
A Data Streaming Algorithm for Estimating
Entropies of OD Flows

Haiquan (Chuck) Zhao
Georgia Inst. of Technology

Ashwin Lall
University of Rochester

Mitsunori Ogihara
University of Rochester

Oliver Spatscheck
AT&T Labs – Research

Jia Wang
AT&T Labs – Research

Jun (Jim) Xu
∗

Georgia Inst. of Technology

ABSTRACT
Entropy has recently gained considerable significance as an
important metric for network measurement. Previous re-
search has shown its utility in clustering traffic and detect-
ing traffic anomalies. While measuring the entropy of the
traffic observed at a single point has already been studied,
an interesting open problem is to measure the entropy of the
traffic between every origin-destination pair. In this paper,
we propose the first solution to this challenging problem.
Our sketch builds upon and extends the Lp sketch of Indyk
with significant additional innovations. We present calcula-
tions showing that our data streaming algorithm is feasible
for high link speeds using commodity CPU/memory at a
reasonable cost. Our algorithm is shown to be very accu-
rate in practice via simulations, using traffic traces collected
at a tier-1 ISP backbone link.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network Monitoring

General Terms
Algorithms, Measurement, Theory

Keywords
Network Measurement, Entropy Estimation, Data Stream-
ing, Traffic Matrix, Stable Distributions

1. INTRODUCTION
The (empirical) entropy of the network traffic has recently

been proposed, in many different contexts, as an effective

∗Supported in part by NSF grants CNS 0716423, CNS
0626979, CNS 0519745, and NSF CAREER award CNS
0238315.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’07, October 24-26, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-908-1/07/0010 ...$5.00.

and reliable metric for anomaly detection and network diag-
nosis [3, 11, 15, 24, 25]. Measuring this quantity exactly in
real time (say by maintaining per-flow states), however, is
not possible on high-speed links due to its prohibitively high
computational and memory requirements. For this reason,
various data streaming algorithms [16] have been proposed
to approximate this quantity. Data streaming [19] is con-
cerned with processing a long stream of data items in one
pass using a small working memory (called a sketch) in or-
der to answer a class of queries regarding the stream. The
challenge is to use this sketch to “remember” as much infor-
mation pertinent to our problem as possible.

We observe that it is often important to know the en-
tropies of origin-destination (OD) flows, where an OD flow
is defined as all the traffic that enters an ingress point (called
origin) and exits at an egress point (called destination).
Knowing these quantities will give us significantly more in-
sight into the dynamics of traffic inside an ISP network,
which we will elaborate upon shortly. However, we found
that none of the existing entropy estimation algorithms [1,
2, 5, 16] can be extended to solve this new problem. In par-
ticular, the traffic matrix estimation literature [18, 21, 22,
23, 27] has ruled out the following naive approach: sepa-
rate the traffic at each ingress point into various OD flows
in real time and feed them to existing entropy estimation
algorithms. In this paper, we propose the first solution to
this new problem.

1.1 Motivation
The ability to estimate entropy for all OD flows in a net-

work can be highly beneficial. On today’s Internet, net-
work performance degradation and service disruption can
be caused by a wide range of events, including anomalies
(e.g., DDoS attacks, network failures, and flash crowds) and
scheduled network maintenance tasks (e.g., router IOS up-
dates and customer migration). Many of these events occur
in a distributed manner (intentionally or unintentionally)
in terms of their signatures and impacts. Detecting these
events and evaluating their impact on network services thus
often requires monitoring of the traffic from a number of lo-
cations across the network. More importantly, these changes
in traffic distribution may be totally invisible in the tradi-
tional traffic volume matrix. However, by examining the
entropy of every OD flow in the network, one can hope to
capture these events in real time.

To illustrate how beneficial the OD flow entropy estima-
tion is, consider a situation in which a link fails (e.g., due to

hardware problems) and is cost out for maintenance. The
traffic flows that used to be carried on that link will most
likely be redistributed to alternative paths. In the very rare
case where no alternative path exists or the network expe-
riences long convergence delay, the flows may abort com-
pletely. In either case, traffic distribution on a number of
links across the network will change. It is possible that the
traffic volume changes on those impacted links are small,
and sometimes too small to be detected on each link using
volume based detection algorithms. However, the overall
change in the traffic distribution across the network can be
quite large. If so, the examination of traffic entropy along
with the traffic matrix for all OD flows is likely to enable
us to capture such distributed and dynamically occurring
events.

Another example is a DoS attack. When there is a dis-
tributed DoS attack launched from outside the network, its
impact may not be immediately visible in the traffic matrix
in terms of traffic volume change. However, it is very im-
portant for operators to be able to detect and mitigate the
attack at the earliest time to minimize the possible nega-
tive impact on their services. That is, it may be too late
for certain types of events to be detected when their impact
becomes visible in the traffic volume matrix. In addition,
certain types of DoS attacks are difficult to detect due to
the low-rate nature of attack flows [14, 26]. In such cases,
we hope to be able to achieve real time detection based on
traffic entropy estimation.

1.2 Our solution and contributions
In this work, we propose the first solution to the chal-

lenging problem of estimating the entropies of all OD flows.
Our key innovation is to invent a sketch that allows us to
approximately estimate not only (a) the entropy of a data
stream, but also (b) the entropy of the intersection of two
data streams A and B from the sketches of A and B. We re-
fer to property (b) as the“intersection measurable property”
(IMP) in the sequel. Note that all existing entropy estima-
tion algorithms (their sketches) have property (a), but none
of them has IMP.

The intersection measurable property (IMP) of our sketch
leads to the following very elegant solution of our problem.
Each participating ingress and egress node in the network
maintains a sketch of the traffic that flows in/out of it during
a measurement interval. When we would like to measure the
entropy of an OD flow stream between an ingress point i and
an egress point j, we simply summon from node i the sketch
of its ingress stream Oi, and from node j the sketch of its
egress stream Dj , and then infer the entropy of Oi ∩ Dj

using the sketches’ IMP. This solution is extremely cost-
effective in that we will be able to estimate O(k2) quantities
(the entropies of a k by k OD flow stream matrix) using
only O(k) sketches. However sketches that have IMP are
much harder to design than those without it, and hence the
significant challenge we have in this work.

Our sketch builds upon and extends the Lp sketch of In-
dyk [12] with significant additional innovations. Indyk’s
sketch was designed for the estimation of the Lp norm of
a stream (defined later). We observe that Indyk’s Lp sketch
has the desirable IMP, and therefore allows for the estima-
tion of the Lp norm of an OD flow Oi ∩ Dj using the Lp

sketches at Oi and Dj . However, we have to develop the
IMP theory of Lp sketch ourselves since IMP was never even

claimed in [13] (probably because there was no application
in sight for IMP at that time).

Our most important contribution is to discover that the
entropy of an OD flow can be approximated by a function
of just two Lp norms (Lp1

and Lp2
, p1 6= p2) of the OD

flow. With this insight, our sketch at each ingress and egress
point is simply one Lp1

sketch and one Lp2
sketch. In this

way, we not only solve this difficult problem, but also find a
nice application for the Lp sketch. From a theoretical point
of view, our solution resolves one of the open questions of
Cormode [7].

Our contributions can be summarized as follows. First,
our discovery builds a mathematical connection between our
problem and Indyk’s Lp norm estimation problem, leading
to a highly cost-effective solution. Second, we extend Indyk’s
(ε, δ) analysis of Lp sketches [13] using asymptotic normal-
ity of order statistics, leading to much tighter (yet slightly
less rigorous) accuracy bounds. We also modify Indyk’s al-
gorithm to make it run fast enough for processing traffic at
very high-speed links (e.g., 10 million packets per second).
Finally, we thoroughly evaluate the accuracy of our solution
by simulating it on real-world packet traces collected at a
tier-1 ISP backbone. We show that our algorithm delivers
very accurate estimations of the OD flow entropies.

The remainder of this paper is organized as follows. In
Section 2 we give a high-level overview of how the differ-
ent components of our entire scheme works. In Section 3
through 6 we describe the major components of our algo-
rithm.

• In Section 3 we introduce stable distributions and de-
scribe Indyk’s algorithm to estimate the Lp norm using
them.

• In Section 4 we show how to estimate entropy from Lp

norm.

• In Section 5 we show the intersection measurable prop-
erty (IMP) of the Lp norm algorithm.

• In Section 6 we modify the Lp norm algorithm to im-
prove its accuracy under tight resource constraints.

