cdot \mathbf{x})$ and factoring.
(2) For each i there is a $p_{i} \in J_{F} \cap k\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]$ such that $p_{i}=x_{i}^{|G|}+$ terms in which x_{i} has degree $<|G|$.

This is proven inductively.
For part (2) define $\widetilde{F}: k^{n} / G \rightarrow V_{F}$ s.t. $G \cdot \mathbf{a} \mapsto F(\mathbf{a})$. Prove it's well-defined (easy) and 1-1...
Take $G \cdot \mathbf{a}$ and $G \cdot \mathbf{b}$ and construct invariant g s.t. $g(\mathbf{a}) \neq g(\mathbf{b})$.

$$
h(A \cdot \mathbf{a})=\left\{\begin{array}{cc}
0 & A \cdot \mathbf{a} \neq \mathbf{a} \\
h(\mathbf{a}) \neq 0 & A \cdot \mathbf{a}=\mathbf{a}
\end{array}\right.
$$

Set $g=R_{G}(h)$ and note that $h(A \cdot \mathbf{b})=0$. Then $g(\mathbf{b})=0$ and $g(\mathbf{a})=\frac{M}{|G|} f(\mathbf{a}) \neq 0$. Here M is the number of elements $A \in G$ such that $A \cdot \mathbf{a}=\mathbf{a}$ and s.t. g takes different values on each of the starting orbits.

Summary: We solved the finite generation and uniqueness problems. We moved into geometry and established the ring isomorphism between $k\left[V_{F}\right]$ and $k[\underline{x}]^{G}$. Finally, $\mathbb{A}^{n} / G \cong V_{F}$. The next step is to take other interesting objects (not just G-orbits) and give them the structure of affine varieties in a similar way.

