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Dimension Measures Complexity

The simplest rings are fields F . Krull dim(F ) = 0.
Krull dim = sup of lengths of chains of prime ideals.

Key property of a field F : all F -modules are free.

Next simplest module after free is projective module P :

P

��∃~~|
|

|
|

M // N // 0

R is semisimple iff all modules over R are projective
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Homological Dimension

Definition (Projective dimension)

A projective resolution of M is
· · · → Pn → · · · → P2 → P1 → P0 →M → 0
pd(M) = min. length of a projective resolution.

Ex: P projective ⇒ pd(P ) = 0: · · · → 0→ P → P → 0

Ex: pd(Z/n) = 1: · · · → 0→ Z→ Z→ Z/n→ 0

Definition (Right Global Dimension)

r. gl. dim(R) = sup{pd(M) |M ∈ R-mod}

Ex: r. gl.dim(k[x1, . . . , xn]) = n. r. gl.dim(k[t]/(t2)) =∞

· · · → k[t]/(t2)→ k[t]/(t2)→ k → 0, so pd(k) =∞
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Spectra

Definition (Spectrum)

A spectrum X is a sequence (Xi) of topological spaces (path
conn. CW-complexes) with maps from εi : ΣXi → Xi+1

where Σ is reduced suspension. (ΣX)i = Xi+1

A morphism is f = (fi : Xi → Yi) with

f ◦ εXi = εYi ◦ (Σf) : ΣXi → Yi+1

Example: For any space X, Z = Σ∞X is the spectrum with
Zi = ΣiX, and εi homeomorphism for all i

Example: the sphere spectrum S = (Sn) = Σ∞S0.
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Rings via Categorical Lens

Associativity:

R×R×R
µ×1R

//

1R×µ
��

R×R
µ

��

(a, b, c) � µ //
_
µ

��

(ab, c)
_
µ

��
R×R

µ // R (a, bc) � µ // abc

e is a left and right identity:

{1} ×R � �

u×1
//

proj
%%KKKKKKKKKKK R×R
µ

��

R× {1}? _

1×u
oo

proj
yysssssssssss

R

R-module M has R×M →M . (r1r2) ·m = r1 · (r2 ·m)
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Ring Spectra

Definition (Ring Spectrum)

A ring spectrum E is a generalized cohomology theory with
a cup product that is associative up to infinitely coherent
homotopy. E comes with ∧ : E × E → E and u : S → E.

E × E × E //

��

E × E

��

S × E //

%%KKKKKKKKKK E × E

��

E × Soo

yyssssssssss

E × E // E E

E is an S-module because we have S ∧ E → E ∧ E → E

E∗ = π∗(E) = [Σ∗S,E]. Functor π∗ :RingSpectra→GrRing
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The Derived Category

An E-module is a spectrum X with E ∧X → X

D(E) objects are E-modules, D(E)(X,Y ) = {X,Y }[S−1] for
S the collection of weak homotopy equivalences

Definition (Projective E-module)

X ∈ D(E) is projective iff X∗ is a projective E∗-module.
Define pd(X) = 0.

Definition (Projective Dimension)

pd(X) ≤ n+ 1 iff Y → P → X̃ → ΣY with P projective,
pd(Y ) ≤ n, and X a retract of X̃.
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Dimensions of Ring Spectra

Definition
r. gl. dim(E) = sup{pd(X) | X ∈ D(E)}

Example: Singular cohomology theory Hn(−) is a spectrum.
Hn(X;R) ∼= [X,K(R,n)] where πm(K(R,n)) = R iff m = n

HR has (HR)n = K(R,n) and (HR)∗ = [S,HR] ∼= R

r. gl.dim(HR) = r. gl.dim(R) because D(HR) ∼= D(R)

Always true: r. gl. dim(E) ≤ r. gl.dim(E∗)

Theorem (Hovey-Lockridge)

If E is a commutative ring spectrum and E∗ is Noetherian
with gl.dim(E∗) <∞ then r. gl. dim(E) = r. gl.dim(E∗)
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The Sphere Spectrum

Definition (Ghost)

A map f : X → Y in D(E) is ghost if f∗ = 0

Proposition
1 X ∈ D(E) is projective iff the natural map
D(E)(X,Y )→ HomE∗(X∗, Y∗) is iso for all Y

2 pd(X) ≤ n iff Es,t2 = Exts,tE∗
(X∗, Y∗)⇒ D(E)(X,Y )t−s

has Es,∗∞ = 0 ∀ s > n iff any chain of ghosts with
Dom(f1) = X has fn+1 ◦ · · · ◦ f1 = 0

Corollary

r. gl. dim(S) =∞

Pf sketch: Consider the S-module Z = Σ∞(RPn). The
Steenrod operations are ghosts.
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