In Section 7 we discuss the hardware implementation of
our algorithm. In Section 8 we demonstrate the accuracy
of our algorithm via simulations run on real-world data. In
Section 9 we briefly survey previous work that is related to
ours. Finally, we conclude in Section 10. The Appendix
contains the proof of some of the theorems.

2. PROBLEM STATEMENT AND OVERVIEW
In this section, we describe precisely the problem of esti-

mating the entropies of OD flows and offer an overview of
our solution approach. As defined before in [16], given a
stream S of packets that contains n (transport-layer) flows
with sizes (number of packets) a1, a2, ..., an respectively,
its empirical entropy H(S) is defined as −Pn

i=1
ai
s

log2(
ai
s

),

where s =
Pn

i=1 ai is the total number of packets in S.1

We have shown before [16] that to estimate the empirical

1Throughout this paper logarithms will be base e except in
the definition of empirical entropy here. Since the logarithm
base e and the logarithm base 2 are different by a constant
multiplicative factor, it does not affect our analysis of rela-
tive errors.

entropy of a stream S, it suffices to to estimate a related
quantity called entropy norm ||S||H , defined as

P

i ai ln (ai),
since H(S) can be rewritten as

H(S) = −
X

i

ai

s
log2

“ai

s

”

= log2(e)[ln (s) − 1

s

X

i

ai ln (ai)],

and s is usually a known quantity.
The entropy of an OD flow stream ODij between an ingress

point i and an egress point j, is defined as the entropy of
their intersection, i.e., H(ODij) ≡ H(Oi

T

Dj). To derive
this entropy value from the above formula, however, we need
to measure both the entropy norm ||Oi

T

Dj ||H and s in or-
der to compute the entropy of H(Oi

T

Dj). Note that in
our case, s is the volume of the OD flow and is an unknown
quantity that needs to be estimated/inferred separately. As
described in Section 1.2 , our solution is to invent a sketch
for estimating the entropy norm of a stream that has the
intersection measurable property (IMP).

Our algorithm and sketch build upon Indyk’s classical re-
sults on estimating the Lp norm of a stream using the theory
of stable distributions, for values of p in (0, 2]. In [13], In-
dyk presents an algorithm for computing the Lp norm of
a stream S. For a stream S that contains n flows of sizes
a1, . . . , an, its Lp norm ||S||p is defined as (

P

i |ai|p)1/p, so
||S||pp =

P

i |ai|p. We discover that the data streaming so-
lution of Indyk has the aforementioned IMP. Interestingly,
this nice intersection property was never claimed in [13] or
anywhere else. We will develop an entropy estimation tech-
nique that fully takes advantage of this property and offer
its rigorous analysis.

While the work of Indyk is very influential, the practi-
cal importance of being able to estimate the Lp norm for
values other than 1 and 2 was never clear. In our work,
the Lp norms for p values slightly above or below 1 play
a crucial role as follows. On realizing that Indyk’s algo-
rithm can be extended for estimating the Lp norms of an
OD flow, we came up with the wild conjecture that it is
possible to approximate the function x ln(x) using a linear
combination of a small number of functions in the family
{xp|p ∈ (0, 2]}. In other words, we conjectured that we can
find parameters c1, . . . , ck ∈ R and p1, . . . , pk ∈ (0, 2] such

that x ln(x) ≈Pk
j=1 cj ∗ xpj . If this conjecture is true, then

we will be able to estimate the entropy norm of an OD flow
stream S as

Pk
j=1 cj ∗ ||S||pj

pj , where ||S||pj , j = 1, . . . , k can
be estimated using our extension of Indyk’s algorithm for
stream intersection. We emphasize that it took a leap of
faith for us to think in this direction, as most of the approx-
imation schemes we encountered in mathematical literature
are by linear combination of terms like xj (approximation
by polynomial) and sin(x) (Fourier expansion).

Our wild conjecture has been proven correct! To our
amazement we found that by using a linear combination of
only two functions in the family, in the form of 1

2α
(x1+α −

x1−α), we can approximate x ln(x) very closely for all x val-
ues in a large interval, e.g., [1, 1000] or [1, 5000]. Here α is a
tunable parameter that takes small values. For example, in
Figure 1, we show how closely we can approximate x ln(x)
using 10(x1.05 −x0.95) within the interval [1, 1000]. In other
words, if all transport-layer flows in an OD flow S have less
than 1000 packets, we can estimate the entropy norm of the

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

 0 100 200 300 400 500 600 700 800 900 1000

approximation
y = xln(x)

Figure 1: Comparison of entropy function and the
approximation

OD flow as 10(||S||1.05
1.05 − ||S||0.95

0.95). It turns out that this
“symmetry” of the exponents (1 + α and 1 − α) around 1
serves another very important purpose that we will describe
shortly.

We found that the approximation becomes gradually worse
when x becomes larger than 1000 (packets), but the relative
error level is generally acceptable up until 5000. Therefore, if
there are some very large transport-layer flows (say with tens
of or hundreds of thousands of packets) inside an OD flow S,
the estimation formula such as 10(||S||1.05

1.05 − ||S||0.95
0.95) may

deviate significantly from its entropy norm. Fortunately,
identifying such very large flows is a well-studied problem
in both computer networking (e.g., [10]) and theory (e.g.,
[17]). We will adopt the “sample and hold” algorithm pro-
posed in [10] to identify all flows that are much larger than
a certain threshold (say 1000 packets) and compute their
contributions to the OD flow entropy separately.

Now the last piece of the puzzle is that when we compute
the entropy H from the entropy norm, we need to know
s, the total volume of the OD flow. Estimating this vol-
ume is a task known as traffic matrix estimation [18, 21,
22, 23, 27]. Various techniques for estimating the traffic
matrix have been proposed that are based on statistical in-
ference or direct measurement (including data streaming).
In fact, this quantity is exactly the L1 norm, which can
be estimated using Indyk’s L1 norm estimation algorithm
with IMP extensions. It turns out that we need none of
these. Recall that our approximation formula is in the form
of 1

2α
(x1+α−x1−α), where α is a small number such as 0.05.

We observe that, in this case, the function x can indeed be
approximated by (x1+α+x1−α)/2 and therefore the OD flow
volume (i.e., the L1 norm) can be approximated by the av-
erage of ||S||1+α

1+α and ||S||1−α
1−α calculated from the OD flow.

Therefore, our sketch data structure allows us to kill two
birds (the L1 norm and the entropy norm) with one stone!

3. PRELIMINARIES
For the purposes of this paper we define a flow to be all

the packets with the same five-tuple in their headers: source
address, destination address, source port, destination port,
and protocol.

Clearly, we will not be able to compute the entropy of
each distribution exactly, so we use the following type of
approximation scheme. An (ε, δ) approximation scheme is

one that returns an approximation θ̂ for a value θ such that,
with probability at least 1−δ, we have (1−ε)θ ≤ θ̂ ≤ (1+ε)θ.

3.1 Stable distributions
The family of stable distributions, discovered first by Paul

Lévy, is a natural generalization of the Gaussian distribu-
tion [29]. A stable distribution, in its full generality, takes
a fairly complicated form with four parameters. In this
work, however, we only need to work with the standard
(normalized in a certain sense) cases that take only one
free parameter p (the other three fixed), and the resulting
restricted/standardized family is denoted S(p), p ∈ (0, 2].
Each S(p) is uniquely characterized as follows. Let X be a
random variable that takes distribution S(p) with probabil-
ity density function fS(p)(x). Then its characteristic func-

tion E[eitX] satisfies

E[eitX] ≡
Z ∞

−∞
fS(p)(x)(cos (xt) + i · sin (xt)) = e−|t|p .

