Dimension Theory of Rings and Ring Spectra

David White Wesleyan University

Dimension Theory of Rings and Ring Spectra

David White Wesleyan University

April 2, 2011

Based on work of Mark Hovey and Keir Lockridge

ション ふゆ とう とう とう うくの

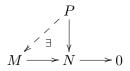
Dimension Measures Complexity

Dimension Theory of Rings and Ring Spectra

David White Wesleyan University The simplest rings are fields F. Krull dim(F) = 0. Krull dim = sup of lengths of chains of prime ideals.

Key property of a field F: all F-modules are free.

Next simplest module after free is projective module P:



R is **semisimple** iff all modules over R are projective

Homological Dimension

Dimension Theory of Rings and Ring Spectra

David White Wesleyan University Definition (Projective dimension) A projective resolution of M is $\dots \to P_n \to \dots \to P_2 \to P_1 \to P_0 \to M \to 0$ pd(M) = min. length of a projective resolution.

Ex: P projective \Rightarrow pd $(P) = 0: \dots \to 0 \to P \to P \to 0$ Ex: pd $(\mathbb{Z}/n) = 1: \dots \to 0 \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}/n \to 0$

Definition (Right Global Dimension)

 $\mathbf{r.\,gl.\,dim}(R) = \sup\{\mathrm{pd}(M) \mid M \in \mathbf{R}\text{-}\mathrm{mod}\}$

Ex: r.gl. dim $(k[x_1, \dots, x_n]) = n$. r.gl. dim $(k[t]/(t^2)) = \infty$ $\dots \rightarrow k[t]/(t^2) \rightarrow k[t]/(t^2) \rightarrow k \rightarrow 0$, so pd $(k) = \infty$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで

Spectra

Dimension Theory of Rings and Ring Spectra

David White Wesleyan University

Definition (Spectrum)

A spectrum X is a sequence (X_i) of topological spaces (path conn. CW-complexes) with maps from $\epsilon_i : \Sigma X_i \to X_{i+1}$ where Σ is reduced suspension. $(\Sigma X)_i = X_{i+1}$

A morphism is
$$f = (f_i : X_i \to Y_i)$$
 with
 $f \circ \epsilon_i^X = \epsilon_i^Y \circ (\Sigma f) : \Sigma X_i \to Y_{i+1}$

Example: For any space $X, Z = \Sigma^{\infty} X$ is the spectrum with $Z_i = \Sigma^i X$, and ϵ_i homeomorphism for all i

うして ふぼう ふほう ふほう ふしつ

Example: the sphere spectrum $S = (S^n) = \Sigma^{\infty} S^0$.

Rings via Categorical Lens

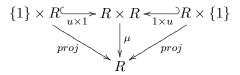
Dimension Theory of Rings and Ring Spectra

David White Wesleyan University

A ago of a timitary

$$\begin{array}{cccc} R \times R \times R & \stackrel{\mu}{\longrightarrow} R \times R & (a, b, c) & \stackrel{\mu}{\longmapsto} (ab, c) \\ & & & \downarrow_{1_R \times \mu} & \downarrow_{\mu} & & & \downarrow_{\mu} & & & \downarrow_{\mu} \\ & & & & & & & & \\ R \times R & \stackrel{\mu}{\longrightarrow} R & & (a, bc) & \stackrel{\mu}{\longmapsto} abc \end{array}$$

e is a left and right identity:



R-module *M* has $R \times M \to M$. $(r_1r_2) \cdot m = r_1 \cdot (r_2 \cdot m)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

..

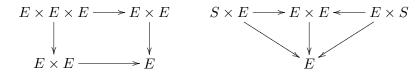
Ring Spectra

Dimension Theory of Rings and Ring Spectra

David White Wesleyan University

Definition (Ring Spectrum)

A ring spectrum E is a generalized cohomology theory with a cup product that is associative up to infinitely coherent homotopy. E comes with $\wedge : E \times E \to E$ and $u : S \to E$.



E is an *S*-module because we have $S \land E \to E \land E \to E$

 $E_* = \pi_*(E) = [\Sigma^* S, E]$. Functor π_* : RingSpectra \rightarrow GrRing

The Derived Category

Dimension Theory of Rings and Ring Spectra

David White Wesleyan University An *E*-module is a spectrum X with $E \land X \to X$

 $\mathcal{D}(E)$ objects are *E*-modules, $\mathcal{D}(E)(X,Y) = \{X,Y\}[S^{-1}]$ for *S* the collection of weak homotopy equivalences

Definition (Projective E-module)

 $X \in \mathcal{D}(E)$ is **projective** iff X_* is a projective E_* -module. Define pd(X) = 0.

Definition (Projective Dimension)

 $pd(X) \le n+1 \text{ iff } Y \to P \to \tilde{X} \to \Sigma Y \text{ with } P \text{ projective,}$ $pd(Y) \le n, \text{ and } X \text{ a retract of } \tilde{X}.$

うして ふぼう ふほう ふほう ふしつ

Dimensions of Ring Spectra

Dimension Theory of Rings and Ring Spectra

David White Wesleyan University

Definition

 $\mathrm{r.\,gl.\,dim}(E) = \sup\{\mathrm{pd}(X) \mid X \in \mathcal{D}(E)\}$

Example: Singular cohomology theory $H^n(-)$ is a spectrum. $H^n(X; R) \cong [X, K(R, n)]$ where $\pi_m(K(R, n)) = R$ iff m = n

HR has $(HR)_n=K(R,n)$ and $(HR)_*=[S,HR]\cong R$

r. gl. dim(HR) = r. gl. dim(R) because $\mathcal{D}(HR) \cong \mathcal{D}(R)$

Always true: r. gl. $\dim(E) \leq r. gl. \dim(E_*)$

Theorem (Hovey-Lockridge)

If E is a commutative ring spectrum and E_* is Noetherian with gl. dim $(E_*) < \infty$ then r. gl. dim(E) = r. gl. dim (E_*)

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のへの

The Sphere Spectrum

Dimension Theory of Rings and Ring Spectra

David White Wesleyan University

Definition (Ghost)

A map
$$f: X \to Y$$
 in $\mathcal{D}(E)$ is **ghost** if $f_* = 0$

Proposition

- $X \in \mathcal{D}(E)$ is projective iff the natural map $\mathcal{D}(E)(X,Y) \to \operatorname{Hom}_{E_*}(X_*,Y_*)$ is iso for all Y
- pd(X) ≤ n iff E₂^{s,t} = Ext_{E*}^{s,t}(X*,Y*) ⇒ D(E)(X,Y)t-s has E_∞^{s,*} = 0 ∀ s > n iff any chain of ghosts with Dom(f₁) = X has f_{n+1} · · · f₁ = 0

Corollary

 $\mathrm{r.\,gl.\,dim}(S) = \infty$

Pf sketch: Consider the S-module $Z = \Sigma^{\infty}(\mathbb{R}P^n)$. The Steenrod operations are ghosts.

References

Dimension Theory of Rings and Ring Spectra

David White Wesleyan University

- Homological Dimensions of Ring Spectra, preprint 2010 by M. Hovey and K. Lockridge
- 2 Lectures on Modules and Rings, 1999 by T.Y. Lam
- Ideals in Triangulated Categories: Phantoms, Ghosts and Skeleta, 1998 by Christiensen

うして ふぼう ふほう ふほう ふしつ