The existence and uniqueness of a probability density func-
tion satisfying the above equation has been well established
in mathematical literature.2

For any p, the probability density function fS(p)(x) of the
distribution S(p) is continuous and infinitely differentiable
on (−∞,+∞) (i.e., it is well-behaved). However, fS(p)(x)
takes a closed form only for three p values (p = 2, 1, 0.5).
S(p) with p = 2 and 1 corresponds to two well-known exam-
ples of stable distributions: S(2) is the Gaussian distribu-
tion with mean 0 and standard deviation 2, with probabil-

ity density function f(x) = 1

2
√

2π
e−x2/8; S(1) is the Cauchy

distribution with the density function f(x) = 1
π

1
1+x2 . For p

values other than 2, 1, and 0.5, we will not have a closed-
form probability density function to work with. Instead, the
distribution S(p) is generated using a simulation program to
be described later in Section 7. In the following, we state
some important properties of the stable distribution that
will be used in both Indyk’s and our algorithms.
1. Stability property. The following property earns the
name for the stable distributions. Let X1, X2, . . . , Xn denote
mutually independent random variables that have distribu-
tion S(p), then a1X1 + a2X2 + · · · + anXn has the same

distribution as (|a1|p + |a2|p + · · · + |an|p)1/pX, where X is
a random variable having distribution S(p). It is not hard
to verify that the aforementioned Gaussian and Cauchy ran-
dom variables satisfy the stability property with parameter
p equal to 2 and 1, respectively. It is also not hard to verify
this property using the definition of S(p) and the property
of Fourier transforms.
2. Symmetry of the probability density function,
fS(p)(x). For any x ∈ (−∞,∞), we have fS(p)(x) = fS(p)(−x).
This can be verified from the fact that fS(p)(x) is the Fourier

transform of e−|t|p .

3.2 Indyk’s technique for estimating Lp norm
Estimating the Lp norm (p ∈ (0, 2]) of a stream using the

property of stable distributions is a celebrated result in the-
oretical computer science [12, 13]. As defined before, given a
stream S that contains n distinct objects with frequency a1,
a2, ..., an respectively, the Lp norm of the stream is defined
as ||S||p ≡ (

P

i |ai|p)1/p. Indyk’s algorithm, translated into
the language of TCP/IP, is shown in Algorithm 1.

2In fact, in mathematical literature, the symbol α is often
used in the place of p. We choose to use p to be consistent
with [13], the most relevant related work.

Algorithm 1: Algorithm to compute Lp norm
1: Initialization
2: Let Y [1 . . . l] be an array of floating point numbers set

to 0.0 at the beginning of measurement interval.
3: Fix l p-stable hash functions sh1 through shl.

4: Online stage
5: for each incoming packet pkt do
6: for i := 1 to l do
7: Y [i] += shi(pkt.id)

8: Offline stage
9: Return med(|Y [1]|, . . . , |Y [l]|)/DMedp

The sketch is simply an array ~Y of real-valued counters
set to 0.0 at the beginning of the measurement interval.
The critical operator in this algorithm is a set of p-stable
hash functions shi, i = 1, ..., l.3 Each shi maps a flow la-
bel pkt.id into a random value drawn from the distribution
S(p), in such a way that (a) the same flow label will always
be mapped to the same random value and (b) different flow
labels are mapped to independent random values. In addi-
tion, these p-stable hash functions are independent of one
another.

Online processing of packets with the sketch is also very
simple. For each incoming packet, its flow label is hashed
by shi and the result is added to Yi. Now we analyze the
value of a particular counter Y1, and the analysis for other
counters are exactly the same. Suppose that there are n
flows with flow labels id1, ..., idn and of sizes a1, ..., an.
We denote sh1(id1) as X1, sh1(id2) as X2, ..., sh1(idn) as
Xn. By the property of sh1, we know that X1, ..., Xn

are i.i.d. random variable with distribution S(p). After
processing the stream, we can see that the counter value Y1

becomes a1 ∗ X1 + a2 ∗ X2 + · · · + an ∗ Xn. Since each Xi

has distribution S(p) and they are mutually independent,
by the stability property, the counter value Y1 is distributed
as (

P

i |ai|p)1/pX, or in other words, ||S||pX, where X is
distributed as S(p). Therefore, counters Y1, Y2, ..., Yl are
i.i.d. draws from distribution ||S||pX. At this point, we can
see that the data streaming algorithm is able to “modulate”
the signal we would like to estimate, (

P

i |ai|p)1/p, into these
counter values.

Now the question is how to extract this signal from these
counter values? The approach proposed in [13] is to use the
following median estimator for ||S||p:

Λ(~Y) ≡ median(|Y1|, . . . , |Yl|)
DMedp

. (1)

We use Λ(.) to denote the operator that extracts Lp norm
estimates from sketches, and we will be using it in other
contexts. Here median(|Y1|, . . . , |Yl|) denotes the sample me-
dian of the absolute values of the counter values; DMedp de-
notes the distribution median of S+(p). By S+(p) we mean
the probability distribution of a random variable |X|, where
X has distribution S(p). We denote it as S+(p) because its
p.d.f is exactly twice the positive half of the p.d.f for S(p),
due to the symmetry of S(p). So DMedp is the unique (in
this case) x0 value such that Pr[|X| > x0] = 0.5, where X

3Note that our implementations of these hash functions are
totally different than in [12, 13] to make them run much
faster, which we will describe in Section 7.

has distribution S(p). Note that, due to the symmetry of
S(p), DMedp is exactly the three-quarter quantile of S(p).
Although there is no closed form for DMedp for most of the
p values, we can numerically calculate it by simulation, or
we can use a program like [20].

Intuitively, the correctness of this estimator can be justi-
fied as follows. Since Y1/||S||p, ..., Yl/||S||p are i.i.d. random
variables with distribution S(p), taking absolute value gives
us i.i.d. draws from S+(p). For large enough l, their median
should be close to the distribution median of S+(p). There-
fore, we simply divide median(|Y1|, . . . , |Yl|) by the distribu-
tion median of S+(p) to get an estimator of ||S||p. We have
to take absolute values because the distribution median of
S(p) is 0 due to its symmetry. In the next section we will
analyze the relative error of this estimator.

Indyk’s estimator for the Lp norm is based on the prop-
erty of the median. We find, however, that it is possible to
construct estimators based on other quantiles and they may
even outperform the median estimator, in terms of estima-
tion accuracy. However, since the improvement is marginal
for our parameters settings, we stick to the median estima-
tor.

3.3 Error analysis for Lp norm estimator
In this section we analyze the performance of the estima-

tor for ||S||p in (1).

3.3.1 (ε, δ) bound for p = 1

Here we basically restate Lemma 2 and Theorem 3 from
Indyk [13] with the constants spelled out. We arrived at
this by using Chernoff bounds to derive the constant in his
Claim 2.

Theorem 1. (Indyk, [13]) Let ~X = (X1, . . . , Xl) be i.i.d.
samples from S(1), l = 8(ln 2 + ln 1

δ
)/ε2, ε < 0.2, then

DMed1 = 1, and Pr[median(|X1|, . . . , |Xl|) ∈ [1−ε, 1+ε]] >
1 − δ. Thus (1) gives an (ε, δ) estimator for p = 1.

Example: for p = 1, δ = 0.05, ε = 0.1, we get l = 2951.
This is a very loose bound in the sense that we need a very
large l. This motivates us to resort to the asymptotic nor-
mality of the median for some approximate analysis.

3.3.2 Asymptotic (ε, δ) bound for p ∈ (0, 2]

Theorem 2. Let f = fS+(p), m = DMedp, l = (
zδ/2

2mf(m)ε
)2,

then (1) gives an estimator with asymptotic (ε, δ) bound. za

is the number such that for standard normal distribution Z
we have Pr[Z > za] = a.

Proof is in the Appendix. This result is in the same order
of O(1/ε2) as the Chernoff result, but the coefficient is much
smaller as shown below.

Example: For p = 1, δ = 0.05, ε = 0.1, we get m =
1, f(m) = 1/π, zδ/2 = 2, l = 986. Compare with l = 2951
from the previous section.

For p = 1.05, we get m = 0.9938, f(m) = 0.3324, l = 916.
For p = 0.95, we get m = 1.0078, f(m) = 0.3030, l = 1072.
Our simulations show that these are quite accurate bounds.
We can see that mf(m) does not change much in a small
neighborhood of p = 1. Since we are only interested in p in
a small neighborhood of 1, for rough arguments we may use
mf(m) at p = 1, which is 1/π.

4. SINGLE NODE ALGORITHM
In this section, we show how our sketch works for esti-

mating the entropy of the traffic stream on a single link;
Estimation of OD flow entropy based on its intersection mea-
surable property (IMP) is the topic of the next section. We
first show how to approximate the function x ln(x) by a lin-
ear combination of at most two functions of the form xp,
p ∈ (0, 2]. After that we analyze the combined error of this
approximation and Indyk’s algorithm.

4.1 Approximating x ln x

Our algorithm computes the entropy of a stream of flows
by approximating the entropy function x ln x by a linear
combination of expressions xp, p ∈ (0, 2]. In this section we
demonstrate how to do this approximation up to arbitrary
relative error ε. To make the formula simpler we use the
natural logarithm lnx instead of log2 x, noting that changing
the base is simply a matter of multiplying by the appropriate
constant, thus having no effect on relative error.

Theorem 3. For any N > 1, ε > 0, there exists α ∈
(0, 1), c = 1

2α
∈ O(ln N√

ε
), such that f(x) = c(x1+α − x1−α)

approximates the entropy function x lnx for x ∈ (1, N] within

relative error bound ε, i.e., | f(x)−x ln x
x ln x

| ≤ ε.

Proof. Using the Taylor expansion,

xα = eα ln x = 1 + α ln x +
(α lnx)2

2!
+

(α ln x)3

3!
+ · · · ,

we get that

f(x) = x lnx +
α2x ln3 x

3!
+

α4x ln5 x

5!
+ · · ·

Rewriting in terms of the relative error, we get that

r(x,α) ≡ f(x)

x ln x
− 1 =

(α ln x)2

3!
+

(α ln x)4

5!
+ · · ·

=

∞
X

k=1

(α ln x)2k

(2k + 1)!
.

Since every term is positive, we have r(x, α) ≥ 0. We
assume that α < 1

ln N
. This gives us

r(x, α) ≤ 1

6

∞
X

k=1

(α ln x)2k =
1

6

„

(α ln x)2

1 − (α ln x)2

«

. (2)

The bound takes maximum value at x = N . Solving

1
6

“

(α ln N)2

1−(α ln N)2

”

= ε gives us α =

q

6ε
1+6ε

ln N
, and c = 1

2α
=

ln N

2
q

6ε
1+6ε

∈ O(ln N√
ε

). Therefore f(x) = 1
2α

(x1+α − x1−α) ap-

proximates x ln x within the relative error bound ε.

A plot of this approximation for the range [1, 1000] and
f(x) = 10(x1.05 − x0.95) is given in Figure 1. The relative
error guarantee of the approximation only holds for values
less than some constant N . As we have mentioned, we will
use some elephant detection mechanism to circumvent this
shortcoming.

4.2 Estimating entropy norm ||S||H
Now we will combine our approximation formula and In-

dyk’s algorithm to get an estimator for the entropy norm
||S||H . Suppose we have chosen α and c in Theorem 3 to
get relative error bound ε0 on [1, N], and we have chosen l

from Theorem 1 for p = 1 ± α to achieve asymptotic (ε, δ)

error bound. For p = 1 + α we have sketches ~Y , and for
p = 1 − α we have sketches ~Z. Our estimator for ||S||H is

|̂|S||H ≡ 1

2α

“

Λ(~Y)1+α − Λ(~Z)1−α
”

(3)

We now study the error of this estimator. We will use some
approximation to get some rough but simple error estimates.
The proofs are in the Appendix.

Proposition 4. Assume ai ≤ N . Then (3) estimates
||S||H within relative error roughly 2λcε + λ0ε0 with prob-
ability roughly 1 − 2δ, where c = 1

2α
, λ0 = |c(||S||1+α

1+α −
||S||1−α

1−α)/||S||H − 1|/ε0 ≤ 1, λ = ||S||1+α
1+α/||S||H , and typi-

cally λ < 1.

Example: For N = 1024, α = 0.05, ε = 0.001, δ = 0.05,
then ε0 = 0.023, l ≈ 105. If we only assume λ = λ0 = 1,
then (2cε+ε0) ≈ 0.04, i.e. we can approximate ||S||H within
4% error with 90% probability using 105 samples. If we as-
sume λ = 0.5, then we can afford to increase ε to 0.002, and
thus decrease l to ≈ 2.5 × 104 to achieve the 4% error.

Proposition 5. (More Aggressive): Under same assump-
tions as above, (3) estimates ||S||H within relative error
roughly

√
2cλε + λ0ε0 with probability roughly 1 − δ.

Example: Same assumption as the example above, then we
only need l ≈ 1.25 × 104 to achieve the 4% error with prob-
ability 95%.

4.3 Estimating L1 norm s

Recall that to compute the actual entropy H = log2 s −
1
s

P

i ai log2 ai, we need to know the complete volume of the
traffic s, or ||S||1. For a single stream this is trivial to do
with a single counter. But our ultimate goal is to calcu-
late entropy of every OD pair, thus we need to compute
the entire traffic matrix for the network. There has been
considerable previous work in solving this problem, but any
additional method will have the corresponding overhead as-
sociated with it. In this section we show how to use the
same sketch data structure that we have been maintaining
so far to approximate this value for a single stream, which
will be naturally extended to distributed case later.

Similar to the proof of Theorem 3, we can easily show the
following theorem:

Theorem 6. Let α, N , and ε be as in Theorem 3. Then,
the approximation (x1+α + x1−α)/2 approximates the func-
tion f(x) = x with relative error at most 3ε.

This approximation holds good for all counts in the range
[1, N] and we use the elephant sketch to capture all flows
with size strictly greater than N .

So our estimator for ||S||1, is

|̂|S||1 ≡ 1

2

“

Λ(~Y)1+α + Λ(~Z)1−α
”

. (4)

Using Theorem 6 and proofs similar to those of Proposi-
tions 4 and 5, we have the following:

Proposition 7. (4) estimates ||S||1 roughly within rel-
ative error bound ε + 3λ′

0ε0 with probability 1 − 2δ, where
λ′

0 = |(||S||1+α
1+α + ||S||1−α

1−α)/||S||1 − 1|/3ε0 ≤ 1. Or, more

aggressively, the error bound is roughly 1√
2
ε + 3λ′

0ε0 with

probability 1 − δ.

4.4 Separating elephants
Recall that we need to keep track of the elephant flows

(say those that have more 1000 packets) and estimate their
contributions to the total entropy separately. In our scheme,
we adopt the “sample and hold” algorithm proposed in [10]
due to its low computational complexity and ease of analysis.
The “sample and hold” algorithm will produce a list of flows
that include all elephant flows with very high probability.
Then for each elephant flow in the list, we subtract the in-
crements caused by them to the sketches, and compute their
contributions to the entropy separately. The algorithm also
has the nice property that the larger the size of a flow, the
smaller (actually exponentially smaller) the probability of
its missing from the list. This property works very well with
the fact that the accuracy of our approximation of x ln(x)
degrades only gradually after the target threshold (say 1000
packets).

5. DISTRIBUTED ALGORITHM
In this section we show the IMP property of the Lp sketch,

i.e., we can use the sketches at ingress nodes and egress nodes
to estimate the Lp norm of the OD flows.

For a given OD-pair, we will require only the sketches at
that ingress and egress node. Hence, we fix one such pair
and do all the analysis for it. We call the ingress stream as
O and egress stream as D. We are interested in the flows in
the set O ∩ D. Note that if we can estimate the pair of Lp

norms for O∩D, p = 1±α, then we can use the formula for
approximating the entropy function as before.

The sketch data structures will be the same at every ingress
and egress node, that is, they will use the same number of
counters l, and they will use the same set of p-stable hash
functions as defined in Section 3.2. After we introduce buck-
eting in Section 6, they will also use the same number of
buckets k and the same uniform hash function.

5.1 Computing OD flow Lp norm ||O ∩ D||p
With a slight abuse of notation, we will use ~O to denote

the sketch for the ingress node, and ~D to denote the sketch
for the egress node. ~O + ~D and ~O − ~D are the component-
wise addition and difference of ~O and ~D respectively. (This
is possible because all nodes are using the same values of l.)

Our estimator for ||O ∩ D||p, ̂||O ∩ D||p , can be either

Λ(~O, ~D) ≡

Λ(~O)p + Λ(~D)p − Λ(~O − ~D)p

2

!1/p

(5)

or

Λ′(~O, ~D) ≡

Λ(~O + ~D)p − Λ(~O − ~D)p

2p

!1/p

. (6)

5.2 Correctness
In this section we show that the two formulae described

are good estimators for ||O ∩ D||p. Hence, by using two
copies of the above algorithm, one each for p1 = 1 − α and
p2 = 1 + α, and our x ln x approximation formula, we can
obtain an approximation of the entropy between every pair
of ingress and egress nodes.

We partition the flows that enter through the ingress node
or exit through the egress nodes as follows:

A = O − D = flows that enter at ingress but do not exit
through the egress

B = O ∩ D = flows that enter at ingress and exit through
the egress

C = D − O = flows that do not enter at ingress but exit
through the egress

We know that Λ(~O) is an estimator for ||O||p, so Λ(~O)p

is an estimator for ||O||pp = ||A ∪ B||pp = ||A||pp + ||B||pp.

Similarly Λ(~D)p is an estimator for ||B||pp + ||C||pp.

The sketch ~O + ~D holds the contributions of all the flows
in A, B and C, but with every packet from B contributing
twice. We use B(2) to denote all the flows in B with packet
counts doubled. Then Λ(~O + ~D)p is an estimator for ||A ∪
B(2)∪C||pp = ||A||pp+2p||B||pp+||C||pp. It is important to point
out that the reasoning here (and in the next paragraph)
depends on the fact that the ingress and egress nodes are
using the same sketch settings as noted at the beginning of
this section.

The sketch ~O − ~D exactly cancels out the contributions
from all the flows in B, and leaves us with the contributions
of flows from A and the negative of the contributions of
flows from C. We use C(−1) to denote all the flows in C
with packet counts multiplied by −1. Then Λ(~O− ~D)p is an

estimator of ||A ∪ C(−1)||pp = ||A||pp + ||C(−1)||pp = ||A||pp +

||C||pp .
To sum up, we get the following:

Λ(~O)p estimates ||A||pp + ||B||pp
Λ(~D)p estimates ||B||pp + ||C||pp

Λ(~O + ~D)p estimates ||A||pp + 2p||B||pp + ||C||pp
Λ(~O − ~D)p estimates ||A||pp + ||C||pp.

It is easy to see from the above formulae that both For-
mula (5) and Formula (6) are reasonable estimators for ||B||p,
i.e. ||O ∩ D||p.

Proposition 8. Suppose we have chosen proper l such
that (1) is roughly an (ε, δ) estimator. Suppose ||O ∩D||pp =
r1||O||pp, and ||O ∩ D||pp = r2||D||pp. Then (5) raised to the
power p estimates ||O ∩ D||pp roughly within relative error
bound (1

r1
+ 1

r2
−1)ε with probability at least 1−3δ. Similarly,

(6) raised to the power p estimates ||O∩D||pp roughly within
relative error bound 21−p(1

r1
+ 1

r2
+2p−1−2)ε ≈ (1

r1
+ 1

r2
−1)ε

with probability at least 1 − 2δ.

We omit the proof here since it is similar to the previous
proofs. This gives us a very loose rough upper bound on the
relative error. The ratios r1 and r2 are related to, but not
identical to, the ratio of OD flow traffic against the total
traffic at the ingress and egress points. We want to point
out that we cannot pursue a more aggressive claim similar
to Proposition 5, because we cannot claim independence of
Λ(~O) and Λ(~O + ~D), etc.

Now, to calculate OD flow entropy, we just need to replace
Λ(~Y) in (1) and (4) with Λ(~O, ~D) where ~O and ~D are L1+α

sketches, and similarly for Λ(~Z).

6. USING BUCKETS
Our earlier examples showed that l, the number of coun-

ters in the Lp sketch, need to be in the order of many thou-
sands to achieve a high estimation accuracy. Recall that

each incoming packet will trigger increments to all l coun-
ters for estimating one Lp norm, and our algorithm requires
that two different Lp norms be computed. Such a large l is
unacceptable to networking applications, however, since for
high-speed links, where each packet has tens of nanoseconds
to process, it is impossible to increment that many counters
per packet, even if they are all in fast SRAM.

We resolve this problem by adopting the standard method-
ology of bucketing [9], shown in Algorithm 2. With buck-
eting, the sketch data structure becomes a two-dimensional
array M[1..k][1..l]. For each incoming packet, we hash its
flow label using a uniform hash, function uh, and the result
uh(pkt.id) is the index of the bucket at which the packet
should be processed. Then we increment the counters
M [uh(pkt.id)][1 . . . l] like in Algorithm 1. Finally, we add
up the Lp estimations from all these buckets to obtain our
final estimate.

In the following, we will show that, roughly speaking,
bucketing (i.e., with k buckets instead of 1) will reduce the
standard deviation of our estimation of Lp norms by a factor

slightly less than
√

k, provided that the number of flows is
much larger than the number of buckets k. Lemma 9 shows
that the standard deviation for using l counters is in the
order of O(1/

√
l). Therefore, a decrease in l can be com-

pensated by an increase in k by a slightly larger factor. In
our proposed implementation (described in Section 7), the
number of buckets k is typically on the order of 10,000. Such
a large bucket size allows l to shrink to a small number such
as 20 to achieve the same (or even better) estimation accu-
racy. We will show shortly that, even on very high-speed
links (say 10M packets per second), a few tens of memory
accesses per packet can be accommodated.

We use Bi to denote all the flows hashed to the ith bucket,
and ||Bi||p to denote the Lp norm of the flows in the ith
bucket, similar to how we defined ||S||p before. Obviously
||S||pp =

P

i ||Bi||pp. Let Mi be the i-th row vector of the
sketch. We know that Λ(Mi) as defined in (1) is an estimator
of ||Bi||p, so naturally the estimator for ||S||p is:

Λ(M) ≡
"

k
X

i=1

(Λ(Mi))
p

#1/p

. (7)

In the ideal case of even distribution of flows into buckets,
and all ‖Bi‖p

p are the same, then ||S||pp = k||Bi||pp. Let’s
consider p = 1 first. Lemma 9 tells us that the estimator
Λ(Mi) is roughly Gaussian with mean ||Bi||1 and standard

deviation (1/2mf(m)
√

l)‖Bi‖1. By the Central Limit The-

orem, Λ(M) =
Pk

i=1 Λ(Mi) is asymptotically Gaussian, and

its standard deviation is roughly
√

k(1/2mf(m)
√

l)‖B1‖1 =

(1/2mf(m)
√

lk)||S||1. If we didn’t use any buckets and sim-
ply used estimator (1), then the standard deviation would

be (1/2mf(m)
√

l)||S||1. So lk is performing the same role
as l in the previous analysis, or in other words, k buckets
reduces standard error roughly by a factor of

√
k.

When p = 1 ± α in a small neighborhood of 1, we can
reach the same conclusion by using the same handwaving
argument in proof of Proposition 5 that a Gaussian raised
to power p is still roughly Gaussian.

In reality, we will not have even distribution of flows into
various buckets. However, when the number of flows is far
larger than the number of buckets, which will be the case
with our parameter settings and intended workload, we can

Algorithm 2: Algorithm to compute Lp norm with
bucketing
1: Pre-processing stage
2: Initialize a sketch M [1 . . . k][1 . . . l] to all zeroes
3: Fix l p-stable hash functions sh1 through shl.
4: Let hash function uh map flow labels to {1, . . . , k}
5: Calculate expected sample median EMedp,l by simula-

tion

6: Online stage
7: for each incoming packet pkt do
8: for j := 1 to l do
9: M [uh(pkt.id)][j] += shj(pkt.id))

10: Offline stage

11: Return
h

Pk
i=1

“

median(|M[i][1]|,...,|M[i][l]|)
EMedp,l

”pi1/p

prove that the factor of error reduction is only slightly less
than

√
k. We omit the proof here due to lack of space4.

When k is increased to be on the same order of the number
of flows, however, the factor of error reduction will no longer
scale as

√
k since (a) there will be many empty buckets that

will not contribute to the reduction of estimation error, and
(b) distribution of flows into buckets will be more and more
uneven. Therefore, when l is fixed, the estimation error
cannot be brought down arbitrarily close to 0 by increasing
k arbitrarily.

Another issue is the bias of median estimator (1), that
is, the expected value of the sample median of l samples is
not equal to the distribution median DMedp. When we are
not using buckets, the asymptotic normality implies that the
bias is much smaller than the standard error, so we could
ignore the issue. Now that we are using k buckets to re-
duce the standard error by a factor of

√
k, the bias becomes

significant. Let EMedp,l denote the expected value of the
median of l samples from distribution S+(p). So we redefine
our estimator for ||Bi||p:

Λ̃(Mi) ≡
median(|M [i][1]|, . . . , |M [i][l]|)

EMedp,l
. (8)

This replaces Λ(Mi) in (7) and gives our estimator using
buckets. Note that (8) is an unbiased estimator, but (7) still
may be biased.

Let us assume that M and N are Lp sketches with buck-
ets at ingress node O and egress node D respectively, and
the two sketches use the same settings. We can replace ~O
and ~D in (5) and (6) with M and N , and it is easy to re-
peat the arguments there to show that these are reasonable
estimators for the OD-flow Lp norm.

EMedp,l can be numerically calculated using the p.d.f.
formula for order statistics when fS(p) has closed form. Or
it can be derived via simulation. We can also talk about
V Medp,l, variance of the sample median of l samples.

Example: For p = 1, l = 20, we get EMed1,20 = 1.069,
V Med1,20 = 0.149, so standard deviation is 0.386. The
distribution median is DMed1 = 1, so we can see the bias
0.069 is much smaller than the standard deviation 0.386.
Also the asymptotic standard deviation given by Lemma 9
is 0.351, which is close to the actual value of 0.385.
4In fact, even to state rigorously the theorem we would like
to prove requires more space than we have here.

7. ALGORITHM IMPLEMENTATION
Our data streaming algorithm is designed to work with

high link speeds of up to 10 million packets per second us-
ing commodity CPU/memory at a reasonable cost. In this
section, we explain how various components of the algorithm
shall be implemented to achieve this design objective.

Recall that our algorithm needs to keep two sub-sketches
for estimating the L1+α and the L1−α norms respectively,
each of which consists of k ∗ l real-valued counters. We set
the number of counters per bucket l to 20 in our proposed
implementation. Since the sketches are implemented using
inexpensive high-throughput DRAM (explained next), we
allow the number of buckets k to be very large (say up to
millions).

As shown in Algorithm 2, for each incoming packet, we
need to increment l = 20 counters per sketch and we need
to do this for two sub-sketches. We use single-precision real
number counters (4 bytes each) to minimize memory I/O
(space not an issue), as 7 decimal digits of precision is accu-
rate enough for our computations. This involves 320 bytes
of memory reads or writes, since each counter increment in-
volves a memory read and a memory write. We will show
next that generating realizations of p-stable distributions
from two precomputed tables in order to compute sh will
involve another 320 bytes of memory reads. In total, each
incoming packet triggers 640 bytes of memory reads/writes.
However, we will show that if implemented using commodity
RDRAM DIMM 6400, our sketch can deliver a throughput
of 10 million packets per second.

Our sketches can be implemented using RDRAM DIMM
6400 (named after its 6400 MB/s sustained throughput for
burst accesses), except for the elephant detection module,
which is to be implemented using a small amount of SRAM
in the same way as suggested in [10]. RDRAM can de-
liver a very high throughput for read/write in burst mode (a
series of accesses to consecutive memory locations). Since
our 640 bytes of memory accesses triggered by each incom-
ing packet consist of 4 large contiguous blocks of 160 bytes
each, we can fully take advantage of the 6400 MB/s through-
put provided by RDRAM DIMM 6400. Implementing our
sketch using DRAM, we never need to worry about memory
space/consumption, as even if we need millions of buckets
in the future (we use tens of thousands right now), we are
consuming only hundreds of MB; In comparison, the retail
price of a commodity 2 GB RDRAM DIMM 6400 module is
about $300.

Next we describe how to implement the “magic” stable
hash functions sh1, ..., shl used in Algorithm 2. The stan-
dard methodology for generating random variables with sta-
ble distributions S(p) is through the following simulation
formula:

X =

»

sin (pθ)

cos1/p θ
(cos (θ(1 − p)))1/p−1

–

"

„

1

− ln r

«1/p−1
#

,

(9)
where θ is chosen uniformly in [−π/2, π/2] and r is chosen
uniformly in [0, 1] [6].

One possible way to implement these stable hash func-
tions shj , j = 1, ..., l, is as follows. To implement each shj

we fix two uniform hash functions uhj1 and uhj2 that map
a flow identifier pkt.id to a θ value uniformly distributed in
[−π/2, π/2], and an r value uniformly distributed in [0, 1]
respectively. We then plug these two values into the above

formula. However, computing Formula (9) requires thou-
sands of CPU cycles, and it is not possible to perform 40
such computations for each incoming packet.

Our solution for speeding up the computation of these sta-
ble hash functions (i.e., sh′

js) is to perform memory lookups
into precomputed tables (also in RDRAM DIMM 6400) as
follows. Note that in the RHS of (9), the term in the first
bracket is a function of only θ and the term in the sec-
ond bracket is a function of only r. For implementing each
shj we now fix two uniform hash functions uhj1 and uhj2

that map a flow identifier pkt.id to two index values uni-
formly distributed in [1..N1] and [1..N2] respectively. We
allocate two lookup tables T1 and T2 that contain N1 and
N2 entries respectively, and each table entry (for both T1

and T2) contains l = 20 blocks of 4 bytes each. Then we
precompute N1 ∗ 20 i.i.d. random variables distributed as
the term in the first bracket and fill them into T1, and
precompute N2 ∗ 20 i.i.d. random variables distributed as
the term in the second bracket and fill them into T2. For
each incoming packet, we simply return l = 20 random
values T1[uhj1(pkt.id)][j] ∗ T2[uhj2(pkt.id)][j], j = 1, ..., 20,
as the computation result for sh1(pkt.id), sh2(pkt.id), ...,
shl(pkt.id). Since each sub-sketch requires two tables, we
need a total of four tables. In our implementation, both N1

and N2 are set to fairly large values like 1M. Our simulation
shows that stable distribution values generated this way is
indistinguishable from real stable distribution values. Note
that our implementation is very fast: two memory reads (4
bytes each) and a floating point multiplication for computing
each shj(pkt.id). Note also that index values uhj1(pkt.id)
and uhj2(pkt.id) generated for estimating the L1+α norm
can be reused for the lookup operations performed in esti-
mating the L1−α norm, since all entries in these four tables
are mutually independent.

For our distributed algorithm in Section 5 to work, we
need all the nodes to use identical lookup tables, and iden-
tical uniform hash functions that are used to map into the
lookup tables. One way to ensure the identical lookup tables
is to distribute a random value to every ingress and egress
node and to use it as the seed to each of their (identical)
pseudorandom number generators.

8. EVALUATION
In this section, we evaluate the performance of our algo-

rithm using real packet traces obtained from a tier-1 ISP.

8.1 Data Gathering
We deployed a packet monitor on a 1 Gbit/second ingress

link from a data center into a large tier-1 ISP backbone net-
work. The data center hosts tens of thousands of Web sites
as well as servers providing a wide range of services such as
multimedia, mail, etc. The link monitored is one of multiple
links connecting this data center to the Internet. All the
traffic carried by this link enters the ISP backbone network
at the same ingress router. For each observed packet, the
monitor captured its IP header fields as well as UDP/TCP
and ICMP information required for the flow definition we
considered.

We collected a number of five-minute traces and a one-
hour trace in April 2007. We use the routing table dumped
at the ingress router to determine the egress router for each
packet, thus determining the OD flows to each possible egress
router. Because we don’t have the packet monitoring capa-

bility at egress routers, we chose to generate synthetic traffic
traces at egress routers so that they contain corresponding
OD flows observed at the ingress router. We can further
dictate the flow size distribution at egress routers. In most
cases, we make them match the flow size distribution of the
ingress trace.

In the rest of the paper, we will mostly use the following
two traces to illustrate our results.5

• Trace 1: A one hour trace collected at 9:41pm on April
25, 2007. It contains 0.4 billion packets which belong
to 1.8 million flows. We chose one egress router so
that the traffic between the origin and destination com-
prised of 5% of the total traffic arriving at the ingress
router.

• Trace 2: A five minute trace collected at 10:06pm on
April 25, 2007. Similar to Trace 1, the traffic between
the origin and our chosen egress router comprised of
5% of the total traffic arriving at the ingress router.
The traffic in this trace is purposely chosen as being
a subset of the traffic for Trace 1 so that we can di-
rectly compare the performance of our algorithm for
five minutes and one hour intervals.

8.2 Experimental Setup
For each trace, we repeat each experiment 1000 times with

independently generated sketch data structures and com-
pute the cumulative density function of the relative error.
Unless stated otherwise, the parameters we used for each
experiment were: number of buckets k = 50, 000, number of
registers in each bucket l = 20, sample and hold sampling
rate P = 0.001, and one million entries in each lookup table.

In our experiments, we also define an elephant flow (for
which the contribution to the entropy are computed sepa-
rately) to be any flow with at least N = 1000 packets. We
use α = 0.05, which satisfies the constraint α < 1/ ln N .
Hence, at every ingress and egress point we have a pair of
sketches computing the L1.05 and L0.95 norms of the traffic.

8.3 Experimental Results
Formulae 1 and 2: Recall from Section 5 that we had two
formulae for estimating the Lp norms, i.e.,

• Formula 1:
“

L(~O)p+L(~D)p−L(~O−~D)p

2

”1/p

• Formula 2:
“

L(~O+~D)p−L(~O−~D)p

2p

”1/p

.

We first compare the experimental results for these two
formulae. The cumulative density plots for the error of our
algorithm using these two formulae for Trace 1 are given in
Figure 2. We observe that both formulae have reasonably
small and comparable error values. This observation also
holds on all five minute traces and hence we fix and use
Formula 1 for the rest of our evaluation.
Varying number of buckets: We study the effect of vary-
ing the number of buckets on the performance of our al-
gorithm. Keeping all other parameters fixed at reasonable
values, we varied the number of buckets between k = 5000
and k = 80000, with increasing factors of two. Figure 3
shows the results of Trace 2. We observe that increasing the
number of buckets increases the accuracy (as expected), but
with diminishing returns.

5The results on other five minute traces are very similar.
We omit them here for sake of brevity.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25

F
ra

ct
io

n
of

 e
xp

er
im

en
ts

Relative Error

Formula 1
Formula 2

Figure 2: Comparing Formulae 1 and 2 (Trace 1)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

F
ra

ct
io

n
of

 e
xp

er
im

en
ts

Relative Error

k = 5000
k = 10000
k = 20000
k = 40000
k = 80000

Figure 3: Varying numbers of buckets (Trace 2)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

F
ra

ct
io

n
of

 e
xp

er
im

en
ts

Relative Error

P = 0.01
P = 0.001
P =0.0001

Figure 4: Varying sampling rates (Trace 2)

Varying sampling rate: Recall from Section 4 that we
separate the computation for the large (elephant) flows by
means of Sample and Hold. By varying the sampling rate
we can increase or decrease the probability with which we
will sample flows that are above our elephant threshold (i.e.,
flows of size greater than 1000). We found that the sampling
rate did not affect the performance of our algorithm signifi-
cantly. Figure 4 shows that, even with a small sampling rate
(e.g., 1 in 1000), the elephant detection mechanism allows
good overall performance for our algorithm.
Varying trace length: Figure 5 compares the cumulative
density plots of the error for the five minute, Trace 2, and
the one hour, Trace 1, which have the same origin and des-
tination nodes and similar traffic distributions. We observe
that, even though there is an order of magnitude difference
in the size of these traces, not only does the error remain
comparable, but also the distribution of the error. Our ex-
periments on different trace sizes show that the algorithm

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25

F
ra

ct
io

n
of

 e
xp

er
im

en
ts

Relative Error

Five minutes
One hour

Figure 5: Comparing Traces 1 and 2

 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 0.1
 0.11

 0 5 10 15 20 25 30 35 40

R
el

at
iv

e
er

ro
r

Ratio of OD traffic to ingress traffic (%)

Figure 6: Varying fraction of traffic from ingress

 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 0.1
 0.11

 0 2 4 6 8 10 12 14 16 18 20 22

R
el

at
iv

e
er

ro
r

Ratio of OD traffic to egress traffic (%)

Figure 7: Varying fraction of traffic from egress

is robust to changes in the size of the trace as long as the
fraction of cross-traffic is held constant, as discussed next.
Varying cross traffic: We study the variation of the ac-
curacy of our algorithm based on what fraction of the total
flow (from the source) that particular OD flow comprises.
For OD flows that are very small in comparison to the vol-
umes of traffic at the origin (and destination) we expect the
performance of our algorithm to degrade since the variation
of the cross traffic will begin to dominate the error of our
estimator. This is demonstrated in Figures 6 and 7 for
various fractions of the ingress and egress traffic (using the
average of 100 runs), respectively. The complete c.d.f. for
the ingress traffic is given for reference in Figure 8.
Computing Actual Entropy: We evaluate the perfor-
mance of our algorithm in computing the actual entropy (as
opposed to the entropy norm) of the OD flows. This compu-
tation has additional error since we need to make use of our
sketch to estimate the total volume of traffic between the

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

F
ra

ct
io

n
of

 e
xp

er
im

en
ts

Relative Error

35.5%
14.5%
5.3%
3.3%
2.5%

Figure 8: Varying fraction of traffic from ingress

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25

F
ra

ct
io

n
of

 e
xp

er
im

en
ts

Relative Error

Entropy error

Figure 9: Error distribution for actual entropy

source and destination. In Figure 9 we observe that the er-
ror plot for the entropy is comparable to that for the entropy
norm. Hence, this confirms the fact that our algorithm is a
robust estimator of the entropy of OD flows.

9. RELATED WORK
There has been considerable previous work in computing

the traffic matrix in a network [18, 21, 22, 23, 27]. The traffic
matrix is simply the matrix defined by the packet (byte)
counts between each pair of ingress and egress nodes in the
network over some measurement interval. For fine-grained
network measurement we are sometimes interested in the
flow matrix [28], which quantifies the volume of the traffic
between individual OD flows. In this paper we propose the
computation of the entropy of every OD flows, which gives
us more information than a simple traffic matrix and has
considerably less overhead than maintaining the entire flow
matrix.

In the last few years, entropy has been suggested as a use-
ful measure for different network-monitoring applications.
Lakhina et al. [15] use the entropy measure to perform anomaly
detection and network diagnosis. Information measures such
as entropy have been suggested for tracking malicious net-
work activity [11, 24]. Entropy has been used by Xu et
al. [25] to infer patterns of interesting activity by using it
to cluster traffic. For detecting specific types of attacks,
researchers have suggested the use of entropy of different
traffic features for worm [24] and DDoS detection [11]. Re-
cently, it has been shown that entropy-based techniques for
anomaly detection are much more resistant to the effects of
sampling [3] than other, volume-based methods.

The use of stable distributions to produce a sketch was
first proposed in [12] to measure the L1 distance between

two streams. This result was generalized to the Lp distance
for all 0 < p ≤ 2 in [8, 13]. This sketch data structure is
the starting point for the one that we propose in this paper.
The main difference is that we have to make several key
modifications to make it work in practice. In particular, we
have to ensure that the number of updates per packet is
small enough to feasibly perform in realtime.

Other than for p = 1, 2, there is no known closed form
for the p-stable distribution. To independently draw values
from an arbitrary p-stable distribution, we make use of the
formula proposed by [6]. Since this formula is expensive
to compute, we create a lookup table to hold several pre-
computed values.

In [7] it is suggested that the stable distribution sketch
can be used as a building block to compute empirical en-
tropy, but no methods for doing this are suggested. More
importantly, there are already known to be algorithms that
work well for the single stream case [16] and we believe that
it is for this distributed (i.e., traffic matrix) setting that the
stable sketch really shines.

10. CONCLUSION
In this paper we motivate the problem of estimating the

entropy between origin destination pairs in a network and
present an algorithm for solving this problem. Along the
way, we present a completely novel scheme for estimating
entropy, introduce applications for non-standard Lp norms,
present an extension of Indyk’s algorithm, and show how
it can be used in our distributed setting. Via simulation
on real-world data, collected at a tier-1 ISP, we are able to
demonstrate that our algorithm is practically viable.

11. REFERENCES
[1] A. Chakrabarti, K. Do Ba, and S. Muthukrishnan.

Estimating entropy and entropy norm on data streams. In
STACS, 2006.

[2] L. Bhuvanagiri and S. Ganguly. Estimating entropy over
data streams. In ESA, 2006.

[3] D. Brauckhoff, B. Tellenbach, A. Wagner, M. May, and
A. Lakhina. Impact of packet sampling on anomaly
detection metrics. In IMC, 2006.

[4] G. Casella and R. L. Berger. Statistical Inference. Duxbury,
2nd edition, 2002.

[5] A. Chakrabarti and G. Cormode. A near-optimal algorithm
for computing the entropy of a stream. In SODA, 2007.

[6] J. M. Chambers, C. L. Mallows, and B. W. Stuck. A
method for simulating stable random variables. Journal of
the American Statistical Association, 71(354), 1976.

[7] G. Cormode. Stable distributions for stream computations:
It’s as easy as 0,1,2. In Workshop on Management and
Processing of Data Streams, 2003.

[8] G. Cormode, P. Indyk, N. Koudas, and S. Muthukrishnan.
Fast mining of massive tabular data via approximate
distance computations. In ICDE, 2002.

[9] M. Durand and P. Flajolet. Loglog counting of large
cardinalities. In ESA, 2003.

[10] C. Estan and G. Varghese. New Directions in Traffic
Measurement and Accounting. In SIGCOMM, Aug. 2002.

[11] L. Feinstein, D. Schnackenberg, R. Balupari, and
D. Kindred. Statistical approaches to DDoS attack
detection and response. In Proceedings of the DARPA
Information Survivability Conference and Exposition, 2003.

[12] P. Indyk. Stable distributions, pseudorandom generators,
embeddings and data stream computation. In FOCS, 2000.

[13] P. Indyk. Stable distributions, pseudorandom generators,
embeddings, and data stream computation. J. ACM,
53(3):307–323, 2006.

[14] A. Kuzmanovic and E. W. Knightly. Low-rate tcp targeted
denial of service attacks (the shrew vs. the mice and
elephants). In SIGCOMM, 2003.

[15] A. Lakhina, M. Crovella, and C. Diot. Mining anomalies
using traffic feature distributions. In SIGCOMM, 2005.

[16] A. Lall, V. Sekar, M. Ogihara, J. Xu, and H. Zhang. Data
streaming algorithms for estimating entropy of network
traffic. In SIGMETRICS, 2006.

[17] G. S. Manku and R. Motwani. Approximate frequency
counts over data streams. In Proceedings of the 28th
International Conference on Very Large Data Bases, 2002.

[18] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and
C. Diot. Traffic matrix estimation:existing techniques and
new directions. In SIGCOMM, Aug. 2002.

[19] S. Muthukrishnan. Data streams: algorithms and
applications. available at
http://athos.rutgers.edu/∼muthu/.

[20] J. Nolan. STABLE program. online at
http://academic2.american.edu/∼jpnolan/stable/stable.html.

[21] A. Soule, A. Nucci, R. Cruz, E. Leonardi, and N. Taft. How
to identify and estimate the largest traffic matrix elements
in a dynamic environment. In SIGMETRICS, June 2004.

[22] C. Tebaldi and M. West. Bayesian inference on network
traffic using link count data. Journal of American Statistics
Association, pages 557–576, 1998.

[23] Y. Vardi. Internet tomography: estimating
source-destination traffic intensities from link data. Journal
of American Statistics Association, pages 365–377, 1996.

[24] A. Wagner and B. Plattner. Entropy Based Worm and
Anomaly Detection in Fast IP Networks. In Proceedings of
IEEE International Workshop on Enabling Technologies,
Infrastructures for Collaborative Enterprises, 2005.

[25] K. Xu, Z.-L. Zhang, and S. Bhattacharya. Profiling internet
backbone traffic: Behavior models and applications. In
SIGCOMM, 2005.

[26] Y. Zhang, Z. M. Mao, and J. Wang. Low-rate tcp-targeted
dos attack disrupts internet routing. In Proc. 14th Annual
Network & Distributed System Security Symposium, 2007.

[27] Q. Zhao, Z. Ge, J. Wang, and J. Xu. Robust traffic matrix
estimation with imperfect information: making use of
multiple data sources. In SIGMETRICS, 2006.

[28] Q. Zhao, A. Kumar, J. Wang, and J. Xu. Data streaming
algorithms for accurate and efficient measurement of traffic
and flow matrices. In SIGMETRICS, June 2005.

[29] V. M. Zolotarev. One-Dimensional Stable Distributions,
volume 65 of Translations of Mathematical Monographs.
American Mathematical Society, Providence, RI, 1986.

APPENDIX

A. PROOFS

A.1 Proof of Theorem 2

Lemma 9. Let f = fS+(p), m = DMedp. Then estimator
(1) is asymptotically normal with mean ||S||p and standard
deviation 1

2mf(m)
√

l
||S||p.

Proof. Let Xi = Yi/||S||p, then Xi are i.i.d. samples
from distribution S(p), so |Xi| are i.i.d. samples from dis-
tribution S+(p). Using the asymptotic normality of the me-

dian stated in [4, p. 483],
√

l(median(|X1|, . . . , |Xl|)−m) is
asymptotically normal with mean 0 and standard deviation

1
2f(m)

. Dividing by m
√

l and multiplying by ||S||p give us

that, ||S||pmedian(|X1|, . . . , |Xl|)/m − ||S||p
= median(|Y1|, . . . , |Yl|)/m−||S||p = Λ(~Y)−||S||p , is asymp-
totically normal with mean 0 and standard deviation

1

2mf(m)
√

l
||S||p.

Proof of Theorem 2. From Lemma 9,
Pr[|Λ(~Y)/||S||p − 1| < ε] ≈ Pr[| 1

2mf(m)
√

l
Z| < ε]

= Pr[| ε
zδ/2

Z| < ε] = Pr[|Z| < zδ/2] = 1 − δ.

A.2 Proofs of Propositions 4 and 5

Lemma 10. xα/ ln x is a decreasing function on (1, N] if
α < 1/ ln N . In fact, if α < 0.085, then xα/ ln x < 1 on
[3,N].

Proof. The derivative is negative on (1,N]. 3α < ln 3 for
α < 0.085.

Lemma 11. If a approximates b within relative error bound
ε, then a1+α approximates b1+α roughly within relative error
bound ε for small α and ε. Similarly for 1 − α.

Proof. 1− ε < a/b < 1+ ε, so (1− ε)1+α < a1+α/b1+α <
(1+ε)1+α. Using Taylor expansion, (1+ε)1+α = 1+ε+αε+
O(ε2) ≈ 1+ε for small α and ε. Similarly (1−ε)1+α ≈ 1−ε.
Same for 1 − α.

Proof of Proposition 4. We know |c(a1+α
i − a1−α

i) −
ai ln ai| ≤ ε0ai ln ai, sum over i gives |c(||S||1+α

1+α−||S||1−α
1−α)−

||S||H | ≤ ε0||S||H . So λ0 ≤ 1.
From Lemma 10 , a1+α

i < ai ln ai except for a few small
numbers. The big numbers should dominate the small num-
bers, so we argue that for a typical flow distribution,

P

a1+α
i <

P

ai ln ai, i.e. ||S||1+α
1+α < ||S||H . Let λ = ||S||1+α

1+α/||S||H , so

λ < 1. Also ||S||1−α
1−α < ||S||1+α

1+α = λ||S||H .
For simplicity of notation, from now on we will use y to

denote Λ(~Y) and z to denote Λ(~Z).
We know |y − ||S||1+α| < ε||S||1+α with probability 1− δ,

so from Lemma 11, roughly |y1+α − ||S||1+α
1+α| < ε||S||1+α

1+α =

λε||a||H with probability 1−δ. Similarly |z1−α −||S||1−α
1−α| <

λε||a||H with probability 1 − δ. So both inequalities will be
true with probability at least 1− 2δ. When that is the case,
|c(y1+α − z1−α) − ||S||H |
< |c(y1+α − z1−α) − c(||S||1+α

1+α − ||S||1−α
1−α)|

+ |c(||S||1+α
1+α − ||S||1−α

1−α) − ||S||H |
< c|y1+α − ||S||1+α

1+α| + c|z1−α − ||S||1−α
1−α|

+ |c(||S||1+α
1+α − ||S||1−α

1−α) − ||S||H |
< (2cλε + λ0ε0)||S||H .

Proof of Proposition 5. From Lemma 9, the error in
using Λ(~Y) to estimate ||S||1+α is roughly Gaussian with

mean 0 and standard deviation (π/2
√

l)||S||1+α (here we
used value of mf(m) at p = 1). We assume the error in

using Λ(~Y)1+α to estimate ||S||1+α
1+α is still roughly Gaus-

sian with mean 0 and standard deviation (π/2
√

l)||S||1+α
1+α.

(This is in the same spirit as (1 + ε)1+α ≈ 1 + ε.) Similarly

we assume the error in using Λ(~Z)1−α to estimate ||S||1−α
1−α

is roughly Gaussian with mean 0 and standard deviation
(π/2

√
l)||S||1−α

1−α, which we will enlarge to (π/2
√

l)||S||1+α
1+α.

Adding the two Gaussians gives
√

2 times the original Gaus-
sian. Therefore the error is multiplied by

√
2 under the same

probability 1 − δ.

